
Citation: Li, Z.; Li, X.; Chen, S.; Du, J.;

Li, Y. SaMfENet: Self-Attention Based

Multi-Scale Feature Fusion Coding

and Edge Information Constraint

Network for 6D Pose Estimation.

Mathematics 2022, 10, 3671. https://

doi.org/10.3390/math10193671

Academic Editors: Xiangtao Zheng,

Jinchang Ren and Ling Wang

Received: 21 August 2022

Accepted: 4 October 2022

Published: 7 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

SaMfENet: Self-Attention Based Multi-Scale Feature Fusion
Coding and Edge Information Constraint Network for 6D
Pose Estimation
Zhuoxiao Li 1,2, Xiaobing Li 1,2, Shihao Chen 1,2, Jialong Du 1,2 and Yong Li 1,2,*

1 Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of
Electrical Engineering, Guangxi University, Nanning 530004, China

2 Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, School of Electrical
Engineering, Guangxi University, Nanning 530004, China

* Correspondence: yongli@gxu.edu.cn

Abstract: Accurate estimation of an object’s 6D pose is one of the crucial technologies for robotic
manipulators. Especially when the lighting conditions changes or the object is occluded, resulting in
the missing or the interference of the object information, which makes the accurate 6D pose estimation
more challenging. To estimate the 6D pose of the object accurately, a self-attention-based multi-scale
feature fusion coding and edge information constraint 6D pose estimation network is proposed,
which can achieve accurate 6D pose estimation by employing RGB-D images. The proposed algorithm
first introduces the edge reconstruction module into the pose estimation network, which improves
the attention of the feature extraction network to the edge features. Furthermore, a self-attention
multi-scale point cloud feature extraction module, i.e., MSPNet, is proposed to extract point cloud
geometric features, which are reconstructed from depth maps. Finally, the clustering feature encoding
module, i.e., SE-NetVLAD, is proposed to encode multi-modal dense feature sequences to construct
more expressive global features. The proposed method is evaluated on the LineMOD and YCB-
Video datasets, and the experimental results illustrate that the proposed method has an outstanding
performance, which is close to the current state-of-the-art methods.

Keywords: 6D pose estimation; multi-scale feature fusion; attention mechanism; edge information
constraint

MSC: 68T07

1. Introduction

Six-dimensional pose estimation is of great significance for robotic grasping, aug-
mented reality, autonomous driving, etc. However, the lighting condition variation and the
occlusion of objects can make it extremely difficult for accurate 6D pose estimation.

Generally, the classical pose estimation methods can be roughly divided into two
main categories for indoor environments. One kind of method is the corresponding
feature points-based method, which establishes corresponding relationships between RGB
image feature points and the 3D object model feature points; then the object pose can be
calculated by applying the perspective-n-point (PnP) [1] algorithm. The other kind of
method is a template matching-based method, which samples the 3D object point cloud
model from multiple observation views to establish a template library. Then the image is
matched with the templates in the template library to obtain the initial poses and perform
subsequent optimization. Although traditional methods have many advantages, such as
fast calculation, little amount of data required for training, etc., traditional methods cannot
be applied in complex environments due to the weak robustness to disturbances, e.g.,
changes in illumination, occlusions, and the weak surface texture features of objects.

Mathematics 2022, 10, 3671. https://doi.org/10.3390/math10193671 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10193671
https://doi.org/10.3390/math10193671
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7230-3196
https://doi.org/10.3390/math10193671
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10193671?type=check_update&version=2

Mathematics 2022, 10, 3671 2 of 19

With the successful application of deep learning in computer vision, the application of
deep learning in pose estimation has been researched and explored. This trend has led to
the emergence of several data-driven 6D pose estimation methods, such as RGB data input-
based networks, e.g., PVNet [2], BB8 [3], and PoseCNN [4], and RGB-D data input-based
networks, e.g., DenseFusion [5] and PVN3D [6]. To a certain extent, the deep learning-
based 6D pose estimation method has overcome the shortcomings of the above traditional
methods. However, vulnerability to environmental disturbance cannot be eliminated easily.
For instance, the PoseCNN employs an end-to-end approach to directly regress the 6D
poses from RGB images. These methods have a greater advantage in calculating speed
but generally have lower accuracy when the ambient lighting conditions are poor, or the
object is occluded. With the inspiration of the traditional methods based on corresponding
feature points, many methods, such as PVNet, have been proposed to calculate the 6D
pose by locating feature points in the image. These methods exploit neural networks
to predict feature points, which can improve the robustness significantly compared to
traditional methods. However, these methods are still sensitive to influencing factors such
as illumination changes and weak texture of the object.

Considering the above issues, the approaches to improving the 6D pose estimation
network robustness are worth exploring and discussing. With the illumination condition
changes, the stability of the object edge features has been clearly observed. Similarly, with
weak object surface textures, there are still effective edge features that can be used for pose
estimation. Nowadays, MaskedFusion [7], HybridPose [8], and several other approaches
utilize mask or edge features in object 6D pose estimation. For example, MaskedFusion
extends the DenseFusion network by employing the mask feature extraction branches.
However, MaskedFusion simply adopts the same method for RGB images to the mask
of the object. However, the complementary nature of the color and edge features are not
emphasized, which leads to MaskedFusion still relying on iterative refinement to achieve
high accuracy in pose estimation.

In addition, among the currently advanced methods, e.g., DenseFusion [5], MSC-
Net [9], and EANet [10], PointNet [11] is usually employed to extract the geometric features
of the point cloud. However, PointNet only uses a single scale to extract the point cloud
features, which loses the local geometric feature information of the point cloud. This leads
to low accuracy pose estimation when the object is heavily occluded. Moreover, Point-
Net++ [12] is applied in PVN3D [6] to solve the loss of local geometric features of point
clouds, while the complex structure of the PointNet++ network leads to slower forward
inference in PVN3D.

The pose estimation methods such as DenseFusion and EANet usually use Maxpooling
to extract global features of dense feature sequences. However, Maxpooling simply takes
the maximum value in the dense feature sequence as the global feature, which ignores the
distribution characteristics of the feature sequences. Additionally, the existence of outliers
in the dense feature sequence may cause interference to the global features.

To solve the above problem, a novel 6D pose estimation network with edge feature
constraints is proposed. To be more specific, texture features extracted by the network are
used to perform edge reconstruction and calculate the edge reconstruction loss. Then, the
combination of the edge reconstruction loss and the pose estimation loss contributes to
optimizing the proposed network. The training phase for both the edge reconstruction and
pose estimation tasks is conducted in the meantime. The increasing attention of the pose
estimation network to edge features has been drawn by the edge reconstruction module;
thereby the robustness to disturbances such as illumination changes has been dramat-
ically improved. Meanwhile, to address the problem that PointNet extracts geometric
features at a homogeneous scale, we propose the MSPNet, which is a multi-scale point
cloud feature extraction network based on the self-attentiveness mechanism. Then we
introduce the MSPNet into our pose estimation network for multi-scale feature extraction
of point clouds obtained from depth image reconstruction. MSPNet adopts multiple paral-
lel point cloud feature extraction modules to extract local geometric features at different

Mathematics 2022, 10, 3671 3 of 19

scales and employs a self-attention mechanism to fuse the local geometric features from
different scales.

To address the problem that Maxpooling has insufficient modeling capability and is
susceptible to outlier interference, we propose the SE-NetVLAD, a clustered feature coding
network. SE-NetVLAD clusters and encodes multi-modal dense feature sequences so that
SE-NetVLAD is capable of extracting distributed features in feature sequences to construct
more expressive global features. Finally, we further enhance the multi-modal dense feature
sequences by reinforcing influential features and suppressing redundant features through
a self-attention mechanism.

Our method has been evaluated on the LineMOD Dataset [13] and the YCB-Video
Dataset [4]. The experiment results show that our method outperforms the advanced
DenseFusion [5] with refinement by 0.7%, and our method has the best performance on
smooth, untextured objects in the YCB-Video Dataset.

In summary, there are three main contributions of this work:

• We propose a self-attention-based multi-scale feature fusion coding and edge infor-
mation constraint network for 6D pose estimation, named SaMfENet. The proposed
network introduces an edge reconstruction module, which enhances the attention
of the network to edge features. An accurate estimation of the object’s 6D pose can
be achieved despite the changing effects of lighting conditions and the weak surface
texture of the object.

• A self-attention multi-scale point cloud feature extraction network, named MSPNet,
is proposed to extract local geometric features of point clouds at different scales and
integrate features from different scales through the self-attention module. MSPNet can
improve the 6D pose estimation accuracy with a few model parameters increasing.

• The clustered feature coding network, named SE-NetVLAD, is proposed to extract
global features from multi-modal dense feature sequences. Compared to the maximum
pooling layer, SE-NetVLAD is less sensitive to outlier interference and is capable of
constructing more expressive global features.

The remainder of the article is organized as follows. Section 2 introduces the related
works of pose estimation and attention mechanisms. Section 3 describes SaMfENet in
detail. Section 4 describes experiments on LineMOD Dataset and YCB-Video Dataset and
analyzes the experiment results. Finally, the conclusion of this article is given in Section 5.

Our code is open source, the code is available at https://github.com/r-9li/SaMfENet.

2. Related Work
2.1. Pose Estimation

The existing pose estimation methods can be mainly divided into traditional methods
and deep learning-based methods. While traditional methods have a low tolerance to
environmental disturbances and poor robustness, we, therefore, focus on 6D object pose
estimation methods based on deep learning.

2.1.1. Pose Estimation from RGB Images

The 6D pose estimation methods based on RGB images extract the features of the image
through the network and further return the 6D pose of the object. The direct regression
method and the key point method are popular approaches for 6D pose estimation. The
direct regression method uses the network to regress the object pose directly; for instance,
PoseCNN [4] splits the 6D pose estimation task into three subtasks, namely semantic
segmentation, 3D translation, and 3D rotation, then constructs a link between these three
subtasks to make the network structure more reasonable. SSD-6D [14] extends the object
detection task [15] to a 6D pose estimation task and abstracts the 3D rotation of an object to
a discrete classification in space. The key point method involves predicting the projection
of the object’s 3D key points on the 2D image through the network and then acquiring the
object’s poses by the PnP algorithm. This method is more robust and faster than the direct
regression method. In YOLO-6D [16], the object is detected by the YOLO [17] module at

https://github.com/r-9li/SaMfENet

Mathematics 2022, 10, 3671 4 of 19

first, and the 2D projection of the 3D bounding box of the object is obtained, then the PnP
algorithm is employed to solve the pose. Moreover, PVNet [2] extracts the features of the
object through a convolutional neural network at the beginning and adopts pixel-level unit
vector representation. These vectors are then voted on to determine the key points of the
object, and the highest scoring key points are used to solve the poses.

Li et al. [18] proposed an iterative refinement method based on deep learning to
estimate the 6D pose of objects called DeepIM. DeepIM optimizes the initial pose by
minimizing the difference between the observed image and the rendered image. The
iterative refinement process stops until the optimized pose converges or the number of
iterations reaches a threshold. Further, Labbé et al. [19] proposed a more effective multi-
object pose estimation method based on the idea of DeepIM, which is called CosyPose.
They employed the rotation parametrization reported in [20] into CosyPose to make CNN
training more stable.

Generally speaking, object 6D pose estimating methods based on RGB images have the
advantages of simple input and fast processing. However, the neglect of spatial geometric
information makes the estimation accuracy of these methods limited and less robust.

2.1.2. Pose Estimation from RGB-D Data

The current methods for pose estimation based on RGB-D images are mainly divided
into three types. For the first type, depth information is utilized as additional information
to optimize the estimation accuracy, e.g., PoseCNN [4], YOLO-6D [16], and BB8 [3]. These
methods employ only RGB images to estimate the object pose roughly in the first stage,
then generate point clouds based on depth information and RGB images. Finally, point
cloud matching algorithms (e.g., Iterative Closest Point (ICP) [21], Generalized Iterative
Closest Point (GICP) [22], and Super 4PCS [23]) are adopted to refine the object pose. For
the second type, taking MCN [24] as an example, MCN splices the depth information
channel with the RGB information channel and feeds the whole features into the network
to predict the object pose. However, neither of these two types of methods deeply fuse RGB
information with depth information, so these two types of methods cannot fully exploit the
complementary nature of the two types of data. The use of point cloud matching algorithms
such as ICP consumes a lot of time, which means these methods (e.g., PoseCNN + ICP,
BB8 + ICP) cannot estimate the pose in real time.

By contrast, DenseFusion [5], MaskedFusion [7], and other methods have attempted
to integrate RGB features deeply with depth-informed features at a later stage of feature
extraction, which has achieved better results than the previous two types of methods.
MSCNet [9] extends DenseFusion to extract further contextual information of point-level
multi-modal features for enhancing feature expression ability after constructing those
features. However, all of these methods only extract the geometric features of the point
cloud at a single scale through PointNet, so the local geometric features of the point cloud
are lost. Moreover, all of the above approaches focus on extracting color features of RGB
images only, ignoring the importance of edge features in the pose estimation task.

To solve the above problem, a self-attention multi-scale point cloud feature extraction
module, i.e., MSPNet, is proposed. At the same time, we incorporate the edge feature
constraint into the pose estimation network and propose a self-attention-based multi-scale
feature fusion coding and edge information constraint 6D pose estimation network.

2.2. Attention Mechanism

The attention mechanism was initially applied in machine translation [25–27], and
now it has become an important part of neural networks. Many variants of attention
mechanisms are widely used in computer vision and natural language processing tasks.
For example, SENet [28] can learn the importance of each feature channel autonomously to
activate practical features and suppress ineffective ones. ECANet [29] replaces the fully
connected layer in SENet with a 1D convolutional layer, improving network performance
dramatically with a small increase in the number of parameters and computation. GSoP-

Mathematics 2022, 10, 3671 5 of 19

Net [30] extends SENet and replaces the global average pooling in SENet with second-order
pooling, which compensates for the lack of modeling capability of global average pooling
and makes GSoP-Net more capable of extracting global information.

Unlike the traditional convolutional layers with only one convolutional kernel, Cond-
Conv [31] assembles multiple convolutional kernels in one convolutional layer. Specifically,
CondConv adopts a routing function to calculate the weight of each convolutional kernel
based on the input to the convolutional layer and weighs each convolutional kernel by its
weight. Finally, the weighted generated convolution kernel is used to convolve the input.
CondConv achieves only a slight increase in computation while boosting model capacity
and performs well on tasks such as image classification. SKNet [32] is capable of adjusting
the receptive field of features adaptively by assigning weights to feature maps generated by
convolution kernels of different sizes. Convolutional Block Attention Module (CBAM) [33]
combines channel attention with spatial attention, which has excellent performance for
improving the accuracy of object detection tasks.

Inspired by SKNet, the attention mechanism is introduced into MSPNet to integrate
local features from different scales, avoiding significant increases in network parameters
caused by high feature dimensionality.

3. The Proposed Method

The proposed network takes the RGB-D image as an input and outputs the 6D pose
of the object. Specifically, the 6D pose of the object is the rigid transformation from the
object coordinate system to the camera coordinate system. This rigid transformation is
represented as a homogeneous transformation matrix p = [R, t] consisting of a rotation
transformation R ∈ SO(3) and a translation transformation t ∈ R3.

3.1. Overview

Figure 1 illustrates the overall architecture of SaMfENet. SaMfENet contains five main
parts as follows:

• I. Semantic segmentation module. Based on the semantic segmentation network
proposed in PoseCNN [4], the input RGB images are segmented to obtain a mask and
bounding box for each instance object. The 3D point cloud is transformed from depth
pixels covered by the mask, and the image block obtained by cropping with bounding
boxes is used for subsequent feature extraction.

• II. Edge reconstruction module. The image block of the instance object is fed into an
image feature extractor constructed via an encoder–decoder structure to extract the
texture features. Then the edge reconstruction network generates an edge reconstruc-
tion image of the object based on the texture features. The object’s edges generated by
the Canny [34] operator are used to constrain the edge reconstruction. It can improve
the ability of image feature extraction to perceive edge information, thereby enhancing
the robustness of the network to illumination changes.

• III. Multi-scale point cloud feature extraction module (MSPNet). The 3D point cloud
reconstructed from the RGB-D image is fed into the MSPNet, which can extract the
local geometric features of each point through multiple parallel Graph Conv Layers.
Each Graph Conv Layer selects a different number of neighborhood points so that
multiple parallel Graph Conv Layers can extract local geometric features at different
scales. Finally, a self-attention mechanism is applied to fuse the local geometric features
at different scales into a multi-scale geometric feature of the point cloud.

• IV. SE-NetVLAD for features fusion. The multi-modal dense feature sequence A
constructed by pixel-wise texture features and geometric features are fed into SE-
NetVLAD. Then, SE-NetVLAD constructs global features by clustering and encoding
feature sequence A and concatenates the global features and feature sequence A at
the pixel level. The influential features are further enhanced through a self-attention
mechanism, while redundant features are suppressed.

Mathematics 2022, 10, 3671 6 of 19

• V. Pose estimation module. Feature sequence B is fed into the pose estimator, which
consists of multiple consecutive convolutional layers. The pose estimator is used to
perform regression translations and rotations directly.

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 20

scales. Finally, a self-attention mechanism is applied to fuse the local geometric fea-

tures at different scales into a multi-scale geometric feature of the point cloud.

• IV. SE-NetVLAD for features fusion. The multi-modal dense feature sequence A con-

structed by pixel-wise texture features and geometric features are fed into SE-

NetVLAD. Then, SE-NetVLAD constructs global features by clustering and encoding

feature sequence A and concatenates the global features and feature sequence A at

the pixel level. The influential features are further enhanced through a self-attention

mechanism, while redundant features are suppressed.

• V. Pose estimation module. Feature sequence B is fed into the pose estimator, which

consists of multiple consecutive convolutional layers. The pose estimator is used to

perform regression translations and rotations directly.

Figure 1. The overall architecture of SaMfENet. SaMfENet can be divided into five parts. First, the

input image is semantically segmented to obtain image blocks containing the object and the object

point cloud reconstructed from the depth images. The image block is fed into the image feature

extraction module to extract features afterward. We add edge feature constraints to improve the

attention of the image feature extraction module to edge features. At the same time, the object point

cloud is fed into MSPNet to extract the multi-scale geometric features of the point cloud. In addition,

the two features emerged at the pixel level to obtain a multi-modal dense feature sequence, which

is fed into SE-NetVLAD to extract the global features. Finally, the dense feature sequence is fed into

the pose estimator to predict the rotation and translation.

Figure 1. The overall architecture of SaMfENet. SaMfENet can be divided into five parts. First, the
input image is semantically segmented to obtain image blocks containing the object and the object
point cloud reconstructed from the depth images. The image block is fed into the image feature
extraction module to extract features afterward. We add edge feature constraints to improve the
attention of the image feature extraction module to edge features. At the same time, the object point
cloud is fed into MSPNet to extract the multi-scale geometric features of the point cloud. In addition,
the two features emerged at the pixel level to obtain a multi-modal dense feature sequence, which is
fed into SE-NetVLAD to extract the global features. Finally, the dense feature sequence is fed into the
pose estimator to predict the rotation and translation.

3.2. Semantic Segmentation

In order to reduce the interference of the surrounding environment on the pose
estimation, the object region should be segmented from the image first. In this work, the
semantic segmentation network provided by PoseCNN is employed. The image semantic
segmentation network constructed by an encoder–decoder structure takes an RGB image
as input and outputs N + 1 binary maps. The activated pixels in each binary image indicate
that these pixels belong to the object represented by the binary image. Based on the masks
of the objects, we can obtain the bounding box that encloses these objects and crop the

Mathematics 2022, 10, 3671 7 of 19

image with this bounding box to obtain the image block containing these objects. Moreover,
the object regions in the depth map can be obtained by multiplying the masks of the objects
and the depth map. Further, we transform the depth map into a visible surface point cloud
of the object using the camera’s intrinsic parameters.

3.3. Edge-Attention Image Feature Extraction Module
3.3.1. Image Feature Extraction Module

As the size of the cropped image blocks is not fixed, inspired by the property that
the fully convolutional network (FCN) is not sensitive to the size of the input image, we
designed an image feature extraction module that can be fed with images of arbitrary size.
Although PSPNet [35] used in DenseFusion [5] can integrate features at different scales,
the lack of shallow image features makes the output feature maps unfavorable for edge
reconstruction. Therefore, an encoder–decoder network with a symmetric hourglass-type
structure and a skip connection structure between the encoder and decoder is employed.

As shown in Figure 2, we first feed the image block into a 2D convolutional layer
to generate a feature map with a size of (H, W, 64). This feature map is then fed into
four successive downsampling modules to generate a feature map with a size of (H/16,
W/16, 1024). The downsampling module includes two consecutive 2D convolutional layers
(DoubleConv) and a maximum pooling layer. For the decoder part, we use four successive
upsampling modules to recover the feature map with a size of (H/16, W/16, 1024) to a
feature map with a size of (H, W, 64). The upsampling module consists of two consecutive
2D convolutional layers and a bilinear interpolation upsampling layer.

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 20

3.2. Semantic Segmentation

In order to reduce the interference of the surrounding environment on the pose esti-

mation, the object region should be segmented from the image first. In this work, the se-

mantic segmentation network provided by PoseCNN is employed. The image semantic

segmentation network constructed by an encoder–decoder structure takes an RGB image

as input and outputs N + 1 binary maps. The activated pixels in each binary image indicate

that these pixels belong to the object represented by the binary image. Based on the masks

of the objects, we can obtain the bounding box that encloses these objects and crop the

image with this bounding box to obtain the image block containing these objects. Moreo-

ver, the object regions in the depth map can be obtained by multiplying the masks of the

objects and the depth map. Further, we transform the depth map into a visible surface

point cloud of the object using the camera’s intrinsic parameters.

3.3. Edge-Attention Image Feature Extraction Module

3.3.1. Image Feature Extraction Module

As the size of the cropped image blocks is not fixed, inspired by the property that the

fully convolutional network (FCN) is not sensitive to the size of the input image, we de-

signed an image feature extraction module that can be fed with images of arbitrary size.

Although PSPNet [35] used in DenseFusion [5] can integrate features at different scales,

the lack of shallow image features makes the output feature maps unfavorable for edge

reconstruction. Therefore, an encoder–decoder network with a symmetric hourglass-type

structure and a skip connection structure between the encoder and decoder is employed.

As shown in Figure 2, we first feed the image block into a 2D convolutional layer to

generate a feature map with a size of (H, W, 64). This feature map is then fed into four

successive downsampling modules to generate a feature map with a size of (H/16, W/16,

1024). The downsampling module includes two consecutive 2D convolutional layers

(DoubleConv) and a maximum pooling layer. For the decoder part, we use four successive

upsampling modules to recover the feature map with a size of (H/16, W/16, 1024) to a

feature map with a size of (H, W, 64). The upsampling module consists of two consecutive

2D convolutional layers and a bilinear interpolation upsampling layer.

Figure 2. The structure of our image feature extraction module. The input of the module is an image

block obtained by bounding box cropping, and the output is a feature map of the image block.
Figure 2. The structure of our image feature extraction module. The input of the module is an image
block obtained by bounding box cropping, and the output is a feature map of the image block.

3.3.2. Edge Reconstruction Module

In real scene applications, the texture features of the object surface are easily affected
by changes in ambient lighting. Moreover, the surface of some objects is smooth and
weakly textured, which makes the texture-based feature extraction method ineffective.
We observe that the edge features of the object surface remain stable when the lighting
condition changes dramatically, and the objects with weak textures also have effective
edge features for pose estimation. Therefore, the edge reconstruction module is designed.
As shown in Figure 1(II), this module uses the Edge Reconstructor to generate an edge

Mathematics 2022, 10, 3671 8 of 19

reconstruction image from the feature map output by the image feature extraction module.
The Edge Reconstructor consists of two 1 × 1 convolutional layers, which can map the
input feature map with the size of (H, W, 64) to an edge reconstruction image with the
size of (H, W, 1). At the same time, we multiply the image block cropped by the bounding
box with the mask of the object region to obtain an image block containing the object only.
Moreover, we process this image block with the Canny [34] operator to generate the object
edge for edge reconstruction.

The loss of the edge reconstruction task is defined as the binary cross-entropy (BCE),
whose loss function can be expressed as:

LEdge = −(β ∑
Egt(i,j)=1

log Ex(i, j) + (1− β) ∑
Egt(i,j)=0

log(1− Ex(i, j)) (1)

where (i, j) indicates the position of the pixel on the image, Egt(i, j) = 1 indicates that pixel
(i, j) is an edge pixel in the object edge, Ex(i, j) represents the value of the pixel (i, j) in the
edge reconstruction image, and β indicates the percentage of non-edge pixels to all pixels
in the object edge.

3.4. Multi-Scale Point Cloud Geometric Feature Extraction Module

Typically, pose estimation methods do not fully exploit the complementary nature
of depth information and RGB information. To solve this problem, we employ the depth
image to generate the surface point cloud of the object and feed it into our network. Then
the geometric features of the point cloud are extracted by a self-attention multi-scale point
cloud feature extraction network, MSPNet. MSPNet extracts multi-scale geometric features
of the point cloud through a parallel structure. Meanwhile, we introduce the self-attention
mechanism into MSPNet to adaptively select the feature extraction scale.

Figure 3 displays the specific process of our network for extracting geometric features.
The network can be divided into two parts. The upper branch generates point-level features
for each point by encoding the spatial location information of each point through three
successive multi-layer perceptrons.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 20

3.3.2. Edge Reconstruction Module

In real scene applications, the texture features of the object surface are easily affected

by changes in ambient lighting. Moreover, the surface of some objects is smooth and

weakly textured, which makes the texture-based feature extraction method ineffective.

We observe that the edge features of the object surface remain stable when the lighting

condition changes dramatically, and the objects with weak textures also have effective

edge features for pose estimation. Therefore, the edge reconstruction module is designed.

As shown in Figure 1(II), this module uses the Edge Reconstructor to generate an edge

reconstruction image from the feature map output by the image feature extraction mod-

ule. The Edge Reconstructor consists of two 1 × 1 convolutional layers, which can map the

input feature map with the size of (H, W, 64) to an edge reconstruction image with the

size of (H, W, 1). At the same time, we multiply the image block cropped by the bounding

box with the mask of the object region to obtain an image block containing the object only.

Moreover, we process this image block with the Canny [34] operator to generate the object

edge for edge reconstruction.

The loss of the edge reconstruction task is defined as the binary cross-entropy (BCE),

whose loss function can be expressed as:

(,) 1 (,) 0

(log (,) (1) log(1 (,))
gt gt

Edge x x

E i j E i j

L E i j E i j
= =

= − + − −
(1)

where (𝑖, 𝑗) indicates the position of the pixel on the image, 𝐸𝑔𝑡(𝑖, 𝑗) = 1 indicates that

pixel (𝑖, 𝑗) is an edge pixel in the object edge, 𝐸𝑥(𝑖, 𝑗) represents the value of the pixel
(𝑖, 𝑗) in the edge reconstruction image, and 𝛽 indicates the percentage of non-edge pixels

to all pixels in the object edge.

3.4. Multi-Scale Point Cloud Geometric Feature Extraction Module

Typically, pose estimation methods do not fully exploit the complementary nature of

depth information and RGB information. To solve this problem, we employ the depth

image to generate the surface point cloud of the object and feed it into our network. Then

the geometric features of the point cloud are extracted by a self-attention multi-scale point

cloud feature extraction network, MSPNet. MSPNet extracts multi-scale geometric fea-

tures of the point cloud through a parallel structure. Meanwhile, we introduce the self-

attention mechanism into MSPNet to adaptively select the feature extraction scale.

Figure 3 displays the specific process of our network for extracting geometric fea-

tures. The network can be divided into two parts. The upper branch generates point-level

features for each point by encoding the spatial location information of each point through

three successive multi-layer perceptrons.

Figure 3. Structure of the multi-scale point cloud feature extraction network (MSPNet). The network

can be divided into two parts, the upper part is the point-level feature extraction branch, while the

lower part is the local feature extraction branch. The output features of the two branches are spliced

as the geometric features of the point cloud. MLP is the abbreviation for multi-layer perceptron, and

the numbers in brackets indicate the size of the layers.

Figure 3. Structure of the multi-scale point cloud feature extraction network (MSPNet). The network
can be divided into two parts, the upper part is the point-level feature extraction branch, while the
lower part is the local feature extraction branch. The output features of the two branches are spliced
as the geometric features of the point cloud. MLP is the abbreviation for multi-layer perceptron, and
the numbers in brackets indicate the size of the layers.

The lower branch aims to extract the local feature for the neighbors of each point.
Multiple parallel Graph Conv Layers are employed to extract the local geometric features.
Each Graph Conv Layer selects a different number of neighborhood points to extract local
geometric features with multiple scales.

Figure 4 demonstrates the structure of the Graph Conv Layer. We first take each point
as the center, then select the k nearest neighbor points with Euclidean distance and form a
neighbor point set Y with the size of (3, k, N). Additionally, each point in the point cloud is

Mathematics 2022, 10, 3671 9 of 19

subtracted by its k neighborhood points to generate a local feature vector F with the size of
(3, k, N), which is then mapped to a local feature vector F′ with the size of (128, k, N) by a
multi-layer perceptron. The process is expressed as:

F′(i, j) = h(P(i)−Y(i, j)) (2)

where P(i) represents the i-th point, and Y(i, j) represents the j-th neighborhood point
of the i-th point. h() represents a non-linear function with parameters, i.e., a multi-
layer perceptron.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 20

The lower branch aims to extract the local feature for the neighbors of each point.

Multiple parallel Graph Conv Layers are employed to extract the local geometric features.

Each Graph Conv Layer selects a different number of neighborhood points to extract local

geometric features with multiple scales.

Figure 4 demonstrates the structure of the Graph Conv Layer. We first take each point

as the center, then select the k nearest neighbor points with Euclidean distance and form

a neighbor point set 𝑌 with the size of (3, k, N). Additionally, each point in the point

cloud is subtracted by its k neighborhood points to generate a local feature vector 𝐹 with

the size of (3, k, N), which is then mapped to a local feature vector 𝐹′ with the size of (128,

k, N) by a multi-layer perceptron. The process is expressed as:

(,) (() (,))F i j h P i Y i j = − (2)

where 𝑃(𝑖) represents the i-th point, and 𝑌(𝑖, 𝑗) represents the j-th neighborhood point

of the i-th point. ℎ() represents a non-linear function with parameters, i.e., a multi-layer

perceptron.

Figure 4. Structure of the Graph Conv Layer, where k is the number of the selected neighborhood

points. MLP is the multi-layer perceptron, and the numbers in parentheses indicate the dimensions

of the layers.

Meanwhile, an attention mechanism is introduced to assign different weights to each

point and its k neighborhood points. As shown in Figure 4, the self-coefficients 𝛼 ob-

tained from the point cloud mapping represent the weights of each point, and the local-

coefficients 𝛽 obtained from the local feature vector 𝐹′ mapping represent the weights

of the k neighborhood points of each point. We add the self-coefficients 𝛼 and local-coef-

ficients 𝛽 to generate the final weight attention-coefficients 𝛾. Then we multiply the local

feature vector 𝐹′ by the attention-coefficients 𝛾 with the size of (1, k, N) and then sum

the result in the channel dimension to obtain the geometric features 𝐹′′ of the Graph Conv

Layer output. The process can be expressed as:

(,) ((,)) (())i j h F i j h P i = + (3)

1

() (,) (,)
k

j

F i F i j i j
=

 = (4)

where ℎ′() and ℎ′′() represent different non-linear functions with parameters.

To allow the network to choose the scale for local features extraction adaptively, we

introduce a self-attention mechanism after the feature extraction layer. Here, in order to

obtain the weights 𝑊𝑖(𝑖 = 1 ⋯ 𝑛) of the feature vectors, we feed the sum of the feature

vector 𝐹𝑖
′′(𝑖 = 1 ⋯ 𝑛) output from the feature extraction layer into the network, which

Figure 4. Structure of the Graph Conv Layer, where k is the number of the selected neighborhood
points. MLP is the multi-layer perceptron, and the numbers in parentheses indicate the dimensions
of the layers.

Meanwhile, an attention mechanism is introduced to assign different weights to
each point and its k neighborhood points. As shown in Figure 4, the self-coefficients α
obtained from the point cloud mapping represent the weights of each point, and the local-
coefficients β obtained from the local feature vector F′mapping represent the weights of
the k neighborhood points of each point. We add the self-coefficients α and local-coefficients
β to generate the final weight attention-coefficients γ. Then we multiply the local feature
vector F′ by the attention-coefficients γ with the size of (1, k, N) and then sum the result in
the channel dimension to obtain the geometric features F′′ of the Graph Conv Layer output.
The process can be expressed as:

γ(i, j) = h′(F′(i, j)) + h′′ (P(i)) (3)

F′′ (i) =
k

∑
j=1

F′(i, j)× γ(i, j) (4)

where h′() and h′′() represent different non-linear functions with parameters.
To allow the network to choose the scale for local features extraction adaptively, we

introduce a self-attention mechanism after the feature extraction layer. Here, in order to
obtain the weights Wi(i = 1 · · · n) of the feature vectors, we feed the sum of the feature
vector F′′i (i = 1 · · · n) output from the feature extraction layer into the network, which
consists of the average pooling layer, the fully connected layer, and the softmax layer. The
final output local feature vector F′′′ is the result of the weighted summation of the feature
vectors at each scale, which can be expressed as:

F′′′ =
n

∑
i=1

Wi · F
′′
i ,

n

∑
i=1

Wi = 1 (5)

Mathematics 2022, 10, 3671 10 of 19

At last, the final geometric features are generated by concatenating the point-level
features of each point with the local features.

3.5. Feature Fusion Module
3.5.1. Feature Fusion

In order to effectively fuse geometric and texture features, we used a pixel-level dense
fusion strategy. This fusion strategy can avoid using a single global feature to estimate
the object pose, thereby improving the robustness of the pose estimation network against
inaccurate image segmentation or object occlusion. As shown in Figure 1(IV), the geometric
features of each point are concatenated with the texture features to generate a multi-modal
dense feature sequence.

3.5.2. Global Feature Extraction

Since the object is composed of multiple pixels, global features constructed by features
of each pixel can be used to describe the object recapitulatively, which are essential for
estimating object poses in a changing environment.

Here, we propose a SE-NetVLAD rather than the commonly used maximum pooling
layer or average pooling layer to extract the global features of a feature sequence. Vector of
Locally Aggregated Descriptors (VLAD) [36] was originally designed to aggregate local
feature descriptors in an image into a global feature description vector. However, VLAD
cannot be introduced into neural networks because it applies hard classification to find
the nearest clustering center to the local feature descriptors. Hard classification means the
neural network cannot optimize end-to-end by back-propagation. We replace the hard
classification of local feature descriptors in VLAD with a differentiable soft classification,
which allows SE-NetVLAD to be optimized end-to-end through back-propagation.

As shown in Figure 1(IV), the input to SE-NetVLAD is a one-dimensional multi-
modal dense feature sequence {xi} with the size of (N, D), where D is the feature dimen-
sion. We first input the feature sequence into a 1 × 1 convolutional layer with a softmax
layer to obtain the soft classification weights pk(xi) with the size of (N, K). pk(xi) can be
expressed as:

pk(xi) =
eWT

k Xi

∑k′ e
WT

k′Xi
(6)

Afterward, the soft classification weight pk(xi) is multiplied by the residual
(xi(j)− ck(j)) to obtain a feature vector V with a size of (K, D), V could be expressed as:

V(j, k) =
N

∑
i=1

eWT
k Xi

∑k′ e
WT

k′Xi
(xi(j)− ck(j)) (7)

where K is the number of clusters. {Wk} and {ck} are the trainable parameter sets. We
then reconstruct the feature vector V into a 1D feature vector with size of (1, (K × D)), and
feed it into a single fully connected layer to map it to a global feature vector. Finally, we
concatenate the global feature vector with the multi-modal dense feature sequence at the
pixel level to generate a multi-modal dense feature sequence containing the global features.

3.5.3. Self-Attention Mechanism

Multi-modal dense feature sequences may have redundant feature information, so
we need to model the importance of feature channels explicitly and suppress redundant
channels. Thus, we insert a channel attention module, as shown in Figure 1(IV). The feature
sequence { fin} with the size of (N, D) is mapped to the channel weight vector W with size
of (1, D). The final output of the module, the feature sequence { fout}, is the weighting of W
on the original input feature sequence { fin}. { fout} can be expressed as:

fout(j, k) = W(k)× fin(j, k) (8)

Mathematics 2022, 10, 3671 11 of 19

3.6. 6D Object Pose Estimation
3.6.1. Pose Estimator

The pose estimator is composed of three parallel network structures, which are used
to regress rotation, translation, and confidence. All three parallel network structures
include four consecutive 1 × 1 convolutional layers. To make our method more robust
for environmental changes and occlusion solutions, we regress a predicted pose for each
feature vector in the multi-modal dense feature sequence. As shown in Figure 1(V), we
input all feature vectors in the sequence into the pose estimator and generate a prediction
for each feature vector. Meanwhile, we adopt a self-supervised method to select the best
prediction, i.e., when the network returns to the pose, the confidence of the prediction result
is regressed simultaneously. Among the dense prediction results, the prediction result with
the highest confidence is selected as the final network output.

3.6.2. Loss Function

The proposed network model needs to learn the 6D poses of the object p̂i and the
predicted confidence ci. In terms of the 6D pose estimation, we define the loss of pose
estimation as the distance between the sample points on the object model after the ground
truth and the predicted pose transformation. Therefore, the loss function of each dense
prediction result is defined as follows:

Lp
i =

1
M∑

j
‖ (Rxj + t)− (R̂ixj + t̂i) ‖ (9)

where M is the number of sample points on the 3D model of the object, xj is the j-th sampled
point, p = [R|t] is the ground truth, and p̂i =

[
R̂i
∣∣t̂i
]

is the i-th predicted pose.
The above loss function is only applicable to asymmetric objects, which have only one

correct pose. While symmetrical objects may have more than one correct pose, still using
the above loss function will result in the ambiguity of the object pose estimation. Therefore,
for symmetrical objects, we define the loss of pose estimation as the distance between the
sampled points on the object model after the ground truth and their nearest neighbor after
the predicted pose transformation, where the loss function can be expressed as follows:

Lp
i =

1
M∑

j
min

0<k<M
‖ (Rxj + t)− (R̂ixk + t̂i) ‖ (10)

To make the network learn a confidence level for each prediction, we apply the
confidence of the prediction results to weight the loss of the prediction results and add a
confidence regularization term. The final pose estimation loss function can be expressed as:

LPose =
1
N ∑

i
(Lp

i ci − w log(ci)) (11)

where N is the number of predicted outcomes and w is a balanced hyperparameter.
Finally, we combine the edge reconstruction loss function and the pose estimation loss

function as the final loss function Loss with the hyperparameter λ, as shown
in Equation (12).

Loss = LPose + λ× LEdge (12)

4. Experiments
4.1. Datasets

To evaluate the performance of the proposed network, two open datasets (LineMOD
Dataset [13] and YCB-Video Dataset [4]) are used to conduct experiments.

Mathematics 2022, 10, 3671 12 of 19

The LineMOD Dataset, which is well accepted to evaluate various classical or learning-
based pose estimation methods, contains 13 weakly textured objects from 13 videos and
does not contain synthetic images.

The YCB-Video Dataset consists of 92 videos containing a total number of 21 objects.
Further, the YCB-Video Dataset contains distractions such as lighting condition changes
and objects being occluded, which makes this dataset challenging.

4.2. Metrics

The accuracy of the pose estimation can be measured by two metrics, the average
distance (ADD) and the average closest point distance (ADD-S).

The average distance is defined as the average distance between the sampling points
on the object 3D model after the ground truth transformation and the sampling points after
the predicted pose transformation, which can be expressed as:

ADD =
1
m ∑

x∈M

∣∣∣∣(Rx + T)− (R̂x + T̂)
∣∣∣∣ (13)

where M is the set of 3D model points and m is the number of sample points.
The average closest point distance calculates the distance between the sampling points

on the 3D model after the ground truth transformation and the closest point after the
predicted pose transformation and then averages the distances between the closest points
of all sampling points, which can be expressed as:

ADD− S =
1
m ∑

x1∈M
min
x2∈M

∣∣∣∣∣∣∣∣(Rx1 + T)− (R̂x2 + T̂)
∣∣∣∣∣∣∣∣ (14)

4.3. Implementation Details

Our method is implemented based on the PyTorch framework and adopts the Adam
optimizer to optimize the network parameters at training time. All experiments in this work
run on a desktop computer with an Intel® Xeon® E5-2680 v4 CPU and NVIDIA RTX 3090
2 GPUs. Within the process of training, we set the initial learning rate to 0.0001, the maxi-
mum number of iterations to 500, the number of sampling points to 1000, hyperparameter
λ to 0.3, and hyperparameter w to 0.015.

4.4. Evaluation on LineMOD Dataset

In the LineMOD Dataset, we consider the pose estimation to be correct if ADD-(S)
(measured by ADD for asymmetric objects and ADD-S for symmetric objects) is lower than
ten percent of the object diameter, which is the same as the previous work [5]. We use the
percentage of correct key-frames for pose estimation to all key-frames to evaluate various
methods. In addition, we refer to this percentage as accuracy in the following.

Table 1 shows the performance of our method and other state-of-the-art RGB-based
or RGB-D-based methods on the LineMOD Dataset. From Table 1, the average accuracy
of the RGB-based methods, such as BB8 (62.7%), PVNet (86.3%), PoseCNN + DeepIM
(88.6%), and HRPose (91.6%), are lower than ours (95.0%), which is due to the fact that
the RGB-based methods do not utilize spatial geometric information. When the ambient
lighting conditions are not desirable or the surface texture of the object is weak (e.g., ape,
duck), effective texture features cannot be extracted, resulting in inaccurate pose estimation.
For the RGB-D-based method, SSD-6D + ICP only uses depth information in the post-
processing stage without a deep fusion of texture features and geometric features, so the
average accuracy of this method merely reaches 79%. EANet also exploits edge cues, but
since our method uses MSPNet to extract multi-scale geometric features of point clouds and
constructs more expressive dense feature sequences, our method outperforms EANet by
3.5% in the average accuracy. MSCNet uses multi-scale dense features for pose estimation,
but since it does not use edge information to constrain the network, the pose estimation

Mathematics 2022, 10, 3671 13 of 19

accuracy is lower when the object surface texture is weak, and the average accuracy is
lower than our method by 0.4%.

Table 1. Quantitative evaluation results on the LineMOD Dataset using the ADD-(S) metric, where
the data shown in bold are the highest scores among different methods, and the objects marked with
an asterisk * are symmetrical objects.

Input RGB RGB-D

Method BB8
[3]

PVNet
[2]

PoseCNN [4]
+ DeepIM [18]

HRPose
[37]

SSD-6D [14]
+ ICP [21]

MSCNet
[9]

DenseFusion
[5]

EANet
[10] Ours

ape 40.4 43.6 77.0 68.3 65.0 89.0 79.5 85.5 90.1
bench 91.8 99.9 97.5 99.4 80.0 93.1 84.2 92.2 91.0

camera 55.7 86.9 93.5 89.8 78.0 95.9 76.5 90.1 96.7
can 64.1 95.5 96.5 98.6 86.0 93.2 86.6 92.5 91.9
cat 62.6 79.3 82.1 90.0 70.0 95.0 88.8 93.0 96.4

driller 74.4 96.4 95.0 98.9 73.0 94.2 77.7 87.0 95.1
duck 44.3 52.6 77.7 72.7 66.0 90.3 76.3 79.9 90.8

eggbox * 57.8 99.2 97.1 100.0 100.0 100.0 99.9 99.7 99.8
glue * 41.2 95.7 99.4 98.7 100.0 100.0 99.4 98.9 99.7
hole 67.2 81.9 52.8 84.6 49.0 92.2 79.0 87.8 93.7
iron 84.7 98.9 98.3 99.0 78.0 96.5 92.1 94.8 97.9
lamp 76.5 99.3 97.5 99.4 73.0 95.1 92.3 95.7 96.6

phone 54.0 92.4 87.7 91.9 79.0 94.8 88.0 92.5 95.9
Mean 62.7 86.3 88.6 91.6 79.0 94.6 86.2 91.5 95.0

We notice that keypoint-based methods (such as PVNet, HRPose) can achieve high
pose estimation accuracy on bench can in the LineMOD Dataset. This is because bench and
can have obvious texture features and geometric corners, so the keypoint-based methods
can stably predict keypoints on bench. While our method does not exploit keypoints, it
performs slightly worse on these two types of objects.

Moreover, we present the visualized results of our method on the LineMOD Dataset,
which can be seen in Figure 5.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 20

Figure 5. Visualization of results on the LineMOD Dataset.

4.5. Evaluation of YCB-Video Dataset

Table 2 shows the pose estimation results on the YCB-Video Dataset. Two metrics are

used to measure the effectiveness of the methods. One is the area under the ADD-S score-

threshold curve (AUC), with thresholds ranging from 0 to 10 cm. Another indicator is the

percentage of ADD-S scores of less than 2 cm (<2 cm). All methods use semantic segmen-

tation masks from PoseCNN to guarantee fair comparison.

Table 2. Quantitative evaluation results using the ADD-S metric on the YCB-Video Dataset, where

the data shown in bold are the highest scores among the different methods, and the objects marked

with an asterisk * are symmetrical objects.

Input RGB RGB-D

Methods

CosyPose

[19]

PoseCNN [4]

+ ICP [21]

DenseFusion

[5]
MSCNet [9] G2L-Net [38] Ours

AUC <2 cm AUC <2 cm AUC <2 cm AUC <2 cm AUC <2 cm AUC <2 cm

002_master_chef_can 92.6 - 95.8 100.0 95.2 100.0 94.7 96.0 94.0 - 95.9 100.0

003_cracker_box 93.7 - 92.7 91.6 92.5 99.3 93.4 89.4 88.7 - 94.1 94.8

004_sugar_box 96.6 - 98.2 100.0 95.1 100.0 95.7 100.0 96.0 - 97.2 100.0

005_tomato_soup_can 92.5 - 94.5 96.9 93.7 96.9 94.1 96.7 86.4 - 94.2 96.9

006_mustard_bottle 96.0 - 98.6 100.0 95.9 100.0 95.3 100.0 95.9 - 95.4 100.0

007_tuna_fish_can 96.6 - 97.1 100.0 94.9 100.0 95.5 98.3 96.0 - 94.7 100.0

008_pudding_box 80.8 - 97.9 100.0 94.7 100.0 94.4 99.0 93.5 - 95.9 100.0

009_gelatin_box 97.0 - 98.8 100.0 95.8 100.0 97.6 100.0 96.8 - 97.3 100.0

010_potted_meat_can 90.6 - 92.7 93.6 90.1 93.1 90.0 89.6 86.2 - 91.2 94.1

011_banana 95.4 - 97.1 99.7 91.5 93.9 90.3 94.5 96.3 - 97.3 100.0

019_pitcher_base 96.1 - 97.8 100.0 94.6 100.0 93.9 100.0 91.8 - 96.7 100.0

021_bleach_cleanser 92.2 - 96.9 99.4 94.3 99.8 94.7 99.3 92.0 - 95.5 99.6

024_bowl * 82.4 - 81.0 54.9 86.6 69.5 93.1 93.1 86.7 - 89.5 93.4

025_mug 94.0 - 95.0 99.8 95.5 100.0 94.4 100.0 95.4 - 97.1 100.0

035_power_drill 94.7 - 98.2 99.6 92.4 97.1 91.7 99.3 95.2 - 96.0 99.6

036_wood_block * 78.3 - 87.6 80.2 85.5 93.4 90.3 98.8 86.2 - 91.1 99.2

037_scissors 81.3 - 91.7 95.6 96.4 100.0 87.6 59.7 83.8 - 84.1 67.4

040_large_marker 90.7 - 97.2 99.7 94.7 99.2 96.1 99.7 96.8 - 97.0 99.9

051_large_clamp * 74.8 - 75.2 74.9 71.6 78.5 71.6 76.1 94.4 - 73.8 77.5

052_extra_large_clamp * 78.5 - 64.4 48.8 69.0 69.5 68.2 61.7 92.3 - 67.6 66.1

Figure 5. Visualization of results on the LineMOD Dataset.

4.5. Evaluation of YCB-Video Dataset

Table 2 shows the pose estimation results on the YCB-Video Dataset. Two metrics
are used to measure the effectiveness of the methods. One is the area under the ADD-S
score-threshold curve (AUC), with thresholds ranging from 0 to 10 cm. Another indicator
is the percentage of ADD-S scores of less than 2 cm (<2 cm). All methods use semantic
segmentation masks from PoseCNN to guarantee fair comparison.

Mathematics 2022, 10, 3671 14 of 19

Table 2. Quantitative evaluation results using the ADD-S metric on the YCB-Video Dataset, where
the data shown in bold are the highest scores among the different methods, and the objects marked
with an asterisk * are symmetrical objects.

Input RGB RGB-D

Methods

CosyPose
[19]

PoseCNN [4]
+ ICP [21]

DenseFusion
[5] MSCNet [9] G2L-Net [38] Ours

AUC <2 cm AUC <2 cm AUC <2 cm AUC <2 cm AUC <2 cm AUC <2 cm

002_master_chef_can 92.6 - 95.8 100.0 95.2 100.0 94.7 96.0 94.0 - 95.9 100.0
003_cracker_box 93.7 - 92.7 91.6 92.5 99.3 93.4 89.4 88.7 - 94.1 94.8
004_sugar_box 96.6 - 98.2 100.0 95.1 100.0 95.7 100.0 96.0 - 97.2 100.0
005_tomato_soup_can 92.5 - 94.5 96.9 93.7 96.9 94.1 96.7 86.4 - 94.2 96.9
006_mustard_bottle 96.0 - 98.6 100.0 95.9 100.0 95.3 100.0 95.9 - 95.4 100.0
007_tuna_fish_can 96.6 - 97.1 100.0 94.9 100.0 95.5 98.3 96.0 - 94.7 100.0
008_pudding_box 80.8 - 97.9 100.0 94.7 100.0 94.4 99.0 93.5 - 95.9 100.0
009_gelatin_box 97.0 - 98.8 100.0 95.8 100.0 97.6 100.0 96.8 - 97.3 100.0
010_potted_meat_can 90.6 - 92.7 93.6 90.1 93.1 90.0 89.6 86.2 - 91.2 94.1
011_banana 95.4 - 97.1 99.7 91.5 93.9 90.3 94.5 96.3 - 97.3 100.0
019_pitcher_base 96.1 - 97.8 100.0 94.6 100.0 93.9 100.0 91.8 - 96.7 100.0
021_bleach_cleanser 92.2 - 96.9 99.4 94.3 99.8 94.7 99.3 92.0 - 95.5 99.6
024_bowl * 82.4 - 81.0 54.9 86.6 69.5 93.1 93.1 86.7 - 89.5 93.4
025_mug 94.0 - 95.0 99.8 95.5 100.0 94.4 100.0 95.4 - 97.1 100.0
035_power_drill 94.7 - 98.2 99.6 92.4 97.1 91.7 99.3 95.2 - 96.0 99.6
036_wood_block * 78.3 - 87.6 80.2 85.5 93.4 90.3 98.8 86.2 - 91.1 99.2
037_scissors 81.3 - 91.7 95.6 96.4 100.0 87.6 59.7 83.8 - 84.1 67.4
040_large_marker 90.7 - 97.2 99.7 94.7 99.2 96.1 99.7 96.8 - 97.0 99.9
051_large_clamp * 74.8 - 75.2 74.9 71.6 78.5 71.6 76.1 94.4 - 73.8 77.5
052_extra_large_clamp * 78.5 - 64.4 48.8 69.0 69.5 68.2 61.7 92.3 - 67.6 66.1
061_foam_brick * 92.0 - 97.2 100.0 92.4 100.0 95.1 100.0 94.7 - 95.5 100.0
Mean 89.8 - 93.0 93.2 91.2 95.3 91.5 93.9 92.4 - 92.6 95.6

The experimental results illustrate that our method outperforms CosyPose, Dense-
Fusion, MSCNet, and G2L-Net by 2.8%, 1.4%, 1.1%, and 0.2% on the first metric, respec-
tively. The maximum error tolerated by robot grasping is 2 cm. Our method surpasses
PoseCNN + ICP, DenseFusion, and MSCNet by 2.4%, 0.3%, and 1.7% in this metric, respec-
tively. This proves that our method is more suitable for grasping tasks in the real world.
An edge reconstruction module is introduced into the network, which implicitly improves
the attention of the image feature extraction module to edge features, so our method shows
the best performance on weakly textured objects such as banana, mug, and wood_block.

In the YCB-Video Dataset, large_clamp and extra_large_clamp are two types of objects
with the same appearance but different sizes. Therefore, it is difficult for the semantic
segmentation network provided by PoseCNN to generate the correct semantic segmentation
masks for these two types of objects, which leads to poor performance of our network on
large_clamp and extra_large_clamp. Moreover, scissors in the YCB-Video Dataset are small
and have a discontinuous surface, so the edge-attention image feature extraction module
cannot completely extract the texture features of scissors from the masked RGB images.
Therefore, our network has lower pose estimation accuracy on scissors.

Figure 6 presents the qualitative analysis results of different methods on the YCB-Video
Dataset. All methods use the semantic segmentation results provided by PoseCNN in this
experiment. We transform the point cloud of the object according to the predicted 6D pose
and project it onto a 2D image. The higher degree of coincidence between the transformed
point cloud and the object means the higher accuracy of pose estimation. Our network
predicts the results that have the highest degree of coincidence on smooth and textureless
objects, such as bowl and banana. Conversely, DenseFusion and PoseCNN + ICP fail to
accurately estimate the pose of the bowl and banana. This is because our method introduces
edge information constraints into the pose estimation network, which improves the attention
of our network to edge features and enables it to extract effective features for pose estimation
even on smooth and texture-less objects. Because of the pixel-level prediction, our network

Mathematics 2022, 10, 3671 15 of 19

also has a robust anti-occlusion capability and shows high prediction accuracy on the
severely occluded cracker_box, scissors, and mustard_bottle.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 20

Figure 6. Qualitative results of the YCB-Video Dataset. The yellow box in the image shows that our

method profoundly outperforms other methods on this object (from left to right: bowl, cracker_box,

mustard_bottle, scissors, and cracker_box).

Figure 7 shows the performance of our method when the lighting condition changes.

We randomly selected three images from the YCB-Video Dataset and then used the

Figure 6. Qualitative results of the YCB-Video Dataset. The yellow box in the image shows that our
method profoundly outperforms other methods on this object (from left to right: bowl, cracker_box,
mustard_bottle, scissors, and cracker_box).

Mathematics 2022, 10, 3671 16 of 19

Figure 7 shows the performance of our method when the lighting condition changes.
We randomly selected three images from the YCB-Video Dataset and then used the OpenCV
to change the brightness of the images to simulate changes in illumination. From Figure 7,
we can see that the pose estimation results hardly change with the brightness. This proves
that our method is robust to lighting condition changes.

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 20

OpenCV to change the brightness of the images to simulate changes in illumination. From

Figure 7, we can see that the pose estimation results hardly change with the brightness.

This proves that our method is robust to lighting condition changes.

Figure 7. Visualized results of our method on the YCB-Video Dataset when lighting condition

changes.

Figure 8 shows the performance of our method when the object is occluded. For a

clearer presentation, we only render the pose estimation results of occluded objects on the

graph. Figure 8 proves that our method can still estimate the 6D pose of the object accu-

rately when the object is heavily occluded.

Figure 8. Visualized results of our method on the YCB-Video Dataset when objects are occluded.

4.6. Ablation Study

All ablation experiments are performed on the LineMOD Dataset. The ablation study

results are shown in Table 3, where the definition of accuracy is the same as the evaluation

Figure 7. Visualized results of our method on the YCB-Video Dataset when lighting condi-
tion changes.

Figure 8 shows the performance of our method when the object is occluded. For a
clearer presentation, we only render the pose estimation results of occluded objects on
the graph. Figure 8 proves that our method can still estimate the 6D pose of the object
accurately when the object is heavily occluded.

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 20

OpenCV to change the brightness of the images to simulate changes in illumination. From

Figure 7, we can see that the pose estimation results hardly change with the brightness.

This proves that our method is robust to lighting condition changes.

Figure 7. Visualized results of our method on the YCB-Video Dataset when lighting condition

changes.

Figure 8 shows the performance of our method when the object is occluded. For a

clearer presentation, we only render the pose estimation results of occluded objects on the

graph. Figure 8 proves that our method can still estimate the 6D pose of the object accu-

rately when the object is heavily occluded.

Figure 8. Visualized results of our method on the YCB-Video Dataset when objects are occluded.

4.6. Ablation Study

All ablation experiments are performed on the LineMOD Dataset. The ablation study

results are shown in Table 3, where the definition of accuracy is the same as the evaluation

Figure 8. Visualized results of our method on the YCB-Video Dataset when objects are occluded.

Mathematics 2022, 10, 3671 17 of 19

4.6. Ablation Study

All ablation experiments are performed on the LineMOD Dataset. The ablation study
results are shown in Table 3, where the definition of accuracy is the same as the evaluation
metric for the LineMOD Dataset. We test our improvement against DenseFusion [5]
as a benchmark, i.e., model (a) represents DenseFusion without refinement. Based on
DenseFusion, we employed the edge reconstruction module, MSPNet and SE-NetVLAD,
forming model (b), model (c), and model (d), respectively. Model (d) represents our method.

Table 3. Results of ablation experiments.

Model (a) (b) (c) (d)

Edge Reconstruction Module × X X X
MSPNet × × X X
SE-NetVLAD × × × X
Accuracy 86.2 90.5 93.9 94.6

Comparing model (a) and model (b), after the edge reconstruction module is intro-
duced into the network, the pose estimation accuracy of model (b) is improved by 4.3%.
This proves the edge reconstruction module can implicitly increase the attention of the
image feature extraction module to edge features, thus improving the pose estimation per-
formance. At the same time, we noticed that this multi-task learning training method could
significantly improve the problem of difficulties in training the image feature extraction
module because of the overall deep network and could also improve the speed of network
convergence during training.

Comparing model (b) with model (c), model (b) uses PointNet to extract the geometric
features of the reconstructed point cloud. While in model (c), we improved it to our
proposed multi-scale point cloud feature extraction network MSPNet. Compared with
model (b), the pose estimation accuracy of model (c) is improved by 3.4%, which proves
that the multi-scale extraction of geometric features of point clouds can help improve the
performance of pose estimation.

Similarly, the effectiveness of SE-NetVLAD can be verified by comparing model (c)
and model (d). Table 3 shows that model (d) improves the pose estimation accuracy by
0.7% compared to model (c). Combining the above comparisons, we can find that each
module proposed in our network makes a great contribution to improving the performance
of pose estimation.

5. Conclusions

In this paper, we propose an end-to-end 6D pose estimation network based on RGB-
D images, which was named SaMfENet. After a series of experiments, we prove the
effectiveness of our method on the task of object 6D pose estimation. The proposed
method can stably estimate the 6D pose of smooth, weak texture objects in complex lighting
conditions. Our network is also robust to situations such as objects being severely occluded,
meeting the needs of grasping tasks in the real scene. Moreover, ablation experiments
prove that edge information constraints and multi-scale feature fusion can significantly
improve pose estimation accuracy.

Our network is developed for real scene applications. In future work, we will apply
our network to a robot to improve its performance in practical applications. Moreover,
our network relies on a robust semantic segmentation network to segment object regions.
However, using the independently trained semantic segmentation network, it is difficult to
provide reliable and robust semantic segmentation results. In future work, we have a plan
to deeply integrate the semantic segmentation network as a module into our network and
train the semantic segmentation network together with the pose estimation network.

Mathematics 2022, 10, 3671 18 of 19

Author Contributions: Formal analysis, X.L.; Funding acquisition, Y.L.; Methodology, Z.L. and Y.L.;
Software, Z.L.; Writing—original draft, Z.L.; Writing—review and editing, S.C., J.D. and Y.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Guangxi Key Laboratory of Manufacturing System &
Advanced Manufacturing Technology (Grant No. 20-065-40S005), the Key Laboratory of Advanced
Manufacturing technology, Ministry of Education (Grant No. GZUAMT2021KF04), and the National
College Students Innovation and Entrepreneurship Training Program (Grant No. 202110593003).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lepetit, V.; Moreno-Noguer, F.; Fua, P. Epnp: An accurate o (n) solution to the pnp problem. Int. J. Comput. Vis. 2009, 81, 155–166.

[CrossRef]
2. Peng, S.; Liu, Y.; Huang, Q.; Zhou, X.; Bao, H. Pvnet: Pixel-wise voting network for 6dof pose estimation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Padua, Italy, 18–23 July 2019; pp. 4561–4570.
3. Rad, M.; Lepetit, V. Bb8: A scalable, accurate, robust to partial occlusion method for predicting the 3d poses of challenging objects

without using depth. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 3828–3836.

4. Xiang, Y.; Schmidt, T.; Narayanan, V.; Fox, D. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered
scenes. arXiv 2017, arXiv:1711.00199.

5. Wang, C.; Xu, D.; Zhu, Y.; Martín-Martín, R.; Lu, C.; Fei-Fei, L.; Savarese, S. Densefusion: 6d object pose estimation by iterative
dense fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 3343–3352.

6. He, Y.; Sun, W.; Huang, H.; Liu, J.; Fan, H.; Sun, J. Pvn3d: A deep point-wise 3d keypoints voting network for 6d of pose
estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 11632–11641.

7. Pereira, N.; Alexandre, L.A. MaskedFusion: Mask-based 6D object pose estimation. In Proceedings of the 2020 19th IEEE
International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 14–17 December 2020; pp. 71–78.

8. Song, C.; Song, J.; Huang, Q. Hybridpose: 6d object pose estimation under hybrid representations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 431–440.

9. Gao, F.; Sun, Q.; Li, S.; Li, W.; Li, Y.; Yu, J.; Shuang, F. Efficient 6D object pose estimation based on attentive multi-scale contextual
information. IET Comput. Vis. 2022, 16, 596–606. [CrossRef]

10. Zhang, Y.; Liu, Y.; Wu, Q.; Zhou, J.; Gong, X.; Wang, J. EANet: Edge-attention 6D pose estimation network for texture-less objects.
IEEE Trans. Instrum. Meas. 2022, 71, 1–13. [CrossRef]

11. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE Conference On computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

12. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf.
Process. Syst. 2017, 30, 5099–5108.

13. Hinterstoisser, S.; Holzer, S.; Cagniart, C.; Ilic, S.; Konolige, K.; Navab, N.; Lepetit, V. Multimodal templates for real-time detection
of texture-less objects in heavily cluttered scenes. In Proceedings of the 2011 International Conference on Computer Vision,
Barcelona, Spain, 6–13 November 2011; pp. 858–865.

14. Kehl, W.; Manhardt, F.; Tombari, F.; Ilic, S.; Navab, N. Ssd-6d: Making rgb-based 3d detection and 6d pose estimation great again.
In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1521–1529.

15. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.

16. Tekin, B.; Sinha, S.N.; Fua, P. Real-time seamless single shot 6d object pose prediction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 292–301.

17. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

18. Li, Y.; Wang, G.; Ji, X.; Xiang, Y.; Fox, D. Deepim: Deep iterative matching for 6d pose estimation. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 683–698.

19. Labbé, Y.; Carpentier, J.; Aubry, M.; Sivic, J. Cosypose: Consistent multi-view multi-object 6d pose estimation. In Proceedings of
the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 574–591.

http://doi.org/10.1007/s11263-008-0152-6
http://doi.org/10.1049/cvi2.12101
http://doi.org/10.1109/TIM.2022.3150568

Mathematics 2022, 10, 3671 19 of 19

20. Zhou, Y.; Barnes, C.; Lu, J.; Yang, J.; Li, H. On the continuity of rotation representations in neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5745–5753.

21. Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Proceedings of the Sensor Fusion IV: Control Paradigms and
Data Structures, Boston, MA, USA, 12–15 November 1992; pp. 586–606.

22. Segal, A.; Haehnel, D.; Thrun, S. Generalized-icp. In Proceedings of the Robotics: Science and Systems, Seattle, WA, USA,
28 June–1 July 2009; p. 435.

23. Mellado, N.; Aiger, D.; Mitra, N.J. Super 4pcs fast global pointcloud registration via smart indexing. Comput. Graph. Forum 2014,
33, 205–215. [CrossRef]

24. Li, C.; Bai, J.; Hager, G.D. A unified framework for multi-view multi-class object pose estimation. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 254–269.

25. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 30, 5998–6008.

26. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
27. Luong, M.-T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. arXiv 2015,

arXiv:1508.04025.
28. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.
29. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. Supplementary material for ‘ECA-Net: Efficient channel attention for deep

convolutional neural networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
IEEE, Seattle, WA, USA, 13–19 June 2020; pp. 13–19.

30. Gao, Z.; Xie, J.; Wang, Q.; Li, P. Global second-order pooling convolutional networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3024–3033.

31. Yang, B.; Bender, G.; Le, Q.V.; Ngiam, J. Condconv: Conditionally parameterized convolutions for efficient inference. Adv. Neural
Inf. Process. Syst. 2019, 32, 1305–1316.

32. Li, X.; Wang, W.; Hu, X.; Yang, J. Selective kernel networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 510–519.

33. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

34. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [CrossRef]
35. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.
36. Jégou, H.; Douze, M.; Schmid, C.; Pérez, P. Aggregating local descriptors into a compact image representation. In Proceed-

ings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA,
13–18 June 2010; pp. 3304–3311.

37. Guan, Q.; Sheng, Z.; Xue, S. HRPose: Real-time high-resolution 6d pose estimation network using knowledge distillation. arXiv
2022, arXiv:2204.09429.

38. Chen, W.; Jia, X.; Chang, H.J.; Duan, J.; Leonardis, A. G2l-net: Global to local network for real-time 6d pose estimation
with embedding vector features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 13–19 June 2020; pp. 4233–4242.

http://doi.org/10.1111/cgf.12446
http://doi.org/10.1109/TPAMI.1986.4767851

	Introduction
	Related Work
	Pose Estimation
	Pose Estimation from RGB Images
	Pose Estimation from RGB-D Data

	Attention Mechanism

	The Proposed Method
	Overview
	Semantic Segmentation
	Edge-Attention Image Feature Extraction Module
	Image Feature Extraction Module
	Edge Reconstruction Module

	Multi-Scale Point Cloud Geometric Feature Extraction Module
	Feature Fusion Module
	Feature Fusion
	Global Feature Extraction
	Self-Attention Mechanism

	6D Object Pose Estimation
	Pose Estimator
	Loss Function

	Experiments
	Datasets
	Metrics
	Implementation Details
	Evaluation oo LineMOD Dataset
	Evaluation of YCB-Video Dataset
	Ablation Study

	Conclusions
	References

