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Abstract: One of the most interesting problems is the investigation of the boundaries of chaotic or
hyperchaotic systems. In addition to estimating the Lyapunov and Hausdorff dimensions, it can
be applied in chaos control and chaos synchronization. In this paper, by means of the analytical
optimization, comparison principle, and generalized Lyapunov function theory, we find the ultimate
bound set for a new six-dimensional hyperchaotic system and the globally exponentially attractive
set for a new four-dimensional Lorenz- type hyperchaotic system. The novelty of this paper is that
it not only shows the 4D hyperchaotic system is globally confined but also presents a collection of
global trapping regions of this system. Furthermore, it demonstrates that the trajectories of the 4D
hyperchaotic system move at an exponential rate from outside the trapping zone to its inside. Finally,
some numerical simulations are shown to demonstrate the efficacy of the findings.

Keywords: hyperchaotic system; boundedness of solutions; Lyapunov stability; lagrange multiplier
method; comparison principle
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1. Introduction

In 1979, Rössler made the first mention of hyperchaos [1]. Numerous hyperchaotic sys-
tems have since been introduced in nonlinear research. A hyperchaotic system differs from
a chaotic system in that it has two or more positive Lyapunov exponents, which explains
why it has a more intricate algebraic structure. Moreover, due to its several engineering ap-
plications in technological fields such as secure communications [2], nonlinear circuits [3],
lasers [4], neural network [5], artificial intelligence [6], control [7], synchronization [8], and
so on, many scientists have concentrated on studying the various dynamical behaviors of
new hyperchaotic systems including bifurcations, control problems, and bounds estimation.

In particular, the ultimate boundedness is an effective instrument for the investigation
of a new chaotic system’s qualitative behavior. If we are able to demonstrate that a chaotic
or hyperchaotic system has a globally trapping region, we can deduce that the system does
not have equilibrium points, periodic or quasi-periodic solutions, or any other chaotic,
hyperchaotic, or hidden attractors outside the trapping region. As a result, the analysis
of the system’s dynamics is substantially facilitated and simplified [9]. Additionally, the
estimation of a chaotic system’s bounds is crucial for studying chaos synchronization, chaos
control, and determining Hausdorff and Lyapunov dimensions [10–15].

In 1987, Leonov et al. examined the boundedness of the famous Lorenz system [16,17].
Since then, several works have studied the ultimate boundedness of other new 3D chaotic
systems [18–20] and new hyperchaotic systems [21–23]. However, as there are no estab-
lished procedures for producing the Lyapunov functions, particularly for high dimensional
systems, it is frequently challenging to find this estimate.

Motivated by the aforementioned discussion, using the analytical optimization, com-
parison principle, and generalized Lyapunov function theory, we found the ultimate bound
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set for a new six-dimensional hyperchaotic system and the globally exponentially attrac-
tive set for a new four-dimensional Lorenz-type hyperchaotic system. In particular, we
came to the conclusion that the trajectories of the new 4D hyperchaotic system advance
exponentially from outside the trapping zone to its inner. Finally, to illustrate the main
results, some numerical simulations are provided.

2. Mathematical Models

In 2018, Lingzhi Yi et al. constructed a new six-dimensional hyperchaotic system [24] :

x
′
= ay− ax + w

y′ = cx− y− xz− v
z′ = −bz + xy
w′ = dw− yz

v′ = ry
u′ = −eu + zw

(1)

where a, b, c, d , e, r are real parameters with a > 0, b > 0, c > 0, e > 0, r > 0 and d < 0.

When (a, b, c, d, e, r) =
(

10,
8
3

, 28,−1, 10, 3
)

, the Lyapunov exponents are λLE1 = 0.362485,

λLE2 = 0.24709, λLE3 = 0, λLE4 = −0.225698, λLE5 = −10.0017, λLE6 = − 15.0708 (see [24])
and consequently, system (1) displays a typical hyperchaotic attratctor. The corresponding
two-dimensional phase diagrams in (x, y), (x, z), (y, z), (x, w) spaces are shown in Figure 1.

Figure 1. Hyperchaotic attractor of system (1) in 2−D spaces with (a, b, c, d, e, r) =(
10,

8
3

, 28,−1, 10, 3
)

and initial condition (x0, y0, z0, w0, υ0, u0) = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1).

In [24], some basic dynamical characteristics including bifurcation diagrams, Lya-
punov exponents and phase portraits of the new 6-D hyperchaotic system (1) have been
investigated, but no explicit ultimate bound set has been obtained for this high dimensional
chaotic system. In this paper we will explore this subject.

On the other hand, a new 4-D Lorenz-type system is constructed in [25], which is
described as 

x
′
= ay− ax

y′ = bx− cy− xz + w
z′ = xy− dz

w′ = −rw− ky

(2)
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where a, b, c, d are positive real parameters. When (a, b, c, d, k, r) = (12, 23, 1, 2.1, 6, 0.2),
the Lyapunov exponents are λLE1 = 0.1740, λLE2 = 0.1314, λLE3 = 0, λLE4 = −15.6059
(see [25]). The two positive Lyapunov exponents indicate that system (2) is hyperchaotic
and the projections of the attractor are shown in Figure 2.

Figure 2. Hyperchaotic attractor of system (2) in 2−D spaces with (a, b, c, d, k, r) =

(12, 23, 1, 2.1, 6, 0.2) and initial condition (x0, y0, z0, w0) = (0.1, 0.1, 0.1, 0.1).

Although [25] gives the ultimate bound and positively invariant set of system (2),
it does not give the estimation of the trajectories rate. In this paper, we will present a
collection of globally exponentially attractive sets to specify the pace at which trajectories
go from the outside of the trapping region to its inside.

3. Ultimate Bound Set for the New 6D Hyperchaotic System

In this part, we will studied the boundedness of the new 6D hyperchaotic system (1)
for any a > 0, b > 0, c > 0, e > 0, r > 0 and d < 0.

Theorem 1. When a > 0, b > 0, c > 0, e > 0, r > 0 and d < 0, the following set

Ω1 =


(x, y, z, w, v, u)/ x2 ≤

(
(c− da)L

√
r + L2)2

d2r2a2 , ry2 + r(z− c)2 + v2 ≤ L2,

w2 ≤
(

L2 + cL
√

r
)

r2d2

2

, u2 ≤
(

L + c
√

r
)2(L2 + cL

√
r
)2

d2e2r3

 (3)

is the ultimate bound for system (1), where

L2 =


rb2c2

4(b− 1)
, if b ≥ 2

rc2 , if b < 2
(4)

Proof of Theorem 1. Construct the following Lyapunov function

V1 = ry2 + r(z− c)2 + v2 (5)
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Differentiating V1 along the trajectory of system (1), we can obtain

.
V1 = 2ryy′ + 2r(z− c)z′ + 2vv′

= 2ry(cx− y− xz− v) + 2r(z− c)(−bz + xy) + 2v(ry)

= −2ry2 − 2rbz2 + 2rcbz

= −2ry2 − 2rb
(

z− c
2

)2
+

rbc2

2
(6)

Obviously, V1 is positive definite for a > 0, b > 0, c > 0, e > 0, r > 0 and d < 0. Let
.

V1 = 0 , then the the surface Γ1 defined by

Γ1 =

{
(y, z)/2ry2 + 2rb

(
z− c

2

)2
=

rbc2

2
, b > 0, c > 0, r > 0

}
. (7)

is an ellipsoid in R2. Outside Γ1, we have
.

V1 < 0, while inside Γ1, we have
.

V1 > 0. Since
V1 = ry2 + r(z− c)2 + ν2 is a continuous function and Γ1 is a bounded closed set, then the
function V1 can reach its maximum value L2 = max V1(y,z)∈Γ1

. In order to calculate it, we
have to solve the following optimization problem

max V1 = max
{

ry2 + r(z− c)2 + v2
}

s.t. 2ry2 + 2rb
(

z− c
2

)2
=

rbc2

2

(8)

Which is equivalent to
max V1 = max

{
ry2 + r(z− c)2 + v2

}
s.t.

y2

bc2

4

+

(
z− c

2

)2

c2

4

= 1
(9)

By the Lagrange multiplier method, define

G = ry2 + r(z− c)2 + ν2 + λ

[
ry2 + rb

(
z− c

2

)2
− rbc2

4

]
(10)

and let 

∂G(y, z, v)
∂y

= 2ry + 2λry = 0

∂G(y, z, v)
∂z

= 2r(z− c) + 2λrb
(

z− c
2

)
= 0

∂G(y, z, v)
∂ν

= 2v = 0

∂G(y, z, v)
∂λ

= ry2 + rb
(
z− c

2
)2 − rbc2

4
= 0

. (11)

Thus,
(i) When λ 6= −1, we can obtain
(y, z, v) = (0, 0, 0) and L2 = max V1(y,z)∈Γ1

= rc2

or
(y, z, v) = (0, c, 0) and L2 = 0.
(ii) When λ = −1, and b ≥ 2, we can obtain

(y, z, v) =

(
± bc
√

b− 2
2(1− b)

,
c(2− b)
2(1− b)

, 0

)
and L2 =

rb2c2

4(b− 1)
.
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Consequently, we conclude that

V1 ≤ max
X∈Γ1

V1(X) = L2 =


rb2c2

4(b− 1)
, if b ≥ 2

rc2 , if b < 2
(12)

From (12), we obtain

|y| ≤ L√
r

, |z| ≤ L√
r
+ c. (13)

Thus, we have

w′ = dw− yz ≤ dw + |y||z| ≤ dw +
L√

r

(
L√

r
+ c
)

(14)

By the comparison principle, we can obtain

w(t) ≤ L2 + cL
√

r
−dr

+

(
w(t0) +

L2 + cL
√

r
−dr

)
ed(t−t0), where d < 0 (15)

Passing to the limit, we obtain

lim
t→+∞

w(t) ≤ L2 + cL
√

r
−dr

. (16)

In other words,

w2 ≤
(

L2 + cL
√

r
)

r2d2

2

, when t→ +∞. (17)

Likewise, we have

x
′
= −ax + ay + w ≤ −ax + a|y|+ |w| ≤ −ax +

aL√
r
+

L2 + cL
√

r
−dr

(18)

By the comparison principle, we obtain

x(t) ≤ (c− da)L
√

r + L2

−dra
+

(
x(t0) +

(c− da)L
√

r + L2

−dra

)
e−a(t−t0), where d < 0 (19)

Thus, we have

lim
t→+∞

x(t) ≤ (c− da)L
√

r + L2

−dra
. (20)

Furthermore, this gives,

x2 ≤
(
(c− da)L

√
r + L2)

d2r2a2

2

, when t→ +∞. (21)

Furthermore, according to the sixth equation of system (1), we have

u′ = −eu + zw ≤ −eu + |z||w| ≤ −eu +

(
L + c

√
r√

r

)(
L2 + cL

√
r

−dr

)
(22)

By the comparison principle, we obtain

u(t) ≤
(

L + c
√

r
)(

L2 + cL
√

r
)

−dr
3
2 e

+

(
u(t0) +

(
L + c

√
r
)(

L2 + cL
√

r
)

−dr
3
2 e

)
e−e(t−t0) (23)
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So, we obtain

lim
t→+∞

u(t) ≤
(

L + c
√

r
)(

L2 + cL
√

r
)

−dr
3
2 e

. (24)

That is to say,

u2 ≤
(

L + c
√

r
)2(L2 + cL

√
r
)2

d2e2r3 , when t→ +∞. (25)

From the above, we deduce that

Ω1 =


(x, y, z, w, v, u)/, x2 ≤

(
(c− da)L

√
r + L2)

d2r2a2

2

, ry2 + r(z− c)2 + v2 ≤ L2,

w2 ≤
(

L2 + cL
√

r
)

r2d2

2

, u2 ≤
(

L + c
√

r
)2(L2 + cL

√
r
)2

d2e2r3


is the ultimate bound set for the new 6D hyperchaotic system (1). This completes the

proof.

Numerical Simulations

i. According to Theorem 1, when a = 10, b =
8
3

, c = 28, d = −1, e = 10, r = 3, we can
find that

Φ =

{
(y, z, v)/3y2 + 3(z− 28)2 + v2 ≤ 1122

5

}
(26)

is the bound set of the 6D hyperchaotic system (1) in the (y(t), z(t), v(t)) space.
ii. Figure 3 shows that the hyperchaotic attractor of system (1) is located within Φ.

Figure 3. The trajectories of y(t), z(t) and v(t) of the system (1) are restrained in Φ, where a = 10,

b =
8
3

, c = 28, d = −1, e = 10, r = 3 and the initial state (x0, y0, z0, w0, υ0, u0) = (1, 1, 1, 1, 1, 1).

4. The Globally Exponentially Attractive Set for the New 4D Lorenz-Type
Hyperchaotic System

Though Work [25] presents the ultimate bound set and positively invariant set of
system (2), it does not present the trajectories’s rate going from outside the trapping zone
to its inside. The following Theorem will find this rate and will also provide a collection of
mathematical formulas of global exponential attractive sets for the new 4D Lorenz-type
hyperchaotic system.
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Theorem 2. For all a > 0, b > 0, c > 0, d > 0, k > 0 and r > 0, let

Vλ,α,β(X(t)) = λ(x− α)2 + ky2 + k
(

z− λa + kb
k

)2
+ (w− β)2, (27)

where λ > 0, α ∈ R, β ∈ R, X(t) = (x(t), y(t), z(t), w(t)).

µ = min(a, c, d, r), R2 =
1
µ

(
λaα2 + rβ2 +

d(λa + kb)2

k
+

(βk− λαa)2

kc

)
Then, an exponential estimation of system (2) is given by

Vλ,α,β(X(t))− R2 ≤
(

Vλ,α,β(X(t0))− R2
)

e−µ(t−t0) (28)

Consequently,

Ωλ,α,β =

{
(x, y, z, w)/λ(x− α)2 + ky2 + k

(
z− λa + kb

k

)2
+ (w− β)2 ≤ R2

}
(29)

is the globally exponential attractive set of system (2).

Proof of Theorem 2. Construct the following generalized Lyapunov function

Vλ,α,β(X(t)) = λ(x− α)2 + ky2 + k
(

z− λa + kb
k

)2
+ (w− β)2, (30)

where λ > 0, α ∈ R, β ∈ R, X(t) = (x(t), y(t), z(t), w(t)).

Computing the derivative of Vλ,α,β(X(t)) along the trajectory of system (2), we have

dVλ,α,β(X(t))
dt

= 2λ(x− α)x′ + 2kyy′ + 2k
(

z− λa + kb
k

)
z′ + 2(w− β)w′

= 2λ(x− α)(ay− ax) + 2ky(bx− cy− xz + w) + 2k
(

z− λa + kb
k

)
(xy− dz)

+ 2(w− β)(−rw− ky)

= −2aλx2 + 2λαax− 2kcy2 + 2(βk− λαa)y− 2kdz2 + 2d(λa + kb)z− 2rw2 + 2βrw

≤ −aλx2 + 2λαax− 2kcy2 + 2(βk− λαa)y− kdz2 + 2d(λa + kb)z− rw2 + 2βrw

= −aλ(x− α)2 + aλα2 − kcy2 − kcy2 + 2(βk− λαa)y− kd
(

z− λa + kb
k

)2

+
d(λa + kb)2

k
− r(w− β)2 + rβ2

≤ −aλ(x− α)2 + aλα2 − kcy2 + max
y∈R

(
−kcy2 + 2(βk− λαa)y

)
− kd

(
z− λa + kb

k

)2
+

d(λa + kb)2

k
− r(w− β)2 + rβ2 (31)

Since

max
y∈R

(
−kcy2 + 2(βk− λαa)y

)
=

(βk− λαa)2

kc
, (32)

then, we have
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dVλ,α,β(X(t))
dt

≤ −aλ(x− α)2 − kcy2 − kd
(

z− λa + kb
k

)2
− r(w− β)2 + aλα2 + rβ2

+
d(λa + kb)2

k
+

(βk− λαa)2

kc

≤ −µVλ,α,β(X(t)) + aλα2 + rβ2 +
d(λa + kb)2

k
+

(βk− λαa)2

kc

= −µ

[
Vλ,α,β(X(t))− 1

µ

(
aλα2 + rβ2 +

d(λa + kb)2

k
+

(βk− λαa)2

kc

)]
= −µ

[
Vλ,α,β(X(t))− R2

]
(33)

where,

µ = min(a, c, d, r), R2 =
1
µ

(
λaα2 + rβ2 +

d(λa + kb)2

k
+

(βk− λαa)2

kc

)
(34)

Thus, we obtain

Vλ,α,β(X(t))− R2 ≤
(

Vλ,α,β(X(t0))− R2
)

e−µ(t−t0)

and
lim

t→+∞
Vλ,α,β(X(t)) ≤ R2.

Consequently,

Ωλ,α,β =

{
(x, y, z, w)/λ(x− α)2 + ky2 + k

(
z− λa + kb

k

)2
+ (w− β)2 ≤ R2

}

is the globally exponential attractive set of system (2).

Numerical Simulations

i. According to Theorem 2, when a = 12, b = 23, c = 1, d = 2.1, k = 6, r = 0.2, λ = 1,
α = 0 and β = 0 we have

Ω1,0,0 =
{
(x, y, z, w)/x2 + ky2 + k(z− 25)2 + w2 ≤ 39375

}
. (35)

is the globally exponential attractive set of system (2) and we conclude that its trajectories
go from outside Ω1,0,0 to inside Ω1,0,0 at exponential rate.

ii. Figure 4 illustrate that the trajectories of system (2) are restricted in Ω1,0,0. That is to
say, the system cannot have the equilibrium points, periodic or quasi-periodic solutions, or
other chaotic or hyper-chaotic or hidden attractors existing outside the attractive set Ω1,0,0.
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Figure 4. The trajectories of system (2) are contained in the globally exponential attractive set Ω1,0,0

in different 3−D projection planes, where a = 12, b = 23, c = 1, d = 2.1, k = 6, r = 0.2 and the initial
state (x0, y0, z0, w0) = (0.1, 0.1, 0.1, 0.1).

5. Conclusions

In this paper, we have used analytical optimization, the comparison principle, and gen-
eralized Lyapunov function theory to find the ultimate bound set for a new six-dimensional
hyperchaotic system and a collection of globally exponentially attractive sets for a new
four-dimensional hyperchaotic system. Moreover, we came to the conclusion that the trajec-
tories of the new 4D hyperchaotic system move from outside the trapping zone to its inside
at an exponential rate. Finally, a few numerical simulations are shown to demonstrate
the viability and accuracy of the suggested approach. The obtained results can be applied
to chaos control, chaos synchronization, and determining the Lyapunov and Hausdorff
dimensions of the studied systems, and this is what we will talk about in more detail in
other next works.
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