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Abstract: Cryptocurrencies are a new field of investment opportunities that has experienced a
significant growth in the last decade. The crypto market was capitalized at more than USD 3000 bn,
having grown from USD 10 m over the period 2011–2021. Generating high returns, investments in
cryptocurrencies have also shown high levels of price volatility. By comparing the performance of
cryptocurrencies (measured by the crypto index) and standard equities (included in the S&P 500
index), we found that the former has outperformed the latter 14 times over the last two years. In the
present paper, we analyzed the 2012–2022 global crypto market developments and main constituents.
With a focus on the top 30 cryptocurrencies and their prices, as of 9 April 2022, covering data of
the two major market stress events—outbreaks of the COVID-19 pandemic (February 2020) and
the Russian invasion of Ukraine (February 2022). We applied the dynamic time warping method
including barycentre averaging and k-Shape clustering of time series. The use of the dynamic time
warping has been essential for the preparation of data for subsequent clustering and forecasting. In
addition, we compared performance of cryptocurrencies and equities. Cryptocurrency time series are
rather short, sometimes involving high levels of volatility and including multiple data gaps, whereas
equity time series are much longer and well-established. Identifying similarities between them
allows analysts to predict crypto prices by considering the evolution of similar equity instruments
and their responses to historical events and stress periods. Moreover, we tested various forecasting
methods on the 30 cryptocurrencies to compare traditional econometric methods with machine
learning approaches.
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MSC: 62M10; 62H30; 68T07
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1. Introduction and Paper Objectives

A cryptocurrency is a kind of digital currency which is based on cryptographic proofs
that are required for confirmation of each transaction. Cryptocurrencies may be described
by a special combination of properties: they are independent from central authorities (e.g.,
from central banks), they ensure some level of pseudo-anonymity, and they possess a
double spending attack protection [1].

Cryptocurrencies belong to decentralized digital currencies where this decentralization
is implemented by the p2p architecture. For many types of cryptocurrencies, their new
units are often created as a form of reward for solving complex mathematical problems.
And usually these problems get more complex and thus more demanding, the more coins
of a certain cryptocurrency already exist (e.g., Bitcoin). The speed of these new coins
generation is defined for each cryptocurrency upon its creation, but there can be some
exemptions [1].
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Under normal circumstances, cryptocurrencies ensure some level of pseudo-anonymity
if their users follow some basic rules and don’t disclose their ownership to public. All
transactions are stored as blocks in a big decentralized database called a blockchain. This
blockchain database contains all the details about all the transactions, but without the
names of counterparties. The cryptocurrencies that are stored in the blockchains are inde-
pendent from monetary decisions of central banks and public authorities. The generation
system, as mentioned, is defined when they are created and remains stable during their
life. Some cryptocurrencies provide a rare option for its change given a consensus that
is reached by some pre-defined majority of their operators (e.g., 75–95%). However, the
cryptocurrencies are still a rather new area of financial instruments. Future years and
their long-term usage show more lessons that are learned from their behaviour. The third
important feature of the cryptocurrencies is the double spending attack protection. An
owner of a certain cryptocurrency (and its coin) cannot use this coin for payment to two or
more different counterparties. Each coin can be used just once [1].

Cryptocurrencies are a new area of investment opportunities that has grown signifi-
cantly over the last decade [2]. The noticeable growth of cryptocurrencies and their prices
has been recorded since 2017, accelerating in last two years (see the Figure 1). Investments
into cryptocurrencies could and can generate high returns, but they have also shown a high
level of price volatility, as discussed below. Cryptocurrencies undoubtedly represent an
alternative type of investment opportunities for potential investors with a significant risk
appetite [3].
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Figure 1. Market capitalization of the global cryptocurrencies market 2015–2020 (n billion USD of
yearly return). Source: Own calculation, CoinMarketCap data.

In the first section of the paper, we examined the constituents and developments of the
global crypto market since 2012, analyzing the top 30 cryptocurrencies as of 9 April 2022 [4].
Specifically, we included cryptocurrencies data covering the two main stressful events on
the market over the last ten years, namely the outbreaks of the COVID-19 pandemic in
February 2020 and the Russo-Ukrainian war in February 2022.

In the second section of the paper, we applied the dynamic time warping method on
the loaded data in order to standardize them and thus to get a dataset with time series of
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the same length and frequency. Subsequently, we applied various clustering methods for
time series data of cryptocurrencies and equities considering various levels of their price
volatility. We created a new crypto index that allows for measuring the performance of the
global crypto market taking into account developments of the wider market and not just
the developments of the two most famous cryptocurrencies which are Bitcoin (BTC) and
Ethereum (ETH). Furthermore, we prepared a comparison of cryptocurrencies and their
price developments with other equities (represented in the S&P 500 index).

In the third section, we focused on the forecasting of cryptocurrencies prices and
compared various standard econometrical and machine learning methods. Several forecast-
ing performance metrics were tested in order to determine the most suitable forecasting
method. In summary, the main goals of the paper are as follows:

1. The description of the global crypto market including the creation of the crypto index
that can be used for cryptocurrencies market monitoring;

2. Transformation of the data using the dynamic time warping;
3. Clustering of time series of cryptocurrencies and standard equities and their comparison;
4. The identification of the most suitable forecasting methods with regards to cryptocurrencies.

1.1. Current Research with Regards to This Topic

As described in the paper, the crypto market experienced its main growth in 2020–
2022, especially in terms of various new cryptocurrencies that joined the market in this
period. Hence, during the paper preparations, we considered primarily academic papers
that were published in these years with particular focus on cryptocurrency properties and
their forecasting. Reference [5] analyzed investments into Bitcoin and gold and tried to
identify the best available forecasting model. The authors constructed an ARIMA model
through differential stationarity processing and found out that the ARIMA model was the
best available forecasting model by comparing it with various machine learning models for
this problem [5].

Reference [6] created and calibrated the Long short-term memory (LSMT) model for
the Bitcoin and gold forecasting. The LSMT algorithm that they utilized is a neural network
algorithm which was supposed to be suitable for various long-term processes. The LSMT model
led to mixed outcomes and didn’t prove to be an ideal tool for Bitcoin forecasting. Reference [7]
forecasted Bitcoin’s returns and their jumps using a self-exciting process that was embedded in
a stochastic volatility model. The authors found out that high and low values of the differences
in predicted probabilities of positive and negative jumps in Bitcoin’s returns were sufficient for
its forecasting. Reference [8] proposed a two-stage approach to parametric nonlinear time series
modelling in discrete time with the an objective of incorporating uncertainty or misspecification
in the conditional mean and volatility. The author applied the model on Bitcoin data also
targeting some COVID-19 periods.

The current academic research primarily focuses on Bitcoin or Ethereum modelling
and forecasting, but a limited analysis was conducted on other younger cryptocurrencies
that joined the crypto market just in last 3–4 years and they are gaining more and more of
market capitalization.

1.2. Data Loading and Data Sources

We downloaded data on the top 30 cryptocurrencies covering approximately 83% of
the global crypto market as of 9 April 2022 [2]. The data were collected from the online
trading platform CoinMarketCap [9]. Data on each of the selected cryptocurrencies are
available after their public trading launch—from before 2014 to the last two years, but their
availability and time series leght vary. The data suggest that by the spring 2017, activity in
the global crypto market was rather low, the cryptocurrencies having boomed from 2020,
when some of them entered the market. Therefore, we have limited the research to the
period from 31 December 2019 to 9 April 2022, allowing us to capture both recent major
global market shocks, i.e., the COVID-19 pandemic and the Russian invasion of Ukraine.
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Unfortunately, it is not possible to analyze price volatility during the 2008–2009 financial
crisis period because there was no full-fledged crypto market in that period.

Cryptocurrencies are traded in different price buckets (some of them close to 1 USD
and some of them more expensive than 10000 USD), which required some form of data
standardization for clustering and modelling purposes; modelling and forecasting being
considered synonymous in this paper [10]. A few options have been tested and the best
outcomes were achieved by transforming cryptocurrency price data to indexes with a
starting point as of 31 December 2019. This indexing means that all the data points were
divided by the value as of this date, see the Figure 2.
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The chart above gives an example of the indexed data for the two cryptocurrencies
with the highest global market capitalization, i.e., Bitcoin and Ethereum [11]. The high
level of price volatility in the top 30 cryptocurrencies (measured by the standard deviation
and maximum/minimum changes) is noticeable, especially compared to other equity
assets. Table 1 below shows the average comparison of the top 29 cryptocurrencies (after
excluding Shiba Inu as a significant outlier) and the S&P 500 index constituents covering
various sectors of the economy (it includes price changes between 31 December 2019 and 9
April 2022).

Table 1. Average comparison of indexed data for the top 29 cryptocurrencies and the S&P 500 index
constituents covering various sectors of the economy.

Median Max Min Standard Deviation
Top 29 cryptocurrencies 6.3 57.5 0.8 13.8

S&P 500 equities 1.2 1.8 0.6 0.3

Source: Own calculation, Bloomberg and CoinMarketCap indexed data.
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A single comparison of the average statistics of both cryptocurrencies and equities indicates
that the former were materially more volatile, also offering a higher growth potential. The
comparison was conducted on the indexed data as described above. The Table 1 outcomes
mean that the median cryptocurrencies prices increase was +530% since 31 December 2019 (as
data is indexed to this date so the value on 31 December 2019 is equal to 100%).

1.3. Outliers and Exploratory Data Analysis

We conducted an exploratory data analysis of all 30 cryptocurrencies that were ex-
amined, which cover ≈ 83% of the global crypto market as of 9 April 2022. Data on other
cryptos (top 31–100) were also explored but not used in the analysis as they contained
many data gaps and short time series, their global crypto market shares being limited (cf.
the Table 2).

Table 2. Exploratory data analysis of theselected 30 cryptocurrencies.

Order Cryptocurrencies Crypto Code
Market

Capitalization in
USD

Global
Market

Share in %
Median MAX MIN St.

Deviation

1 Bitcoin BTC 804,272,478,981 37.9% 4.8 9.3 0.7 2.6

2 Ethereum ETH 382,662,893,229 18.0% 12.4 36.6 0.8 10.9

3 Tether USDT 82,582,177,981 3.9% 1.0 1.0 1.0 0.0

4 BNB BNB 70,595,674,729 3.3% 11.8 48.7 0.7 15.4

5 USD Coin USDC 50,844,820,961 2.4% 1.0 1.0 1.0 0.0

6 XRP XRP 36,222,968,801 1.7% 2.7 9.5 0.7 2.0

7 Solana SOL 35,663,008,070 1.7% 9.6 270.7 0.5 70.3

8 Terra LUNA 33,326,242,255 1.6% 18.9 404.1 0.4 99.1

9 Cardano ADA 32,831,866,551 1.5% 24.2 88.8 0.7 23.6

10 Avalanche AVAX 22,280,026,674 1.0% 2.3 25.4 0.6 6.4

11 Polkadot DOT 21,245,308,736 1.0% 5.4 18.4 1.0 4.8

12 Dogecoin DOGE 18,909,602,131 0.9% 24.9 333.1 0.7 62.3

13 Binance USD BUSD 17,627,673,803 0.8% 1.0 1.0 0.9 0.0

14 TerraUSD UST 16,792,352,852 0.8% 1.0 1.0 1.0 0.0
15 Shiba Inu SHIB 13,000,941,819 0.6% 8.6 84,243.0 0.1 14,962.4
16 Wrapped Bitcoin WBTC 11,642,832,020 0.5% 4.8 9.3 0.7 2.6

17 NEAR Protocol NEAR 11,597,979,759 0.5% 1.8 17.1 0.5 3.7

18 Cronos CRO 11,008,076,857 0.5% 4.2 26.5 0.9 4.7

19 Lido Staked STETH 10,108,353,766 0.5% 2.6 7.7 1.0 2.1

20 Polygon MATIC 9,813,486,207 0.5% 8.6 201.9 0.6 55.2

21 Dai DAI 9,039,566,073 0.4% 1.0 1.1 1.0 0.0

22 Cosmos Hub ATOM 7,826,780,882 0.4% 2.7 10.6 0.4 2.8

23 Litecoin LTC 7,756,150,301 0.4% 2.8 9.1 0.7 1.7

24 Chainlink LINK 7,050,426,203 0.3% 8.7 28.5 1.0 5.9

25 TRON TRX 6,342,603,677 0.3% 3.6 12.5 0.6 2.6

26 Bitcoin Cash BCH 6,126,103,334 0.3% 1.8 7.4 0.7 1.0

27 FTX Token FTT 6,117,493,303 0.3% 10.5 37.3 0.9 10.1

28 Ethereum Classic ETC 5,428,612,836 0.3% 2.5 29.5 0.8 5.1

29 LEO Token LEO 5,500,882,010 0.3% 1.8 9.3 1.0 1.7

30 Algorand ALGO 5,070,856,490 0.2% 3.3 10.6 0.6 2.5

Top 30 cryptocurrencies in total 82.8%

Source: Own calculation, CoinMarketCap data.
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Different levels of volatility were identified in the data, with one extraordinary outlier
being detected. Having experienced a peak index increase of more than 8,424,000% over
the last two years, the Shiba Inu crypto was removed from the analysis as it might bias
the statistics. Moreover, its development has been substantially affected by the activi-
ties of some investors, exhibiting high levels of idiosyncratic risk. Hence, a total of 29
cryptocurrencies were included in the clustering and modelling analysis.

2. Dynamic Time Warping

Econometric, machine learning, and clustering methods of time series analysis are
dependent on their time alignment. Any time or frequency differences that are related
to the data can lead to biased models, which in turn may fail to correctly capture the
analyzed variables. There are two most sophisticated algorithms for time series align-
ment/standardization:

• Dynamic Time Warping (DTW), see [12]
• Canonical Time Warping (CTW), see [13]

In this paper, we focus on the dynamic time warping technique, utilizing its properties
in both clustering and forecasting analysis. DTW allows us to match and compare two
(or more) time series of different lengths or frequencies, even from different time periods.
It is a method that exactly corresponds to the 30 selected cryptocurrencies since some of
them were introduced to the crypto market only after 31 December 2019. This method
was used in this paper to prepare timely aligned time series used in the clustering and
forecasting methods. DTW usage in the cryptocurrencies modelling is essential as crypto
data contain various data gaps and many of them have short time series. No research has
been published on the DTW application on cryptocurrency prices. In the Figure 3, we see
the difference in the time series alignment between DTW and the traditional Euclidean
distance (ED) approach.
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The Euclidean distance is described by the following formula, where
→
x = (x1, x2, . . . , xm)

and
→
y = (y1, y2, . . . , ym) are two time series that are analyzed, and whose similarity is mea-

sured as:

ED
(→

x ,
→
y
)
=

√
m

∑
i=1

(xi − yi)
2

Dynamic time warping [14] is expressed by the following formula, where
W = {w1, w2, . . . , wk} is a warping path with k ≥ m, which is a contiguous set of
matrix elements that defines a mapping between the time series

→
x = (x1, x2, . . . , xm) and

→
y = (y1, y2, . . . , ym):

DTW
(→

x ,
→
y
)
= min

√√√√ k

∑
i=1

wi

A warping path is a list of connections between two time series. The points of the
warping path may be related to the same or similar properties of the time series, regardless
of the time when they occurred. The DTW algorithm focuses on two aspects:

• The calculation of the best warping path between two time series and their points
• The length (or cost) of an optimal path, i.e., a special metric covering the whole

universe of time series with their associated space

2.1. Clustering of Time Series

In order to better understand the development of cryptocurrencies and to discover the
similarities between them, we conducted a cluster analysis. Cryptos are considered a rather
new investment class, which was almost negligible before 2017, with some cryptocurrencies
entering the market as late as in 2020 or 2021. Hence, their time series are very short and
often highly volatile. The similarities between them and data-driven clustering outcomes
can be utilized in foresting and investment decisions. The outcomes may help extend the
time series of newer cryptos by aligning their indexes to those of similar cryptocurrencies
or even of other financial instruments such as equities. Equities have long series and their
data are considered to be more stable and robust. Taking into account the clustering results
(as described in this paper), an investor will be then able to extend time series of certain
“rather new” cryptocurrencies by their similarity to other cryptos or equities. This approach
enables an investor to better estimate a reaction of a cryptocurrency to events that happened
before the cryptocurrency was even created because the similar time series (e.g., of another
similar equity) may have experienced those events 10–20 years ago.

For the purposes of this paper, we focused on the time period between 31 December
2019 and April 2022. The data that were transformed by the DTW were used in the
clustering. Moreover, DTW may be used not only for the data transformation, but also
for the clustering purposes. In this paper section, we tested various clustering methods
including two methods that are based on the DTW features.

2.2. Barycentre Averaging

In terms of clustering methodology, we adapted the current state-of-the-art DTW
barycentre averaging (DBA) method [15], having tested the following three averaging ap-
proaches:

• Euclidean barycentre (without DTW)
• DBA (subgradient descent algorithm)
• Soft-DTW barycentre (with a gamma parameter)

There are many ways to cluster time series. The most common is the weighted average
approach, which involves a lot of noise and unwanted elements that are gathered from
clustered time series [16]. Another frequently used tool is a simple time series average,
leading, however, to biased results as the weights and contributions of time series may
differ. DTW barycentre averaging (DBA) is a novel non-parametric method for time
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series classification combining the K-nearest neighbours (KNN) method and dynamic time
warping [17]. It is a heuristic global averaging strategy to iteratively improve the initial
average estimate in order to minimize its squared distance (calculated using DTW) to
average estimates, employing the expectation-maximization algorithm.

All three charts within Figure 4 represent various approaches to the time series cluster-
ing. The red line is the cluster center when one cluster is considered. The x-axis presents
time count as a number of days since 31 December 2019. The y-axis shows the indexed
values for the underlying time series as described above.
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In the analysis of crypto data, both DBA-based methods produced very volatile
results that were quite significantly influenced by outliers, especially in comparison with
the Euclidean barycentre approach. Figure 4 shows differences in clustering outcomes
given the chosen method. Despite the original intention to use the DBA methods for
clustering and crypto indexing purposes, due to their volatile results, we decided to employ
Euclidean barycentric, hierarchical, and k-Shape clustering methods on the crypto data
that had already being timely aligned by the DTW.

2.3. Hierarchical and k-Shape Clustering

We applied and tested the following hierarchical clustering methods, mostly based on
the linkage criteria:

• Weighted method
• Ward linkage
• Complete linkage
• Average linkage
• Centroid linkage

The results of the weighted hierarchical clustering of cryptocurrencies (using the
Euclidean distance measure) are illustrated by the dendrogram below (see the Figure 5),
providing a first insight into the relationships between various cryptos.
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Hierarchical clustering is a useful tool for exploratory data analysis, but it also has
some drawbacks. It does not support dynamic time warping transformation and requires
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some important arbitrary decisions, such as the specification of distance metrics and linkage
criteria. However, we have not found a clear theoretical basis for those decisions.

To address the above drawbacks, we applied one of the advanced algorithms for
time series clustering, namely k-Shape [18] as a partitional clustering method [19] which
protects the shapes of the underlying time series. This algorithm efficiently compares
time series and calculates the centroids, while considering various scaling and shifting
invariances. It is a centroid-based clustering approach that is grounded on the cross-
correlation measure, relying on an iterative improvement process that scales linearly in the
number of sequences to generate homogeneous and well-separated clusters [19]. Our time
series were transformed to the same length and frequency, utilizing DTW but omitting the
DBA method.

Resting on the shape-based distance (SBD) measure and the shape extraction centroid
method, the k-Shape algorithm efficiently produces time series clusters. The SBD between
two time series is defined by the following formula which results in values ranging from 0
to 2 (0 indicating a perfect similarity between two time series):

SBD
(→

x ,
→
y
)
= 1−maxw

 CCw

(→
x ,
→
y
)

√
R0

(→
x ,
→
x
)

.R0

(→
y ,
→
y
)
,

where
→
x ,
→
y are the two analyzed time series and CCw

(→
x ,
→
y
)

is a cross-correlation between

them, w denoting the position where CCw

(→
x ,
→
y
)

is maximized. The results of the k-Shape
clustering may be found in the Table 3 below.

Such a cryptocurrency segmentation should be considered when deciding on the num-
ber of clusters to be identified. In order to capture as much information and heterogeneity
as possible, the within-cluster sum of squares (WCSS) [20] is calculated. The so-called
Elbow method suggested that only two clusters should be selected for the given dataset
(see the sharpest point of the curve in the Figure 6); however, it needs to be considered how
much information the selected clusters collect.
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WCSS is calculated as the sum of the squared distance between each point and the
centroid in a cluster. Based on the data, we chose five clusters to cover more than 90%
of the total WCSS. The k-Shape clustering analysis of 29 cryptocurrencies yielded the
following outcomes:
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Table 3. The k-Shape clustering results of 29 cryptocurrencies.

Order Cryptocurrencies Crypto Code Clusters
1 USD Coin USDC 1

2 Binance USD BUSD 1

3 Solana SOL 2

4 Terra LUNA 2

5 Avalanche AVAX 2

6 NEAR Protocol NEAR 2

7 Cronos CRO 2

8 Dai DAI 2

9 Cosmos Hub ATOM 2

10 LEO Token LEO 2

11 Litecoin LTC 3

12 Chainlink LINK 3

13 Bitcoin Cash BCH 3

14 Bitcoin BTC 4

15 Polkadot DOT 4

16 TerraUSD UST 4

17 Wrapped Bitcoin WBTC 4

18 Algorand ALGO 4

19 Ethereum ETH 5

20 Tether USDT 5

21 BNB BNB 5

22 XRP XRP 5

23 Cardano ADA 5

24 Dogecoin DOGE 5

25 Lido Staked STETH 5

26 Polygon MATIC 5

27 TRON TRX 5

28 FTX Token FTT 5

29 Ethereum Classic ETC 5
Source: Own calculation, CoinMarketCap data.

We then applied the Euclidean barycentre method to the five calculated clusters, the
results of which are plotted in the Figure 7. The x-axis shows the day numbers between
31 December 2019 and 9 April 2022, with the outbreaks of the pandemic and the Russo-
Ukrainian war falling on days 60 and 787, respectively.

Cluster 1 includes USD Coin and Binance USD cryptocurrencies which oscillated
around the same price since 31 December 2019, four other clusters showing a different price
development. There is no immediate cryptocurrency response to the onset of the COVID-19
pandemic. Over the following months, however, the prices of various cryptocurrencies
went up as a possible secondary effect of the pandemic and increased inflation expectations.
Clusters differ primarily in the speed of the response to the pandemic and its impact on the
economy (i.e., the fiscal and monetary easing [21]).
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Figure 7. Euclidean barycentre method of the five calculated clusters. Source: Own calculation,
CoinMarketCap data.

2.4. Crypto Index

The current global crypto market includes dozens of cryptocurrencies with varying
market capitalization and volatility. To track and measure the crypto market performance
over a given period or in comparison with the stock market, a benchmark crypto index
can be constructed, allowing to gather information on various cryptocurrencies and their
prices. Based on the previous analysis, we built this index on the data of the top 30 cryptos
in terms of their market cap over the last two years, excluding the only outlier (Shiba Inu).

Then, as with each index, we set the crypto index weights, several variants (more than
10) were tested and some of them are shown in the Figure 8 and in the Table 4.
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Table 4. The benchmark crypto index. Source: Own calculation, CoinMarketCap data.

Order Cryptocurrencies Crypto Code Global Market
Share in %

Weighted Average
Contribution in %

Crypto Index
Contributions in %

1 Bitcoin BTC 37.9% 46.1% 36.0%

2 Ethereum ETH 18.0% 21.9% 17.2%

3 Tether USDT 3.9% 4.7% 3.7%

4 BNB BNB 3.3% 4.0% 3.2%

5 USD Coin USDC 2.4% 2.9% 2.3%

6 XRP XRP 1.7% 2.1% 1.6%

7 Solana SOL 1.7% 2.0% 1.6%

8 Terra LUNA 1.6% 1.9% 1.6%

9 Cardano ADA 1.5% 1.9% 1.6%

10 Avalanche AVAX 1.0% 1.3% 1.6%

11 Polkadot DOT 1.0% 1.2% 1.6%

12 Dogecoin DOGE 0.9% 1.1% 1.6%

13 Binance USD BUSD 0.8% 1.0% 1.6%

14 TerraUSD UST 0.8% 1.0% 1.6%

15 Shiba Inu SHIB 0.6% 0.0% 0.0%

16 Wrapped Bitcoin WBTC 0.5% 0.7% 1.6%

17 NEAR Protocol NEAR 0.5% 0.7% 1.6%

18 Cronos CRO 0.5% 0.6% 1.6%

19 Lido Staked STETH 0.5% 0.6% 1.6%
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Table 4. Cont.

Order Cryptocurrencies Crypto Code Global Market
Share in %

Weighted Average
Contribution in %

Crypto Index
Contributions in %

20 Polygon MATIC 0.5% 0.6% 1.6%

21 Dai DAI 0.4% 0.5% 1.6%

22 Cosmos Hub ATOM 0.4% 0.4% 1.6%

23 Litecoin LTC 0.4% 0.4% 1.6%

24 Chainlink LINK 0.3% 0.4% 1.6%

25 TRON TRX 0.3% 0.4% 1.6%

26 Bitcoin Cash BCH 0.3% 0.4% 1.6%

27 FTX Token FTT 0.3% 0.4% 1.6%

28 Ethereum Classic ETC 0.3% 0.3% 1.6%

29 LEO Token LEO 0.3% 0.3% 1.6%

30 Algorand ALGO 0.2% 0.3% 1.6%

Top 30 cryptocurrencies in total 82.8% 100.0% 100.0%

The crypto index weights (i.e., contributions) were primarily based on the market
capitalization of the top 30 cryptocurrencies, which was heavily influenced by the two
best-known cryptos—Bitcoin and Ethereum. With the contributions of other cryptocur-
rencies being rather limited, we adopted a more structured approach consisting of the
following steps:

• The introduction of a new floor for each cryptocurrency weight that was equal to
2%. More than 10 various floors were tested and used for the floor calibration. A
preference was given to round numbers and floors leading to results that were similar
to the weighted average approach trying to avoid overestimation of the Bitcoin and
Ethereum impact. Robustness checks were conducted in the calibration process. The
2% floor led to the most stable results.

• Aggregation of the updated contributions after the floor implementation, their sum
being 128%

• Rescaling the updated values by 1.28, obtaining a sum of weights that was equal
to 100%

• Listing the final crypto index weights/contributions in a table (see the Table 4).

2.5. Clustering of Equities Included in the S&P 500 Index

In the next step, the k-Shape clustering algorithm was applied to a combined pool
of equities that were included in the S&P 500 index and the top 29 cryptocurrencies (top
30 cryptocurrencies after the exclusion of an outlier Shiba Inu) and this combined pool
was subsequently analyzed. The results of this clustering may be found in the Figure 9.
Cryptocurrencies are a relatively novel type of investment not experiencing many market
shocks that equities have already absorbed in the past. For example, cryptocurrencies
did not experience the 2008 financial crisis, let alone the upheavals of the 20th century.
Clustering of equities with cryptocurrencies can thus provide more penetrating insights
into the behaviour of cryptocurrencies, including more accurate predictions. The following
results were yielded by applying a five-cluster set-up:
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Figure 9. The k-Shape clustering algorithm applied on five clusters. Source: Own calculation,
Bloomberg and CoinMarketCap data.

A total of 529 financial instruments (either equities or cryptocurrencies) were almost
evenly split into five clusters. One of the advantages of combined clustering is the identifi-
cation of similarities and the potential extension of cryptocurrency time series. As already
described, the crypto market was rather irrelevant (in terms of market capitalization) before
2017. Therefore, the crypto market has limited empirical experience with macroeconomic or
other emergencies. For example, investors can only anticipate a potential Bitcoin response
to monetary interventions, rising inflation, or commodity shocks. K-Shape clustering of
equities that have longer time series allows to extend cryptocurrency indices using those of
similar equities from “the same cluster”.

Finally, while comparing equities and cryptocurrencies, we benchmarked the perfor-
mance of the newly designed crypto index against the standardized and well-known S&P
500. The results of this comparison are displayed in Figure 10 (including the development
of Bitcoin as the cryptocurrency with the highest market capitalization). Compared to 500
equity titles that were included in the S&P 500 index, cryptocurrencies showed higher
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volatility, but also higher growth potential (and thus higher profitability); the crypto index
having grown 14 times faster than the S&P 500 over the last two years [22].
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3. Modelling and Forecasting of Cryptocurrency Prices

Finally, the aim of the paper was to compare the performance of various modelling
and forecasting methods, benchmarking the methodologies of standard econometric and
machine learning techniques that were applied to cryptocurrency time series. The high
growth potential of cryptocurrencies (indicated by their past development outlined above)
made them attractive to investors seeking revenue benefits that can curb current inflationary
pressures. However, as is well known, historical profits are no guarantee of future profits.
Many investors, therefore, pay attention to the future price development of cryptocurrencies.
There are several approaches to price forecasting, the present paper focuses on the following
categories of time series prediction methods:

1. MA, AR, ARMA, ARIMA
2. Exponential smoothing (ETS)
3. BATS model
4. K-nearest neighbour regression (KNN) ML method
5. Random forest ML method

All five methods were tested on 30 cryptocurrencies and the newly constructed crypto
index. For the above listed techniques and all the cryptos, three different forecasting
performance metrics were comparatively applied. The results are presented in the following
section of the paper.

3.1. Stationarity and Augmented Dickey-Fuller Test

Prior to forecasting, the time series had to be examined to decide which methods
were applicable, some of them (e.g., ARIMA or ARMA) requiring stationary time series.
Stationarity assumes that each point of a time series is independent of the other points [23].
Time series are stationary unless a change in the time dimension leads to a change in the
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shape of the underlying statistical distribution. This means that distribution properties
such as mean, covariance, and variance remain constant over time. When applying auto-
covariance and autocorrelation-based forecasting methods to non-stationary time series,
the results may be biased and unreliable. Although many time series are non-stationary
in real life, this does not mean that they are unpredictable. They can be standardized and
transformed into stationary time series carrying out, for example, a differencing, power, or
log transformation. In this study, we applied first-order differencing, which is described by
the following formula:

∆Yt = Yt −Yt−1 (1)

Time series were examined using the following tools:

• Time series visualization
• Autocorrelation function (ACF) analysis
• Partial autocorrelation function (PACF) analysis
• Unit root testing, see [18]

In econometrics, unit root tests are used to check whether a time series is non-stationary
(and has a unit root) or whether it follows a stationary process. The null hypothesis is
usually defined as the existence of a unit root, an alternative hypothesis being stationarity
(with more detailed options such as a trend stationarity or an explosive root).

There are several reliable unit root tests, the augmented Dickey–Fuller (ADF) test
being among the most frequently used ones, indicating how significantly the time series
is affected by a trend. The ADF test is based on an autoregressive model, optimizing the
information criterion across multiple lag values. The ADF null hypothesis assumes the
existence of a unit root and thus the non-stationarity of the time series. An alternative
hypothesis rejects the null hypothesis, suggesting a stationary process.

The test’s null hypothesis is that the time series is not stationary (has a time-dependent
structure) and can be represented by a unit root. The alternative hypothesis (rejecting the
null one), on the other hand, predicts that the time series is stationary. The ADF results
highlight the test p-value. If it exceeds 5%, the null hypothesis cannot be rejected, indicating
that the time series is non-stationary and it must either be transformed into a stationary
one or methods not requiring stationarity (e.g., ETS or machine learning models) have to
be employed.

We conducted an ADF test for the time series of 30 cryptocurrencies (with a time range
from 31 December 2019 to 9 April 2022) and for the crypto index. As listed in the Table 5,
most of the time series that were analyzed were non-stationary. For methods that require
stationarity, we transformed the data using the first-order differentiation, all differenced
time series thus becoming stationary.

Table 5. The ADF test for the time series of 30 cryptocurrencies.

Cryptocurrency/Crypto
Index

Actual Time Series First Difference

ADF Test
Statistics p-Value ADF Test

Statistics p-Value

BTC −1.322 >5% −29.475 <5%

ETH −1.139 >5% −10.945 <5%

USDT −5.735 <5% −10.613 <5%

BNB −1.183 >5% −11.365 <5%

USDC −7.773 <5% −11.141 <5%

XRP −1.979 >5% −6.756 <5%

SOL −1.128 >5% −5.039 <5%

LUNA 0.917 >5% −5.714 <5%
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Table 5. Cont.

Cryptocurrency/Crypto
Index

Actual Time Series First Difference

ADF Test
Statistics p-Value ADF Test

Statistics p-Value

ADA −1.483 >5% −7.664 <5%

AVAX −0.978 >5% −9.923 <5%

DOT −1.603 >5% −9.327 <5%

DOGE −2.176 >5% −5.368 <5%

BUSD −8.705 <5% −12.308 <5%

UST −7.197 <5% −11.264 <5%

SHIB −1.787 >5% −5.701 <5%

WBTC −1.321 >5% −29.445 <5%

NEAR 0.130 >5% −4.847 <5%

CRO −1.451 >5% −7.006 <5%

STETH −0.948 >5% −7.640 <5%

MATIC −1.067 >5% −13.341 <5%

DAI −5.400 <5% −12.161 <5%

ATOM −1.137 >5% −7.816 <5%

LTC −1.618 >5% −9.319 <5%

LINK −1.787 >5% −7.918 <5%

TRX −1.596 >5% −7.118 <5%

BCH −2.217 >5% −6.507 <5%

FTT −1.057 >5% −7.718 <5%

ETC −1.898 >5% −6.045 <5%

LEO 1.046 >5% −9.013 <5%

ALGO −1.436 >5% −8.887 <5%
Crypto index −0.614 >5% −7.759 <5%

Source: Own calculation in Python.

3.2. Forecasting Methods

The indexed data were transformed by dynamic time warping (DTW) to match the
time range that was analyzed. For practical purposes, the database was divided into
training and testing sets. The mean absolute percentage error (MAPE) was then calculated
for all cryptocurrency time series and all methods. The testing part of the data included
the last 36 observations that were used to validate the results (cf. the Figure 11). The x-axis
shows the day numbers between 31 December 2019 and 9 April 2022, the outbreaks of the
pandemic and the Russo-Ukrainian war falling on days 60 and 787, respectively.

ARIMA is a class of forecasting methods that is used for time series analysis, containing
related techniques such as ARMA as well as simple AR, I, and MA models. Simpler tools
can be derived using a suitable combination of parameters. The ARIMA model consists of
three components:

• AR standing for “autoregression”—the dependence between current and previous
(lagged) observations

• I standing for “integration”—the differencing of actual observations to make a time
series stationary (e.g., by power transformation or by subtracting the observation in
the previous time step from the raw observation)

• MA standing for “moving average”—the dependence between true observations and
residual errors from a moving average model (applied to lagged observations)
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As for observations, the general forecasting equation is as follows:

ŷt = µ + φ1yt−1 + · · ·+ φpyt−p − θ1et−1 − · · · − θpet−p

ARIMA(1,0,0) is an example of a first-order autoregressive model with a time series
that is stationary and autocorrelated, including a constant. Its forecasting equation would
then be:

Ŷt = µ + φ1Yt−1.

Each of the three ARIMA components is explicitly defined by a model parameter. The
usual notation is ARIMA(p,d,q), the parameters clearly indicating the setting of the model:

• p => the number of lagged observations, indicating the “lag order”
• d => the degree of differencing, indicating which observations were subtracted from

the previous ones
• q => the size of the moving average window, indicating the number of observations

for each moving average calculation

In the present paper, we considered all potential combinations of the ARIMA model
(including simple ARMA, AR, I, or MA models) calibrating forecasts for p, d, and q parame-
ters ranging from 0 to 12 (including all their combinations). Only the best MAPE-based
calibrated ARIMA model was included in the comparative analysis along with other
methods [5].

Exponential smoothing (ETS) methods calculate forecasts as weighted averages of
past observations, with weights decreasing exponentially as the observed values become
outdated [24]. The more recent the observation, the higher the ETS weight. There are both
simple and complex ETS forecasting models that are based on the calculation of weights.
The simplest form of the exponential smoothing is given by the following formula:

si = αxt + (1− α)st−1 = st−1 + α(xt − st−1)

where α is a smoothing factor that can take values between 0 and 1, those close to 1 giving
more weight to the more recent observation and reducing the smoothing effect, and st is
the weighted average of the current observation xt and the previous smoothed ones.

BATS is a forecasting method combining four components—Box–Cox transformation,
ARMA errors, and trend and seasonal components [24]. The Box–Cox transformation is
applied to the original time series, then modelled as a linear combination of an exponentially
smoothed trend, ARMA and seasonal components. The BATS models that were used in
this paper employed the AIC-based hyperparameter tuning method determining which of
the four components to include or exclude.

K-nearest neighbour regression (KNN) is a machine-learning (ML) algorithm that
predicts a given variable based on a selected similarity criterion, allowing for various
distance functions to be utilized. KNN is a non-parametric method that has been applied
in forecasting, statistical estimation, and pattern recognition over the last 50 years. The
KNN algorithm is a type of supervized ML procedure that is used to solve classification
and regression tasks [25]. The distance functions vary for different KNN models, and in
this case, we applied the Euclidean distance (ED) of the form:

ED =

√√√√ k

∑
i=1

(xi − yi)
2.

The KNN results for the crypto index are shown in the Figure 12. The difference
between the orange line (testing data) and the green line (calculated prediction) is a measure
of the model/method’s accuracy.
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Another ML method is the Random Forest model. It is an aggregation of many
decision trees which make primary predictions. Random Forest models can be applied to
classification and forecasting tasks [26]. The model itself contains the following steps:

• Dataset splitting: The model randomly selects the features and observations. Different
features become responsible for creating different decision trees. Moreover, observa-
tions that are divided into training and testing ones can be used to assess the model’s
accuracy and precision.

• Decision-making process: Each decision tree makes its own decisions based on its
features and data.

• Aggregation of the outcomes from various decision trees: Multiple individual deci-
sions are combined to build the final random forest model. This leads to more robust
and accurate forecasts in comparison to simpler ML methods.

3.3. Forecast Results and Performance Metrics

We used the following three performance metrics to evaluate the forecast results:

• Mean absolute percentage error (MAPE)
• Mean absolute error (MAE)
• Root mean square error (RMSE)

The mean absolute percentage error (MAPE), also called the mean absolute percentage
deviation (MAPD), is a metric of prediction accuracy for predictive statistical methods. It is
expressed as a ratio that is defined by the formula:

MAPE =
100%

n

n

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣,
where At is the actual observation of each cryptocurrency, and Ft is the predicted value for
the given variable and time step. Their difference is then divided by the actual observation
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At. Subsequently, the absolute value in this ratio is aggregated for each forecasted time
step and divided by the number of the predicted values n.

The mean absolute error (MAE) calculates the average magnitude of absolute errors
in a set of the predicted values (see the formula below). All individual errors (differences
between forecasts and actual values) belonging to different time steps have equal weights.

MAE =
1
n

n

∑
t=1
|At − Ft|

The root mean square error (RMSE), the last performance benchmark that was tested
in this paper, uses a quadratic approach, also measuring the average magnitude of the
forecast error. RMSE is a square root of the mean of the squares of the differences between
the predictions and the actual values of the cryptocurrencies (cf. the formula below).

RMSE =

√
1
n

n

∑
t=1

(At − Ft)
2

MAE and RMSE measures bear certain similarities. They do not express the average
model prediction error in percentage terms, but in units of the predicted variable. Both
metrics can range from 0 to infinity regardless of the direction of errors. MAPE, on the other
hand, is standardized in percentages, being indifferent to the units of the measured variable.
It ranges between 0 and 1 and is more suitable for comparison purposes, especially when
the levels of the variables (as in our case various cryptocurrencies) differ significantly. All
three metrics are negatively-oriented scores, indicating that their lower values correspond to
more accurate forecasting. After unit scaling, all three metrics led to comparable conclusions
regardless of their different formulas. For the sake of brevity, we further focus only on
MAPE as the most appropriate comparative benchmark (unrelated to underlying time
series units). Its results are plotted in Figure 13.
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The chart above shows the MAPE results of five forecasting methods for the 30 selected
cryptocurrencies and the newly constructed crypto index. All forecasting methods that
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were used were briefly described above. The ARIMA method produces the most optimal
potential ARIMA/ARMA model whose parameters capture all combinations from 0 to
12. Thus, traditional econometric forecasting methods have surprisingly led to better
results than the machine learning ones (such as the K-nearest neighbours or Random
Forest regression techniques), identifying differences in the accuracy of predictions of
different cryptocurrencies.

Some cryptocurrencies (e.g., USD Coin, Tether, Binance USD, Terra USD, or Dai)
were easier to predict (their models generally resulting in lower MAPE metric values),
while other cryptos (e.g., Ethereum Classic, Luna, or NEAR Protocol) indicated more data
problems and volatility, leading to worse forecast results.

In addition, for some cryptocurrencies (e.g., Bitcoin or Tether), the choice of the
forecasting method did not significantly affect the accuracy of the results, whereas for
others (e.g., Polkadot or Cosmos Hub), some modelling methods were more suitable.
The accuracy of forecasts may be taken into account in strategic investment decisions.
Cryptocurrency forecasting with lower accuracy, i.e., with a higher MAPE/MAE/RMSE
score, can be enhanced by the outcomes of the combined clustering with equities. This
means to extend the indexed crypto time series by indices of the most statistically similar
equities with longer time series available.

The MAPE results were compared across the analyzed sample to reveal their distri-
butions for different prediction methods and for the crypto index, the latter showing the
resultsthat were similar to the 50th (median) and 75th percentiles of the sample distribution
(cf. the Figure 14). Comparison of the methods indicated bigger differences with increasing
percentile levels, which means that outlier cryptocurrencies caused the largest differences
across the methods.
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4. Conclusions

The paper’s goals have been accomplished. The analysis demonstrated the growing
importance of the global crypto market in terms of its capitalization which increased from
USD 10 m to over 3000 bn between February 2011 and November 2021, respectively. We
analyzed the growth developments of the 30 cryptocurrencies with the highest market
capitalization in the last two years, designing our own aggregate crypto index, which
reflects not only the development of Bitcoin, but also the other 28 top cryptos. The results
were reflected in the analysis that was carried out as of 9 April 2022, i.e., the deadline for
data retrieval. In addition, we provided a definition of cryptocurrencies and their main
properties in line with previous academic works [1].

In exploratory analysis, we processed the data (of cryptocurrencies and equities) using
the dynamic time warping (DTW) method to obtain the time series of the same length
and frequency. Furthermore, various clustering methods were tested and analyzed on
crypto data including two methods that were based on the DTW features. The most
robust results were achieved by the k-Shape clustering method, which was also used for
combined clustering, merging equities, and cryptocurrencies. The similarities between
cryptocurrencies and clustering outcomes can be utilized in forecasting and investment
decisions. Combined clustering between equities and cryptocurrencies has a potential
to improve the accuracy of cryptocurrency forecasting. The time series of “new” (“new
cryptocurrency” means a cryptocurrency with a short time series which was introduced to
the market in 2020–2022) cryptocurrencies may be enhanced by aligning their indexes to
those of similar cryptocurrencies or even of other financial instruments such as equities.
Equities have long series and their data are easily available. This approach enables an
investor to better estimate a reaction of a certain cryptocurrency to events that happened
before the cryptocurrency was even created. The investor may thus predict a stress impact
on its portfolio, despite the fact, that the portfolio contains many “new” cryptocurrencies
with short time series. This approach can be used in an investment strategy setting or in
decisions regarding the portfolio composition.

As the current academic research primarily focused on Bitcoin or Ethereum modelling
and forecasting with limited analysis conducted on other newer cryptocurrencies that en-
tered the crypto markets just in last 3–4 years despite their increasing market capitalization,
we tested various forecasting methods on the top 30 cryptocurrencies, not limiting our
analysis to Bitcoin and Ethereum only, comparing traditional econometric techniques with
machine learning approaches. Traditional methods, ARIMA and ETS, have led to slightly
more accurate results. For the ARIMA, we considered all potential combinations of the un-
derlying parameters (including simpler ARMA, AR, I, or MA models) calibrating forecasts
for p, d, and q parameters ranging from 0 to 12 (including all their combinations). Only the
most accurate ARIMA model was used for each cryptocurrency in the comparison. The
implemented machine learning techniques may be further upgraded and more complex
machine learning and artificial intelligence methods may be adopted in the follow-up
research; more specifically, Deep Learning, recurrent neural network, and long short-term
memory (LSTM) methods.

Finally, the data showed that cryptocurrencies may generate high returns, but also
high volatility (of returns which is a sign of higher risk). While comparing equities and
cryptocurrencies, we benchmarked the performance of the newly designed crypto index
against the standardized S&P 500. Compared to 500 equity titles that were included in
the S&P 500 index, cryptocurrencies showed higher volatility (and thus higher risk) than
equities, but also higher growth potential (and thus higher profitability), the crypto index
grew 14 times faster than the S&P 500 over the last two years. A limited short-term response
that was also detected of the cryptocurrencies to the COVID-19 pandemic and to the Russo-
Ukrainian war beginning over the 2020–2022 period. However, cryptocurrency prices
showed a strong sensitivity to the secondary effects of the pandemic, i.e., rising inflation
and its expectations. Some investors that were concerned about a potential depreciation
of standard currencies and investments, have become more focused on cryptocurrencies
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that are not easily influenced by central bank monetary interventions and are independent
from central authorities [1], and are depending only on a decentralized, distributed ledger
blockchain technology as described in the first section of this paper.
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