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Abstract: The generation of energy-efficient parallel scientific codes became very important in the time
of carbon footprint reduction. In this paper, we briefly present our latest particle-in-cell code with the
results of a numerical simulation of plasma dynamics in an open trap. This code can be auto-vectorized
by the Fortran compiler for Intel Xeon processors with AVX-512 instructions such as Intel Xeon Phi
and the highest series of all generations of Intel Xeon Scalable processors. Efficient use of processor
architecture is the main feature of an energy-efficient solution. We present a step-by-step methodology
of energy consumption calculation using Intel hardware features and Intel VTune software. We also give
an estimated value of carbon footprint with the impact of high-performance water cooled hardware.
The Power Usage Effectiveness (PUE) in the case of high-performance water cooled hardware is equal to
1.03–1.05, and is up to 1.3 in the case of air-cooled systems. This means that power consumption of liquid
cooled systems is lower than that air-cooled ones by up to 25%. All these factors play an important role
in the carbon footprint reduction problem.
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1. Introduction

Last year, carbon dioxide emissions got more attention from many researchers in differ-
ent areas. We can see a lot of scientifical and popular papers in absolutely different journals,
books, and on the internet. Of course, high-performance computing is associated with the
carbon footprint theme because the most powerful supercomputers consume more than
15MW each, although the power consumption of each supercomputer is less than 1% of
the typical aluminum plant consumption per year [1]. For example, we can read about the
ecological impact of high-performance computing in astrophysics [2] or about the energy
efficiency of openFOAM calculations in hydrodynamics [3]. Last decade we can see a lot of
papers in computer science with different code optimization techniques [4,5]. Many years,
our team have been developing parallel codes for plasma physics and for astrophysical
hydrodynamics simulations. In [6] we presented energy efficiency calculation for our astro-
physical code. We will use the same method as in [7] for energy efficiency calculation for a
plasma physics code. This method considers the power consumption of compute nodes and
the supercomputer’s cooling system. First of all, we would like to say some words about
the importance of plasma physics simulation and the Particle-in-Cell (PIC) method as one
of the most common methods in this area. PIC simulation of high-beta plasmas in an ax-
isymmetric mirror machine is of interest because of a new proposal of plasma confinement
regime with extremely high pressure, equal to the pressure of the magnetic field (so-called
diamagnetic confinement) [8]. This method allows essential decrease in the longitudinal
losses. There are several theoretical papers devoted to different aspects of diamagnetic
confinement: equilibrium and transport in the MHD approximation [8–10], influence of
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kinetic effects on equilibrium and transport [11], and axisymmetric z-independence kinetic
model of equilibrium [12]. Experimental demonstration of diamagnetic confinement in a
mirror machine with high-power off-axis neutral beam injection (NBI) is planned in the
Compact Axisymmetric Toroid (CAT) [13] device and Gas Dynamic Trap (GDT) at Budker
Institute of Nuclear Physics [14]. These experiments are close to the experiments with
high-power NBI in a field-reversed configuration, carried out on the C2-W/Norman device
of the company Tri Alpha Energy. Using the numerical PiC code NYM for interpretation of
the experiment in the C2-W device is worth noting [15]. The results of these experiments
and calculations can be used for development of aneutronic fusion. In our work, we are
using our own PIC algorithms and their parallel implementation. In this paper, we briefly
describe the mathematical model, parallel implementation, and some numerical tests of the
PIC code in Sections 1–3. A detailed description of the algoritms can be found in [16,17].
Sections 4 and 5 are dedicated to the energy efficicency calculation method and results.

2. Mathematical Model

The problem is conisdered on the basis of the of cylindrical trap sizes [Rmax × Lmax]
with the magnetic field H. The fully ionized hydrogen plasma with zero temperature and
density n0 at the initial time t = 0 is inside the trap. At the time t = 0, injection of the
particles into the trap from its center begins. We consider the injection as appearance of the
ions and electrons at the injection point. The self-consistent non-linear interaction of the
injected beam with the plasma and the magnetic field of the trap is the subject of research.

We assume axial symmetry of the problem, plasma quasi-neutrality (ni = ne = n), the
negligibility of the displacement currents and the massless electron component and obtain
the following equations in cylindrical coordinates with the following dimension units and
scaling factors:

• time: t0 = 1/ω, where ω = ωci = eH0/cmi is the ion gyrofrequency;
• length: L0 = c/ωpi, where ωpi =

√
4πn0e2/mi is the ion plasma frequency;

• velocity: the Alfven velocity VA = H0/
√

4πmin0.

The motion equations:
d~ri
dt

= ~vi, (1)

d~vi
dt

= ~Fi, (2)

where ~vi are the ion velocities, and~ri are the ion coordinates.
~Fi = ~E + [~vi, ~H]− κ~j/n is the combination of the electromagnetic force with the force

of the friction between the ions and the electrons.
The velocities of the electrons ~Ve can be obtained from the equation:

~j = (~Vi − ~Ve)n. (3)

The distribution function of the ions fi(t,~r,~v) defines their density ni and mean
velocity ~Vi:

n(~r) =
∫

fi(t,~r,~v)d~v, (4)

~Vi(~r) =
1

n(~r)

∫
fi(t,~r,~v)~vd~v. (5)

The electric field ~E is defined by the following equation:

~E + [~Ve, ~H] +
∇pe

2n
− κ

~j
n
= 0. (6)

The electric field ~E and magnetic field ~H are defined from Maxwell’s equations:
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∂~H
∂t

= −rot~E, (7)

rot~H =~j. (8)

The temperature Te is defined by the following equation:

n
(

∂Te

∂t
+ (~Ve∇)Te

)
= (γ− 1)

(
2κ
~j2

n
− pediv~Ve

)
(9)

for γ = 5/3 and the electron pressure pe = nTe.
The Equations (1)–(9) are based on the hybrid decsription of the process, where the

ions are defined by the Vlasov kinetic equation and the electron component is described as a
liquid with MHD equations. We use the particle-in-cell method [18,19], in which the particle
coordinates, velocities, and charges are assigned to the particle data on the Lagrangian grid.
The other functions (for example, the electric and magnetic fields, currents, temperature,
and mean ion densities) are defined on their own staggered Eulerian grids. For plasma
confinement with injection in the central domain of the trap and particle outflow through
the trap ends z = 0, z = Zmax, the equilibrium parameters of the system require a detailed
study. Due to the uneven particle distribution in the trap, the number of particles in some
cell may be few orders grater than that in another cell, and the distribution is non-stationary
on the early stages. The need in a large total number of particles (109) and long times of
evolution (∼104 ω) forces us to parallelize the complicated time-consuming algorithm.

3. Parallel Code

The parallel computing algorithm is based on the decomposition of the space and
particle grids. We divide the computational domain into equal subdomains along the z-axis
and assign the grid data of a subdomain to its own group of processor cores. The data of
the ions located in a subdomain is divided among the cores of the group. On each time
step, each core computes its particle trajectories, current, and charge densities. The master
core of each group additionally gathers the current and charge densities, computes the
functions on the Eulerian grid in view of the exchanges with the neighbour group cores
and boundary conditions, and then broadcasts the results to all cores of its group.

In a group, the background ions for t = 0 and the injected ions on each timestep are
distributed uniformly among the cores. When particles leave a subdomain, their data are
sent to a core of the adjacent group, the receiving core for each sending core defined via the
module operation. The algorithm provides an equal number of particles per core in group.
The equal number of particles in groups is obtained due to periodic load balancing, the
number of required cores in the groups is computed on the basis of the average number of
particles in each core. The balancing is laborous and thus occurs periodically, for example,
every 105 time steps. The dynamic load balancing allows speeding up the calculations.

We use explicit numerical schemes, and the trajectories of model particles and particle
charge contribution can be calculated independently by each core. This internal parallelism
of the particle-in-cell method is promising. However, there is a problem of the transition
from the Lagrangian grid to the Eulerian one and back. At the same time, the computation
of the force acting on each particle, the ion current, and the charge density via bilinear
interpolation are the most time consuming procedures and may take more than 95% of the
computation time. These difficulties are overcome via optimization of the algorithms for
the calculations of the velocities, coordinates of ions, charge densities, current densities, and
mean ion velocities to enable automatic vectorization [20]. We achieve ≈30% speedup with
the auto-vectorized code in comparison with the scalar code. This application of a single
instruction to multiple data points allowed us to increase the efficiency of the computations
and decrease their time. A detailed description of the model realization can be found
in [21]. The pseudocode of the proposed parallel algorithm is presented in Appendix A.
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The calculations were carried out with the Intel Xeon Phi 7290 processors of the Siberian
Supercomputer Center, ICM&MG SB RAS, Novosibirsk, Russian Federation.

4. Numerical Simulation

For the simulations we use the magnetic field value H0 = H(0, Lmax/2) = 0.2 kg with
the mirror ratio H(0, 0)/H(0, Lmax/2) = 2, length L0 = 22.8 cm, and background density
n0 = 1012 cm−3. In the dimensionless units, the trap sizes are Rmax = 4 and Lmax = 12; the
injection point coordinates are RIP = 0.4 and LIP = 6; the average beam speed for t = 0
is |V| = 0.1VA, VA = 4.3× 108 sm/s; the initial angular velocity Vφ = 0.7|V|. We used
the spatial grid with 300× 100 nodes, time step τ = 4× 10−6, and Jb = 1.2× 105 model
particles. Each time unit Jinj = 105 model particles were injected, adding to the trap the
charge of Qinj = 1018 real ions.

Figure 1 demonstrates the injected particle coordinates (z, r) at the times T = 20
and T = 120. The color of the particles denotes the time of injection of the particles.
Figure 2 represents the magnetic field lines at the times T = 20 and T = 120. The injected
particles begin to rotate in the magnetic field, forming a domain with the expelled magnetic
field around the point of injection. The magnetic field inside this cavity reaches only few
percents from the initial values, and thus new injected particles move in the cavity with
their original velocities and change them on the border of the cavity. Then some particles
move along the field lines towards the mirrors, and some particles remain captured in the
cavity. The formation of the magnetic field cavity with the thin boundary layer of high field
gradient may lead to the plasma confinement on the later evolution stages.

(a) (b)

Figure 1. Injected beam coordinates at T = 20 (a) and T = 120 (b).

(a) (b)

Figure 2. Magnetic field lines at T = 20 (a) and T = 120 (b).

5. Energy Efficiency

Recent initiatives on carbon footprint reduction will affect data centers. The carbon
footprint is estimated from the energy consumption of the algorithm and the carbon in-
tensity of the production of this energy: carbon f ootprint = energyneeded ∗ carbonintensity,
where the energy needed is runtime ∗ (powerdraw f orcores ∗ usage+ powerdraw f ormemory)
∗ PUE ∗ PSF. The energy consumption of the computing cores depends on the model of
CPU and the number of cores, while the memory power draw only depends on the size of
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memory available. The usage factor corrects for the real core usage percentage. The default
value of the usage factor is 1 for the full usage. The PUE (Power Usage Effectiveness)
value measures how much energy is consumed by the cooling, lighting, etc. systems
of the data center. The PSF (Pragmatic Scaling Factor) is used to take into account the
code runs during debugging and final calculations. A detailed description can be found
in [7]. Software engineers cannot control PUE and PSF values because they depend on
the supercomputer architecture. However, we can create the energy-efficient code, which
means that we have to use the CPU’s architecture effectively. For modern CPUs from
Intel or AMD, it means that we need to use vectorization instructions such as AVX2 or
AVX-512 [22]. The best way is to optimize the code for autovectorization using a compiler,
because this solution is more flexible towards the use of CPU intrinsics based on the specific
processor architecture. We tested this approaches in our earlier works for astrophysical
codes. Some of the results and software development techniques can be found in [23,24].
In the case of PIC code, in Listing A1 we provide a very simple pattern for aligning of
main data. We used a C++ style aligning in a Fortran code, which can be compiled by the
Intel Fortran compiler using the C++ precompiler. In our energy efficiency research, we
used the Intel Xeon CPU architecture, because we can receive the energy consumption
directly from hardware. This is a more precise approach than the use of approximate
theoretical models from different publications. The Intel server platform also provides the
possibility of DRAM power consumption collection for some DRAM models. The energy
consumption of other devices inside the cluster’s computational node is significantly less
than that of processors and memory.

For the energy effciency research, we used the Intel oneAPI software package [25].
It can measure the energy consumption data from processors, memory, and other hard-
ware during calculations. We employed the Intel SoCwatch tool from Intel OneAPI for
energy consumption evaluation. All collected data can be read and explained by the In-
tel VTune tool. We utilized the Intel Fortran Compiler, SoCwatch, and Intel Vtune from
oneAPI 2022 for compiling and evaluating the energy consumption. In our research, we
used RSC high-performance computing nodes of the NKS-1P cluster [26] with the Intel
Xeon Phi 7290 (2nd KNL generation) and Intel Xeon 6248R (2nd generation of Intel Xeon
Scalable) processors. Both type of CPUs support AVX512 instructions for vectorization.
We also tested a workstation with the Intel core i9-10980XE processor, because this CPU
also supports AVX-512 instructions. This building script from Listing A2 was used for our
tests. Our code is an MPI code, and we utilize a standard mpirun for a Linux or mpiexec for
Windows command for running the PIC simulation. As we said before, we use the −cpp
key with some source files because we need to employ the C++ precompiler for aligning
data and some other techniques to help the compiler to create auto-vectorized code. For
the energy consumption collection we applied the SoCwatch tool, run by the command

socwatch− t60− f power− rvtune−m− o results/test

as a separate process. SoCwatch produces an output file, which can be opened in the Intel
VTune profiler, which shows the following data for analysis:

1. Analyze the amount of time spent in each sleep state (C-State) and processor fre-
quency (P-State).

2. Identify which core spent time at what frequency.
3. Understand which cores were active during which timeframes during data collection.
4. Review the state residency by core, module, or package.
5. Explore how the state and frequency changed over time.

Figure 3 shows a C-state for the PIC code. We can see that in the first eight seconds
of the numerical simulation, the cores are in state C2. It can also be considered as a
transition state. The core clock is gated, and interrupts are not served. In this state, the
PIC code is loading data for numerical simulation. After this, the CPU is going to a C0
state with some inactivity, which is connected with the internal data distribution between



Mathematics 2022, 10, 3684 6 of 9

some of the cores. The C0 state means that at least one hardware thread within the core is
executing some task. In this state, cores stay active. Sometimes, in the case of thousand-core
numerical simulation, this data can help to find bugs faster than other types of analysis,
because we can find inactive cores. Finally, we can see that our PIC code uses all cores in
an active state. For energy efficiency research, we need information about the performance
in GFLOPS and the power consumption in Watts. For the performance evaluation, we used
the Intel Advisor, which is also part of oneAPI. Detailed information, on how to evaluate
the performance can be found in our previous work [27]. In this paper, we present data
obtained from Advisor.

Figure 3. Intel Vtune Profiler C-state data for our PIC code.

Table 1 shows the energy efficiency of the developed PIC code on Intel Xeon Phi,
the second generation of Intel Xeon Scalable processors, and Intel core i9 processor for
workstations. We achieve ≈30% performance growth with AVX512 instructions auto-
vectorization in comparison with scalar maximum performance for each processor type.
Why we concerning on aligning data in PIC code and trying to use other optimization
techniques? Because the vectorization technique gives up to 8x performance speedup with
20–30% power consumption growth. This is the main feature of Intel Xeon scalable CPUs
as well as other processors with AVX512 instructions support. This is hard to optimize
memory bounded code to achieve maximum vectorized performance. We think that this
is the main challenge for modern scientifical parallel codes development. For the carbon
footprint calculation, we need data from the cluster’s cooling system. In our research, we
used the NKS-1P system from the Siberian Supercomputer Center, the PUE factor of which
is equal to 1.03. There are only 3̃% of energy consumed by the cooling system. This PUE
is typical for the liquid-cooled systems (https://rscgroup.ru/en/, accessed on 24 August
2022). For this simple PIC test, the PSF is equal to 1. We used one node with two Intel
Xeon 6248 CPUs for numerical tests, and one Intel Xeon Phi 7290 processor. It means that
the energyneeded value = 48 h*2*193 W*1.03*1 = 19,084 Wh for 2× Intel Xeon 6248R. In
the case of one Intel Xeon Phi 7290 CPU, the energyneeded value = 48 h*1*202 W*1.03*1 =
9987 Wh. The total power consumption of the experimental setup is obtained by the node
consumption * PUE factor. The carbon intensity from electricity generation can be found
from [28], and for natural gas, it will be 0.91 pounds per kWh. In our case, we produced
17.29 pounds (≈7.8 kg) of CO2 from one test with double Intel Xeon 6248R and 9 pounds
(≈4 kg) with Intel Xeon Phi 7290.

https://rscgroup.ru/en/
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Table 1. Energy efficiency of PIC code for numerical simulation of plasma dynamics problem in
open trap. 1-CPU type, 2-Performance (GFLOPS), 3-Power Consumption (Watts), 4-Energy Efficiency
(GFLOPS/Watts).

1 2 3 4

Intel Xeon 6248R (205 W, 24 cores, AVX512) 180 193 0.93
Intel Xeon 7290 (245 W, 72 cores, AVX512) 191 202 0.94
Intel core i9-10980XE (165 W, 18 cores, AVX512) 97.74 151 0.64

Unfortunately, we cannot compare these results with those of other teams, which are
developing plasma physics codes yet, because the most common open-source software has
different numerical schemes. We hope that the database of these authors [7] will help to do
that in future.

6. Conclusions

In this paper, we briefly presented our latest PIC code, which is optimized for auto-
vectorization by the Fortran compiler. We also present in this article a step-by-step instruc-
tion on how to calculate the energy consumption and carbon footprint of code. At the
first step of code optimization, we achieved ≈30% speedup of our auto-vectorized PIC
code in comparison with parallel unvectorized code version. This speedup is achieved by
the aligning data to help the Intel Fortran Compiler with auto-vectorization. The latest
trends in reducing the carbon footprint dictate the need to pay attention to the quality of
high-performance code development. The energy efficiency is measured in FLOPS/W.
It is easy to understand that the most energy-efficient code has maximum FLOPS per
watt. Unfortunately, the process of computational performance maximization is not such
easy. Modern processors and accelerators are based on extended instructions for speeding
up the calculations. Most of them are based on vectorization. If one does not use these
instructions, the performance of the code will be unimpressed. For example, the scalar
peak performance for Intel Xeon 6248R is about 171 GFLOPS. The dual precision vector
peak performance is about 992 GFLOPS. The dual precision vector FMA peak is about 1984
GFLOPS for this processor. It means that vectorization can make a performance boost up
to five times. In the case of vectorization and FMA instructions, the performance boost will
be more than ten times. Another problem of performance maximization is the arithmetic
intensity. The PIC method is a memory bounded problem. It means that this method has
a very low FLOPS per byte of data value. This is why we have only 30% performance
boost in our case. In future, we will optimize our mathematics for autogeneration of FMA
instructions by the Fortran compiler. This approach can help us in additional performance
boost. Unfortunately, now we cannot compare the energy efficiency of other PIC codes at
this time, but we hope that there will be more energy efficiency research in future.

Author Contributions: Methodology, V.V., G.D. and I.C. (Igor Chernoshtanov); Software, M.B., I.C.
(Igor Chernykh), I.K., D.W. and E.G.; Supervision, I.C. (Igor Chernykh); Validation, E.G., M.B. and
G.D.; Visualization, M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Russian Science Foundation (project 19-71-20026).
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Appendix A

The pseudocode of the proposed parallel algorithm:

Algorithm A1 PIC method parallel algorithm

Set initial conditions
for i = 1, 2, . . . , Nexternal do

Rebalance
for j = 1, 2, . . . , Ninternal do

if core contains injection point then Injection
if core = master then Fields BCAST from masters to slaves
New particle coordinates
Boundary conditions for particles
Particle exchanges with neighbours
Particles sort among cells in one core
Mean charge densities
Mean current densities
Reduce mean densities from slaves to masters
if core = master then

Mean densities exchange with neighbours
Boundary conditions
Currents
Current exchange with neighbours
Eletric field
Electric field exchange with neighbours
Magetic field
Magnetic field exchange with neighbours
Temperature
Temperature exchange with neighbours

A typical pattern for aligning data (Listing A1) is as follows:

Listing A1. The pattern for aligning data in Fortran.

1. real*8, allocatable :: r(:)
2. real*8, allocatable :: z(:)
3. real*8, allocatable :: u(:)
4. real*8, allocatable :: v(:)
5. real*8, allocatable :: w(:)
6. real*8, allocatable :: q(:)
7. !dir$ attributes align :64 :: r
8. !dir$ attributes align :64 :: z
9. !dir$ attributes align :64 :: u
10. !dir$ attributes align :64 :: v
11. !dir$ attributes align :64 :: w
12. !dir$ attributes align :64 :: q

This listing shows how to help the Fortran compiler vectorize the code by aligning data.

Listing A2. Build script for our PIC code.

1. mpif90 -c limits.f
2. mpif90 -c types.f
3. mpif90 -c parallel.f
4. mpif90 -c algs.f
5. mpif90 -c -cpp push.f
6. mpif90 -axCORE -AVX512 -cpp hy.f parallel.o limits.o algs.o
push.o
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