
Citation: Emambocus, B.A.S.; Jasser,

M.B.; Amphawan, A.; Mohamed,

A.W. An Optimized Discrete

Dragonfly Algorithm Tackling the

Low Exploitation Problem for

Solving TSP. Mathematics 2022, 10,

3647. https://doi.org/10.3390/

math10193647

Academic Editors: Humberto Rocha

and Ana Maria Rocha

Received: 21 July 2022

Accepted: 7 September 2022

Published: 5 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Optimized Discrete Dragonfly Algorithm Tackling the Low
Exploitation Problem for Solving TSP
Bibi Aamirah Shafaa Emambocus 1, Muhammed Basheer Jasser 1,* , Angela Amphawan 1

and Ali Wagdy Mohamed 2

1 Department of Computing and Information Systems, School of Engineering and Technology,
Sunway University, Petaling Jaya 47500, Selangor, Malaysia

2 Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University,
Giza 12613, Egypt

* Correspondence: basheerj@sunway.edu.my

Abstract: Optimization problems are prevalent in almost all areas and hence optimization algorithms
are crucial for a myriad of real-world applications. Deterministic optimization algorithms tend to be
computationally costly and time-consuming. Hence, heuristic and metaheuristic algorithms are more
favoured as they provide near-optimal solutions in an acceptable amount of time. Swarm intelligence
algorithms are being increasingly used for optimization problems owing to their simplicity and good
performance. The Dragonfly Algorithm (DA) is one which is inspired by the swarming behaviours of
dragonflies, and it has been proven to have a superior performance than other algorithms in multiple
applications. Hence, it is worth considering its application to the traveling salesman problem which is
a predominant discrete optimization problem. The original DA is only suitable for solving continuous
optimization problems and, although there is a binary version of the algorithm, it is not easily adapted
for solving discrete optimization problems like TSP. We have previously proposed a discrete adapted
DA algorithm suitable for TSP. However, it has low effectiveness, and it has not been used for large
TSP problems. In this paper, we propose an optimized discrete adapted DA by using the steepest
ascent hill climbing algorithm as a local search. The algorithm is applied to a TSP problem modelling
a package delivery system in the Kuala Lumpur area and to benchmark TSP problems, and it is
found to have a higher effectiveness than the discrete adapted DA and some other swarm intelligence
algorithms. It also has a higher efficiency than the discrete adapted DA.

Keywords: discrete optimization; dragonfly algorithm; metaheuristics; optimization; swarm intelligence
algorithms; traveling salesman problem

MSC: 49M37

1. Introduction

Optimization is crucial in almost every domain where certain processes, designs, or
systems are adjusted so as to be the most effective possible. Its aim is to find the best solution
among a set of available solutions which either maximizes or minimizes an objective
function. Hence, optimization algorithms are usually iterative where the objective function
is evaluated repeatedly and the best solution found is chosen. Optimization algorithms
can be classified into two types; deterministic algorithms, and heuristic algorithms [1].
Deterministic algorithms consist of exact methods which find the best solution to a problem.
However, they are computationally costly and time-consuming, especially for large-scale
real-world applications. Conversely, heuristic algorithms try to find a near-optimal solution
in a feasible amount of time. Heuristic algorithms can be further developed to produce
metaheuristic algorithms which use a combination of diversification and intensification
techniques to perform better than simple heuristic algorithms. They can be classified as
either trajectory-based or population-based algorithms [1].

Mathematics 2022, 10, 3647. https://doi.org/10.3390/math10193647 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10193647
https://doi.org/10.3390/math10193647
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5292-465X
https://orcid.org/0000-0002-5895-2632
https://doi.org/10.3390/math10193647
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10193647?type=check_update&version=2


Mathematics 2022, 10, 3647 2 of 24

Swarm intelligence algorithms are population-based metaheuristic algorithms which
are inspired by various biological organisms. In nature, the simple and self-organizing
interactions that individuals from a specific biological population have with each other and
with their environment cause a functional global pattern to emerge [2]. Swarm intelligence
algorithms are inspired by these simple interactions of different groups of animals or
swarms of insects. They make use of a population of search agents which replicate the
interactions of a biological population for solving complex optimization problems.

The Dragonfly Algorithm (DA) [3] is a swarm intelligence algorithm which is inspired
by dragonfly swarms, in particular, their hunting and migrating behaviours. Dragonflies
swarm statically and dynamically while hunting and migrating, respectively, and these
two types of swarming aptly represent the two requisite phases of optimization algorithms;
exploration, and exploitation. DA has been found to have a better performance than
multiple other swarm intelligence algorithms in various applications [4]. In [3], three
versions of the dragonfly algorithm are proposed, namely, the original continuous DA
for solving continuous optimization problems, the binary DA (BDA) to cater for discrete
or binary optimization problems, and the multi-objective DA (MODA) to cater for multi-
objective optimization problems.

The Traveling Salesman Problem (TSP) is a combinatorial optimization problem with
a discrete search space. A myriad of real-world problems can be represented as TSP and
hence it has numerous real-world applications. Large TSP problems are difficult to be
solved using exact algorithms and the solvable instances consume a significant amount of
computational time and resources [5]. Hence, heuristic algorithms are often used to solve
TSP by providing near-optimal solutions. A number of swarm intelligence algorithms such
as the Particle Swarm Optimization (PSO) [6], and the Ant Colony Optimization (ACO) [7],
and their variants [8–11] have been successfully employed for solving TSP.

Considering the good performance of DA and its superior performance over other
swarm intelligence algorithms in multiple applications, it is worth applying it for solv-
ing TSP. The original DA was proposed to solve continuous optimization problems and
although a binary version of the original DA is proposed in [3], it is difficult to be adapted
for discrete problems like TSP. Hence, in [12], we proposed a discrete adapted dragonfly
algorithm suitable for TSP. This is to propose a new discretized variant of the dragonfly
algorithm which is suitable for solving discrete optimization problems like TSP and which
can be further improved. However, this algorithm has not been applied to large TSP
problems and it has low effectiveness.

In this paper, we propose to improve the low effectiveness of the adapted discrete
dragonfly algorithm in [12] by employing the steepest ascent Hill Climbing (HC) algorithm
as a local search to improve the exploitation phase. The algorithm is tested using a TSP
problem consisting of 50 locations in the area of Kuala Lumpur. The TSP problem models a
package delivery system where the shortest route to deliver parcels at specific locations
and return to the initial location needs to be found. Moreover, the performance of the
algorithm is compared to other swarm intelligence algorithms in solving benchmark TSP
problems from TSPLIB. From the experiments conducted, the proposed algorithm is found
to have higher effectiveness, that is, it produces solutions with a lower cost as compared
to the adapted discrete DA [12], and the enhanced Swap Sequence based PSO (SSPSO) [8]
algorithms, and it also has higher effectiveness as compared to some other swarm intelli-
gence algorithms as it provides the optimal solution or close to the optimal solutions for
benchmark TSP problems. Moreover, it has a higher efficiency than the adapted discrete
DA as it converges to the optimal solution in a shorter amount of time.

The contributions of this paper include an optimized discrete dragonfly algorithm
suitable for solving discrete optimization problems such as TSP, which provides optimal
or near-optimal solutions for benchmark TSP problems, an application of the proposed
algorithm to a TSP problem which models a package delivery system in the area of Kuala
Lumpur, and a comparison of the performance of the proposed algorithm to that of other
swarm intelligence algorithms in solving benchmark TSP problems.



Mathematics 2022, 10, 3647 3 of 24

The remaining of the paper is structured as follows: In Section 2, a background on
swarm intelligence algorithms, the original dragonfly algorithm, and the hill climbing
algorithm is provided. In Section 3, an explanation on the traveling salesman problem is
given. In Section 4, some previous works using swarm intelligence algorithms for solving
TSP, and the adapted discrete DA algorithm are presented. In Section 5, a description of the
proposed algorithm is given. In Section 6, the results and discussions are presented and,
finally, in Section 7, the conclusions and some future work are presented.

2. Background on Swarm Intelligence, Dragonfly Algorithm, and Hill
Climbing Algorithm
2.1. Swarm Intelligence Algorithms

Swarm intelligence algorithms are metaheuristic optimization algorithms that are
inspired by the simple and self-organizing interactions of biological organisms that give
rise to a functional global pattern [2]. They make use of a number of search agents which
replicate the actions of individuals in a specific biological population as they interact among
themselves and their environment. Each search agent, which represents a solution, moves
in the state space by considering a fitness function. This allows the algorithm to solve
complex optimization problems. Some well-known swarm intelligence algorithms include
the particle swarm optimization that is inspired by the swarming of bird flocks or fish
schools, and the ant colony optimization that is based on the food searching behaviour
of ants.

Swarm intelligence algorithms have a plethora of applications in various domains as
they can be used for solving different types of optimization problems including continuous
optimization problems, discrete optimization problems, and multi-objective optimization
problems. A continuous optimization problem is one in which the solution can be any real
value within a certain range of values whereas a discrete optimization problem is one in
which the solution can be a specific one from a set of possible solutions. A multi-objective
optimization problem is one which has more than one objective function.

Some recent applications of swarm intelligence algorithms include in agricultural tech-
nology drones used for improving the productivity of farming areas [13], in fog computing
systems for task scheduling [14], in gene selection profile for the classification of microarray
data [15], in feature selection [16], and in artificial neural networks for optimizing the
parameters of the network [17,18]. Furthermore, they have various applications in data
science [19], in Internet of Things (IoT) systems [20], in surveillance systems [21], in water
resources engineering [22], and in supply chain management [23].

2.2. Dragonfly Algorithm

The dragonfly algorithm [3] is a metaheuristic optimization algorithm classified under
swarm intelligence algorithms. It is inspired by the swarming behaviours of dragonflies
during hunting and migrating. During hunting, the dragonflies swarm statically, that is
they form small groups and fly over a small area by abruptly changing their flying path.
This type of swarming is congruent with the exploration phase of optimization algorithms
where the algorithm tries to find a good region of the search space. Conversely, during
migration, the dragonflies fly together in a sole group and along one direction over long
distances. This type of swarming is congruent with the exploitation phase of optimization
algorithms where the algorithm tries to converge to the optimal solution. Figure 1 shows a
static and a dynamic swarm of dragonflies.

Five factors are used to control the movement of the dragonflies in the search space
during both the exploration and exploitation phases; separation, alignment, cohesion,
attraction to food, and distraction from enemy. Each factor has a corresponding weight
which is used to tune the factor to enable the algorithm to transition between the exploration
and exploitation phases. The factors, along with the weights, also ensure the survival of
the swarm by causing it to attract towards food sources and distract away from enemies.



Mathematics 2022, 10, 3647 4 of 24

The best solution which has been obtained by the population of search agents is taken as
the food source and the worst solution is taken as the enemy.

Figure 1. Static and dynamic dragonfly swarms.

The separation factor of a dragonfly is used to prevent its static collision with its
neighbours, and is calculated using (1):

Si = −
N

∑
j=1

Xi − Xj (1)

where Xi, and Xj are the current dragonfly’s position and the j-th neighbour’s position
respectively, and N is the number of dragonflies in the neighbourhood.

The alignment factor of a dragonfly matches its velocity to that of its neighbours, and
is calculated using (2):

Ai =
∑N

j=1 Vj

N
(2)

where Vj is the j-th neighbour’s velocity and N is the number of dragonflies in the
neighbourhood.

The cohesion factor of a dragonfly is its tendency towards the centre of mass of the
neighbourhood, and is calculated using (3):

Ci =
∑N

j=1 Xj

N
− Xi (3)

where Xj is the j-th neighbour’s position and N is the number of dragonflies in the
neighbourhood.

The attraction to food factor of a dragonfly is its attraction towards a food source, and
is calculated using (4):

Fi = X+ − Xi (4)

where X+ is the food source’s position.
The distraction from enemy factor of a dragonfly is its repulsion from an enemy, and

is calculated using (5):
Ei = X− + Xi (5)

where X− is the enemy’s position.
To allow the dragonflies to move in the search space by considering these factors, two

vectors are used: the step vector (∆X) and the position vector (X).
The step vector determines the direction of the movement, and it is calculated using (6):

∆Xt+1
i = (sSi + aAi + cCi + f Fi + eEi) + w∆Xt

i (6)

where Si, Ai, Ci, Fi, and Ei are the separation, alignment, cohesion, food factor, and enemy
factors of the i-th dragonfly respectively, s, a, c, f , and e are the separation, alignment,
cohesion, food factor, and enemy factor’s weights respectively, w is the inertia weight, and
t is the iteration counter.



Mathematics 2022, 10, 3647 5 of 24

The position vector allows the movement in the search space, and it is calculated
using (7):

Xt+1
i = Xt

i + ∆Xt+1
i (7)

In DA, in order to replicate the static and dynamic swarming behaviours of dragonflies,
it is important to consider the neighbourhood of each search agent. This is achieved by
considering a radius around each artificial dragonfly. The radius is increased proportionally
to the iteration number so as to change the static swarms to dynamic ones until the whole
population form one dynamic swarm and converges to the global optimum during the final
iterations. This is another way by which the algorithm transitions from the exploration
phase to the exploitation phase.

If a dragonfly has no neighbouring dragonfly, its position is updated using the Levy
flight mechanism, which is a random walk employed to increase the stochasticity of the
algorithm. The position vector of the dragonfly is calculated using (8):

Xt+1
i = Xt

i + Levy(d)× Xt
i (8)

where t is the current iteration number and d is the dimension of the position vectors.
The pseudocode of DA is given in Algorithm 1.

Algorithm 1: Dragonfly Algorithm

1 Initialize the population’s positions randomly;
2 Initialize the step vectors;
3 while end condition do
4 Calculate the objective values of all dragonflies;
5 Update the food source and enemy;
6 Update the weights;
7 Calculate the factors using (1)–(5);
8 Update radius of neighbourhoods;
9 if dragonfly has one or more neighbours then

10 Update step vector using (6);
11 Update position vector using (7);
12 else
13 Update position vector using (8);
14 end
15 Check and correct new positions based on upper

and lower bounds;
16 end

2.3. Hill Climbing Algorithm

The hill climbing algorithm is a heuristic local search algorithm which is used for
optimization mainly in the field of artificial intelligence. Generally, starting from one
position, it considers all the possible neighbouring solutions in a search region and selects
the one which either maximizes or minimizes an objective function the most.

There are three main types of hill climbing, namely, the simple hill climbing algorithm,
the steepest ascent hill climbing algorithm, and the stochastic hill climbing algorithm.

The simple hill climbing algorithm checks only one neighbouring solution at a time. If
it is better than the current solution, the neighbouring solution is selected as the current
solution. This type of hill climbing algorithm requires less computing power. However, a
good solution is not guaranteed.

The steepest ascent hill climbing algorithm checks all the neighbouring solutions and
then selects the best one. This type of hill climbing algorithm requires more computing
power, however, it is more likely to find the most optimal solution.



Mathematics 2022, 10, 3647 6 of 24

The stochastic hill climbing algorithm checks a random neighbouring solution and if
it is better than the current solution, the neighbouring solution is selected as the current
solution, otherwise, another random neighbouring solution is selected.

3. Problem Formulation

The traveling salesman problem, a combinatorial optimization problem, is classified
as a Non-Deterministic Polynomial-hard (NP-hard) problem as large TSP problems are
difficult to solve [5]. It consists of a discrete state space with a finite set of possible solutions
and the aim is to find the best solution from the set. TSP can be defined as follows: given a
number of inputs called cities and the cost of travel between each possible pair, the aim
is to find the route with the least cost to visit each city exactly once and to return to the
starting city.

TSP has numerous real-world applications since a large number of real-world prob-
lems can be represented as TSP. For example, it can be used in X-Ray crystallography,
computer wiring, vehicle routing, and order picking in warehouses [24]. Some more recent
applications of TSP include route planning for Unmanned Aerial Vehicles (UAVs) [25], in
delivery services using UAVs [26], in emergency air logistics [27], in robotic automated
storage and retrieval system [28] and robot path planning [29].

4. Related Works
4.1. Existing Swarm Intelligence Algorithms Applied to TSP

In this section, some previous works in which swarm intelligence algorithms have
been adapted and enhanced for solving TSP are presented.

In [30], the firefly algorithm is adapted and enhanced for solving TSP by using the
method of swap sequences and Genetic Algorithm (GA). GA is first used to initialise the
population of search agents. The serial number coding method is used for representing the
discrete state space of TSP and the method of swap sequences is used to redefine the equa-
tions of the firefly algorithm in order to adapt the algorithm to TSP. Three neighbourhood
structures are also used to redefine the disturbance mechanism of the firefly algorithm.
The algorithm is tested using five TSP problems from TSPLIB and it is found to provide
solutions which are close to the known optimal solutions.

In [31], a discrete sparrow search algorithm is proposed for solving TSP. For ini-
tialization of the population’s positions, the roulette wheel selection is used. The path
representation method is used for representing a TSP path. The position of the search
agents is updated using the same equation as the original sparrow search algorithm and
a decoding method called the order-based decoding is used to decode the solution ob-
tained. To increase the diversity of the population, the Gaussian mutation perturbation
is used together with swap operators. Furthermore, the 2-opt algorithm is used as a lo-
cal search to improve the quality of the solutions and to increase the convergence rate.
The algorithm is tested using 34 TSP instances and is found to be robust and have good
convergence characteristics.

In [32], the Grey Wolf Optimization (GWO) is adapted for solving TSP by the use of
swap sequences and swap operators. It makes use of the general steps of the Grey Wolf
optimization algorithm. In the initialization stage, the population is initialized with a
random TSP path and the agents with the three best solutions are chosen as the Alpha,
Beta, and Delta wolves. The position of each search agent is then updated by considering
the Alpha, Beta, and Delta wolves by making use of the method of swap sequences. The
algorithm is used for solving benchmark TSP problems and is found to provide better
results than ACO and GA for several TSP problems.

In [33], the chicken swarm optimization algorithm is adapted for solving TSP by using
the methods of swap operators, order crossover, and reverse order mutation. The integer
coding method is used for the solution representation, and the method of swap operators is
used for updating the position of the search agents. The order crossover, and reverse order
mutation are also used for updating the position of the search agents in the state space by



Mathematics 2022, 10, 3647 7 of 24

increasing the population diversity. Five instances from TSPLIB are used for testing the
algorithm which is found to be effective in solving TSP.

In [34], a discrete spider monkey optimization algorithm is proposed for solving TSP. It
makes use of the method of swap sequences and swap operators for updating the position
of the search agents. The position of each search agent is updated based on the position
of a subgroup leader, known as the local leader, and the position of a main group leader,
known as the global leader, and also their self-experience. The algorithm is tested using
TSP instances from TSPLIB and its performance is compared with other swarm intelligence
algorithms. It is found to have a good performance in solving TSP.

In [8], an enhanced swap sequence based PSO algorithm is proposed for solving TSP.
It makes use of path representation for representing solutions in the state space, and the
method of swap operators for updating the positions. It incorporates the three strategies
of the continuous XPSO algorithm and uses the method of swap operators in order to be
suitable for solving TSP. The three strategies include a forgetting ability for each particle,
the adjustment of the acceleration coefficients by making use of the population’s experience,
and the use of both the global and local exemplars for learning. The algorithm is found to
provide better results than the swap sequence-based PSO.

4.2. Discrete Adapted Dragonfly Algorithm

In this section, a description of the adapted discrete dragonfly algorithm that we
proposed in [12] is given. The algorithm makes use of the path representation method to
represent a potential solution, that is a TSP path, and it makes use of the method of swap
sequence [35] which was originally used for adapting PSO to TSP. The adapted discrete DA
adapts the original DA algorithm to be suitable for solving TSP by the following: firstly, the
method of path representation is used to represent a potential solution, that is, a TSP path
which is taken as the position of a search agent. Secondly, the equations for calculating the
five factors used in DA, the step vector, and the position vector are adapted to be suitable
for the path representation. Thirdly, the five factors, the step vector, and the position vector
are calculated using the method of swap sequence. The pseudocode of the adapted discrete
DA is given in Algorithm 2.

Algorithm 2: Adapted Discrete DA Algorithm for TSP

1 Initialize the population’s positions with random TSP paths;
2 Initialize the step vectors with random swap sequences;
3 while end condition do
4 Calculate the objective values of all dragonflies;
5 Update the food source and enemy;
6 Update the weights;
7 Calculate the factors using (9), (10), (11), (12), (13);
8 Update step vector using (14);
9 Update position vector using (15);

10 end

In the discrete adapted DA algorithm, the position and step vector of the search agents
are first initialized with a random TSP path and a random swap sequence respectively.
Then in each iteration, the objective value of each search agent’s position, that is the cost of
the TSP path represented by the search agent’s position, is calculated. The position with
the lowest objective value is taken as the food source and that with the highest objective
value is taken as the enemy. The separation, alignment, cohesion, attraction to food, and
distraction from enemy factors are calculated, and their corresponding weights are updated.
Finally, the position of the search agents is updated using the step and the position vectors.
Contrary to the original continuous DA, the radius of neighbourhood of the dragonflies is
not considered in the discrete adapted DA. This is because the Euclidean distance between



Mathematics 2022, 10, 3647 8 of 24

the dragonflies in a discrete state space cannot be easily calculated and hence all the search
agents are considered to be in the same neighbourhood.

4.3. Initialization

In the initialization phase, the positions of the search agents are first initialized with a
random solution, that is a TSP path. The TSP path is represented using path representation,
that is, a permutation of numbers representing cities. The numbers indicates the order of
visit of the cities. An example of a TSP path for a TSP problem consisting of 4 cities can
be: 3 2 1 4 3. This indicates that starting from the city denoted by the number 3, city 2 will
be visited next, followed by city 1 and city 4, before returning to the starting point, that is,
city 3.

The step vector of the search agents is then initialized with a velocity, which in this
case, is a random swap sequence. A swap sequence consists of a number of swap operators,
and each swap operator contains a pair of indices which represents cities in a TSP path.
It indicates that the position of the two cities will be swapped when the swap operator is
applied to a TSP path. For example, a swap operator, SO, can be represented by SO(2, 4),
and a swap sequence, SS, can be represented by SS = (SO(2, 4), SO(1, 2)).

4.4. Calculation of Factors

The separation, alignment, cohesion, attraction to food, and distraction from enemy
factors are calculated using Equations (9)–(13). These equations have been produced by
adapting the Equations (1)–(5) from the original DA. This is because the factors of a search
agent are calculated using the positions and step vectors of its neighbours, and in the
adapted discrete DA, the positions and step vectors are TSP paths and swap sequences
respectively. Hence the equations used in the original DA are not suitable for the adapted
discrete DA.

The separation factor is calculated as follows:

Si = Inv(
N⊕

j=1

X 	 Xj) (9)

where X, Xj, and N are the the current search agent’s position, the j-th neighbour’s position,
and the total number of neighbours respectively.

The ‘	’ operator indicates the subtraction of two positions, that is two TSP paths, to
produce a swap sequence. For example, the subtraction of two paths, X = 1 3 4 2 and
Xj = 2 3 1 4, is X 	 Xj = SO(1, 3), SO(3, 4).

The ‘
⊕

’ operator indicates the merging of the swap sequences into only one swap
sequence which contains all the swap operators from the different swap sequences in
sequential order. For example, for the swap sequences SS1 = SO(2, 3), SO(4, 1) and
SS2 = SO(1, 3), SS1

⊕
SS2 = SO(2, 3), SO(4, 1), SO(1, 3).

‘Inv’ indicates that the swap sequence is inversed. For example, for SS = SO(2, 3),
SO(4, 1), Inv(SS) = SO(1, 4), SO(3, 2).

The alignment factor is calculated as follows:

Ai = Vavg (10)

where Vavg is the step vector of the neighbour having the fitness closest to the average
fitness in the neighbourhood.

The cohesion factor is calculated as follows:

Ci = Xavg 	 X (11)

where Xavg is the position of the neighbour having the fitness closest to the average fitness
in the neighbourhood and X is the current search agent’s position.

The attraction to the food source factor is calculated as follows:



Mathematics 2022, 10, 3647 9 of 24

Fi = X f 	 X (12)

where X f is the food source’s position and X is the current search agent’s position.
The distraction from the enemy factor is calculated using the procedure ‘CalculateEi()’

which provides a swap sequence.

Ei = CalculateEi(Xe, X) (13)

Xe is the enemy’s position and X is the current search agent’s position. The procedure
compares each city in Xe and X and if a city is similar in both positions, it generates a swap
operator which consists of that city and another different random city. This is to decrease
the similarity between the two TSP paths.

4.5. Update of Positions

For updating the position of the search agents, the step vector is first calculated
as follows:

∆Xt+1 = (sSi ⊕ aAi ⊕ cCi ⊕ f Fi ⊕ eEi)⊕ w∆Xt (14)

where Si, Ai, Ci, Fi, and Ei are the separation, alignment, cohesion, food factor, and enemy
factors of the i-th dragonfly respectively, s, a, c, f , and e are the separation, alignment,
cohesion, food factor, and enemy factor’s weights respectively, w is the inertia weight, and
t is the iteration counter.

In this equation, ‘⊕’ indicates the merging of two swap sequences, resulting in one
swap sequence with all the swap operators in the first swap sequence followed by all the
swap operators in the second swap sequence.

The position vector of the search agent is then calculated as follows:

Xt+1 = Xt ⊗ ∆Xt+1 (15)

In this equation, ‘⊗’ indicates that the swap sequence ‘∆Xt+1’ will be applied to the
path ‘Xt’. The application of a swap sequence to a path means that each swap operator
in the swap sequence will be applied to the path sequentially to produce a new path. An
example of applying a swap operator to a path is given below.

Considering a path X = 2 4 1 3 and a swap operator SO(2, 3), the cities in the second
and third positions of X will be swapped. Hence, the resultant path will be X = 2 1 4 3.

5. Proposed Enhanced Adapted Discrete DA

In this section, a description of the proposed enhanced discrete adapted DA algorithm
is provided. The proposed algorithm improves the exploitation phase of the adapted
discrete DA by using the steepest ascent hill climbing algorithm as a local search. After the
position of the search agents is updated using Equation (15), the hill climbing algorithm is
employed to further exploit the region obtained and to update the position of the search
agent to a better one. The steepest ascent hill climbing algorithm starts at the position
obtained by Equation (15) and then looks for every possible position in that area of the
search space. It then selects the one with the lowest cost. Hence, the steepest ascent hill
climbing algorithm is able to locate the optimum solution in the area initially obtained
by the search agent. Moreover, to prevent the algorithm from getting stuck in a local
optimum, the position of a search agent is changed to a random solution when it cannot be
further improved. This is done by keeping track of the personal best solution that is found
by a search agent. If the personal best solution does not change over a certain number
of iterations, the search agent’s position is changed to another random position so as to
allow it to get out of the local optimum and to search other regions of the state space. The
pseudocode of the proposed algorithm is given in Algorithm 3.



Mathematics 2022, 10, 3647 10 of 24

Algorithm 3: Enhanced Adapted Discrete DA Algorithm for TSP

1 Initialize the population’s positions with random TSP paths;
2 Initialize the step vectors with random swap sequences;
3 PBest_Stagnancy = 0;
4 while end condition do
5 Calculate the objective values of all dragonflies;
6 Update the food source and enemy;
7 Update the weights;
8 Calculate the factors using (9), (10), (11), (12), (13);
9 Update step vector using (14);

10 Update position vector using (15);
11 Initialize position as current position for hill climbing;
12 while local optima is not reached do
13 Generate neighbours;
14 for each neighbour do
15 if cost of neighbour <cost of current position then
16 current position = neighbour position;
17 end
18 end
19 end
20 if cost of position <cost of personal best position then
21 best position = position;
22 else
23 PBest_Stagnancy = PBest_Stagnancy + 1;
24 end
25 if PBest_Stagnancy > 3 then
26 Change position to random position;
27 end
28 end

In the initialization phase, the position and step vectors are initialized with a random
TSP path, and a random swap sequence respectively. This step is similar to the adapted
discrete DA in Section 4.2. In addition, a personal best stagnancy variable is initialized
to zero. This variable is used to keep track of the number of iterations in which the best
solution found by a search agent has not improved.

In the main loop of iteration, the objective cost of each search agent is first calculated,
and the food and enemy are updated with the best and worst positions respectively.
Then the separation, alignment, cohesion, attraction to food and distraction from enemy
factors are calculated. Contrary to the adapted discrete DA in Section 4.2, in the proposed
algorithm, these factors are calculated based on the path obtained after applying the
previous factor; that is the separation factor is first calculated and the swap operators
obtained are immediately applied to the TSP path represented by the position of the search
agent to update the path. Then the alignment factor is calculated based on the updated path
after applying the separation factor. Similarly, the path is updated and then the cohesion
factor is calculated. The food factor is then calculated based on the updated path after
applying the swap operators of the cohesion factor and the enemy factor is calculated based
on the updated path after applying the food factor. The path with the lowest cost is then
chosen as the next position of the search agent. This is done so as to increase the efficiency
of the algorithm so that it can provide good solutions in a short amount of time.

After the position of a search agent is updated using Equation (15), the hill climbing
algorithm is employed to further update the position as follows: the position obtained
by (15) is taken as the current position for the hill climbing algorithm. Then a set of
neighbouring solutions is generated and the one with the lowest cost is selected as the



Mathematics 2022, 10, 3647 11 of 24

current position. The steps of generating neighbours and selecting the one with the
lowest cost as the current position are repeated until a solution with a lower cost cannot
be found. The use of the hill climbing algorithm is to improve the exploitation of the
dragonfly algorithm.

In order to prevent the algorithm from being stuck in local optima, the personal best
solution of each search agent, which is the best solution found by the search agent, is
recorded. In each iteration, after the position of the search agent has been updated, the
personal best solution is checked and updated if it has changed. If the personal best solution
remains unchanged over a certain amount of iterations, then the position of the search
agent is changed to a random solution. This is to allow the search agent to get out of the
local optimum and explore other regions of the search space.

5.1. Solution Representation

There are several ways to represent a TSP path as the position of a search agent in a
discrete state space such as binary, path, adjacency, ordinal, and matrix representations [31].
In this paper, the path representation is used to encode the TSP solutions since this is the
most natural representation of a path. This is the same representation used in [12] for the
adapted discrete DA algorithm.

5.2. Objective Function

The objective function is the cost of the TSP path, which in this case is the total distance
of the TSP path. This is obtained by calculating the distance between each pair of adjacent
cities in the TSP path. It is considered that the distance to travel from city i to city j is the
same as the distance to travel from city j to city i.

5.3. Update of Positions

Similar to the adapted discrete DA algorithm in Section 4.2, the method of swap
sequences is used for updating a position, that is a TSP path. A sequence contains a number
of swap operators which indicate that the two cities in the position denoted by the swap
operator will be swapped to produce a new TSP path. The swap operators in the swap
sequence are applied sequentially to the TSP path. For example, for a TSP path 2 4 1 3, and
swap sequence SO(1, 2), SO(3, 2), the TSP path 4 1 2 3 will be obtained when the swap
sequence is applied to the TSP path.

5.4. Experimental Parameters

Table 1 shows the parameters used for the optimized DA algorithm, their description,
and their values.

Table 1. Experimental parameters.

Parameter Description Value

Xi The position of search agent i A TSP path, example: 1 3 4 2 1

Vi The step vector of search agent i A swap sequence, example: SO(1, 3) SO(2, 1)

X f The food position A TSP path, example: 1 4 2 3 1

Xe The enemy position A TSP path, example: 1 2 4 3 1

Si The separation factor of the ith search agent A swap sequence, example: SO(2, 4) SO(1, 2)

Ai The alignment factor of the ith search agent A swap sequence, example: SO(1, 4) SO(3, 2)

Ci The cohesion factor of the ith search agent A swap sequence, example: SO(1, 3) SO(3, 4)

Fi The food factor of the ith search agent A swap sequence, example: SO(3, 4) SO(1, 2)



Mathematics 2022, 10, 3647 12 of 24

Table 1. Cont.

Parameter Description Value

Ei The enemy factor of the ith search agent A swap sequence, example: SO(3, 2) SO(4, 1)

s The separation weight A real value, example: 1.5

c The cohesion weight A real value, example: 1.2

a The alignment weight A real value, example: 2.3

f The attraction to food weight A real value, example: 1.2

e The distraction from enemy weight A real value, example: 0.5

w The step vector weight A real value, example: 0.1

6. Experimental Results and Analysis

In this section, a description of the experimental datasets used, the experimental setup,
and the results with some discussions are provided.

6.1. Experimental Dataset

The test data consist of a TSP problem with 50 nodes, where each node represents
a location in the area of Kuala Lumpur (KL). The cost between each pair of nodes is the
distance needed to travel from one node to the other. It is considered that the distance to
travel from city i to city j is the same as the distance to travel from city j to city i. The aim
is to find the shortest route to visit each node once and to return to the initial node. The
distance between two locations is taken as the shortest distance in kilometers (km) that can
be taken by a vehicle based on Google Maps.

To test the proposed algorithm with TSP problems of different sizes, the TSP data is
changed to 10, 20, and 40 nodes by taking the first 10, 20, and 40 locations respectively.

Moreover, several benchmark datasets from TSPLIB are used to test the performance
of the proposed algorithm. Specifically, the burma14, ulysses16, ulysses22, bays29, eil51,
berlin52, st70, eil76, rat99 and kroA100 datasets consisting of 14, 16, 22, 29, 51, 52, 70, 76,
99, and 100 nodes respectively are used. The datasets are in the form of coordinates and
the distance matrix of each dataset is constructed by calculating the Euclidean distance
between the nodes.

6.2. Experimental Setup

The proposed algorithm is used for solving the TSP problem with 50, 40, 20, and
10 locations in KL and the results are recorded in terms of the cost of the solution obtained,
the time taken to converge to the optimal solution, and the total time taken by the algorithm.

To compare the performance of the proposed algorithm, the discrete adapted dragonfly
algorithm in [12], and the enhanced SSPSO in [8] are used for solving the same TSP problems
of 50, 40, 20, and 10 locations and the results are recorded in terms of the cost of the solution
obtained, the time taken to converge to the optimal solution, and the total time taken by
the algorithm. The results of the proposed algorithm are compared to that of the discrete
adapted dragonfly algorithm and the enhanced SSPSO algorithm. The enhanced SSPSO
is used for comparing the performance of the proposed algorithm since it is our own
algorithm which had been used for the same dataset, and TSP problem, that is the delivery
system in the area of Kuala Lumpur. In order to have a better algorithm for the delivery
system, the new optimized DA algorithm is proposed in this paper.

The experiments are repeated for different numbers of maximum iteration and search
agents. Specifically, the number of maximum iterations used are 20, 50, 100, 200, and 500,
and the number of search agents used is 5, 10, 20, and 40.

Furthermore, in order to compare the performance of the proposed algorithm to that of
other swarm intelligence algorithms, the algorithm is applied to benchmark TSP problems



Mathematics 2022, 10, 3647 13 of 24

from TSPLIB and the best solution obtained by the proposed algorithm is compared to
the best solution obtained by Ant Colony Optimization (ACO), Velocity Tentative PSO
(VTPSO), Artificial Bee Colony with Swap Sequence (ABCSS), Discrete Spider Monkey
Optimization (DSMO), Genetic Algorithm (GA), Producer Scrounger Method (PSM), and
Grey Wolf Optimizer (GWO) algorithms. The results of ACO, VTPSO, ABCSS, and DSMO
are taken from [34]. The results of ACO GA, PSM, and GWO are taken from [32]. The
maximum number of iterations used for the proposed optimized DA is 500 and the number
of search agents used is between 20 and 100.

Both the proposed optimized discrete adapted DA and the discrete adapted DA were
implemented in MATLAB and all experiments were conducted on a MacOs Monterey
operating system, Apple M2 chip CPU, and 8 GB RAM.

6.3. Results and Discussion
6.3.1. Greater Kuala Lumpur TSP Problem

In this section, we present a comparison and discussion on the performance of the
proposed algorithm when applied to our own dataset consisting of locations in the area of
Greater Kuala Lumpur which models a delivery system.

Tables 2–5 show the results obtained when the proposed optimized discrete DA, the
discrete adapted DA, and the enhanced swap sequence based PSO are used for solving the
TSP problem with 50, 40, 20, and 10 locations respectively. The experiments are conducted
by using different number of maximum iterations and search agents and the results are
recorded in terms of the cost of the solution, that is TSP path, provided by the algorithms,
the time taken to converge to the global optimal solution, and the total time taken by the
algorithms.

Figures 2–5 show the convergence curve of the proposed optimized discrete adapted
DA and the discrete adapted DA in solving a TSP of 50, 40, 20, and 10 locations respectively.
The figures show the convergence of the algorithms for 5, 10, 20, and 40 search agents
and for a maximum iteration of 200. The figures show the convergence rate of the two
algorithms and also the cost of the solution, that is the TSP path provided.

An example of a TSP path for 20 locations in Kuala Lumpur area provided by the
optimized discrete adapted DA algorithm is given in Figure 6. The cost of the TSP path
is 105.4 and the path is as follows: 11 15 18 16 10 9 4 13 2 3 12 1 20 19 17 7 6 5 8 14 11.
The numbers represent the cities and their order represent the order in which they will
be visited.

From Tables 2–5 it can be deduced that the proposed optimized discrete adapted
DA algorithm has a higher effectiveness than the discrete adapted DA algorithm as the
cost of the TSP path provided by the proposed algorithm is significantly lower in all of
the experiments conducted. For example, for a maximum iteration of 500 and 40 search
agents, the costs of the TSP paths obtained by the discrete adapted DA for 50, 40, 20,
and 10 locations are 507.8, 409.3, 161.9, and 69.6 respectively while those obtained by the
proposed optimized adapted discrete DA are 200.0, 178.7, 105.4, and 65.9 respectively.
This means that the optimized adapted discrete DA improves the solution obtained by
the adapted discrete DA by 60.6%, 56.3%, 34.9%, and 5.3% for 50, 40, 20, and 10 locations
respectively.

Even for smaller number of iterations and search agents, the proposed algorithm
converges to solutions with lower costs than the discrete adapted DA. For example, for a
maximum of 20 iterations and only five search agents, the costs of the TSP paths obtained
by the discrete adapted DA for 50, 40, 20, and 10 locations are 556.2, 478.1, 191.9, and 82.9
respectively while those obtained by the optimized discrete adapted DA are 229.4, 217.8,
117.5, and 65.9 respectively. This indicates that the optimized adapted discrete DA provides
solutions which are 58.8%, 54.4%, 38.8%, and 20.5% better than those provided by the
adapted discrete DA for 50, 40, 20, and 10 locations respectively.



Mathematics 2022, 10, 3647 14 of 24

Table 2. Performance comparison of proposed optimized discrete DA and discrete adapted DA in solving TSP of 50 cities.

Maximum
No. of
Iterations

No. of
Search
Agents

Enhanced SSPSO Discrete Adapted DA Proposed Optimized Discrete
Adapted DA

Cost of Solu-
tion (km)

Time Taken
to Converge
to Optimum
(s)

Total Time
Taken (s)

Cost of Solu-
tion (km)

Time Taken to Con-
verge to Optimum
(s)

Total Time
Taken (s)

Cost of
Solution
(km)

Time Taken to Con-
verge to Optimum
(s)

Total Time
Taken (s)

20 5 532.0 0.0359 0.0481 556.2 3.519 7.91 229.4 3.5325 6.6253

20 10 550.0 0.04071 0.1139 571.0 18.0617 27.6912 223.3 6.9313 9.0644

20 20 542.0 0.2214 0.2959 570.7 15.7653 130.8685 223.5 25.5084 26.5358

20 40 547.0 0.1365 0.5762 546.0 2.1136 770.9831 232.3 57.8731 58.7077

50 5 525.0 0.0892 0.3160 561.6 6.2466 54.9875 217.2 10.734 12.7241

50 10 525.0 0.0021 0.6858 539.0 3.3454 190.3065 225.4 19.015 24.0916

50 20 541.0 0.5838 1.2465 524.0 53.0974 823.7265 211.8 64.8796 67.1365

50 40 509.0 3.3133 6.02159 542.3 587.3994 4322.1249 206.0 147.4982 150.3943

100 5 525.0 1.0883 1.3751 537.5 6.8421 200.1581 223.5 7.1802 18.6268

100 10 510.0 0.1848 3.7681 538.0 178.4626 788.3791 213.7 46.6898 48.3536

100 20 518.0 3.1911 9.6636 539.2 1429.93 3302.5555 209.4 29.4048 122.456

100 40 504.0 7.3404 17.9399 534.8 426.2547 15,899.7002 210.6 229.6718 240.2979

200 5 530.0 4.8935 6.3373 537.0 180.8259 429.2883 217.9 48.1498 48.6066

200 10 501.0 0.7947 14.5220 529.2 798.1125 1676.7151 206.6 59.3682 109.5615

200 20 497.0 17.5760 38.0765 527.7 4210.0023 7259.5666 199.4 126.6875 195.9365

200 40 494.0 20.0064 82.9766 519.5 1934.8816 34,189.6828 206.7 324.0921 554.3716

500 5 478.0 26.4978 42.7225 519.6 504.9482 6311.1325 213.1 96.5744 100.8358

500 10 494.0 45.6093 101.8348 487.2 17,838.5761 26,586.0832 196.8 121.3713 245.6557

500 20 488.0 21.9401 309.6251 517.3 16,875.0334 113,766.0094 193.6 262.4892 500.1441

500 40 494.0 30.9125 588.0762 507.8 283,915.1445 546,679.3105 200.0 534.5106 1198.7924



Mathematics 2022, 10, 3647 15 of 24

Table 3. Performance comparison of proposed optimized discrete adapted DA and discrete adapted DA in solving TSP of 40 cities.

Maximum
No. of
Iterations

No. of
Search
Agents

Enhanced SSPSO Discrete Adapted DA Proposed Optimized Discrete
Adapted DA

Cost of Solu-
tion (km)

Time Taken
to Converge
to Optimum
(s)

Total Time
Taken (s)

Cost of Solu-
tion (km)

Time Taken to Con-
verge to Optimum
(s)

Total Time
Taken (s)

Cost of
Solution
(km)

Time Taken to Con-
verge to Optimum
(s)

Total Time
Taken (s)

20 5 431.0 0.02126 0.03446 478.1 0.13406 11.4666 217.8 2.7567 4.3227

20 10 461.0 0.02927 0.0843 463.9 1.9294 29.2706 222.8 5.2488 5.4381

20 20 442.0 0.0140 0.1880 452.3 107.0152 131.4918 197.2 10.0264 12.3698

20 40 435.0 0.01673 0.4016 430.6 20.2805 686.2293 188.9 29.322 36.2265

50 5 448.0 0.06111 0.1847 428.9 32.3926 65.8366 207.3 3.9897 6.7687

50 10 415.0 0.4449 0.8789 436.8 95.0279 256.7351 195.5 12.7688 13.4064

50 20 427.0 0.1988 1.0586 449.8 87.115 1004.6713 200.4 14.9048 28.4775

50 40 418.0 1.8880 3.1482 444.3 2194.2967 4545.5709 194.3 65.8466 71.1544

100 5 422.0 0.0027 1.2992 422.6 114.8649 270.0771 190.7 7.247 11.6643

100 10 419.0 1.3789 3.1608 458.0 609.6101 950.9694 193.3 20.9147 35.4175

100 20 433.0 1.6942 4.0857 444.6 2547.628 3991.4558 185.0 40.165 49.4274

100 40 407.0 1.6516 15.0465 441.4 1860.1602 25,521.9187 194.0 103.962 119.8753

200 5 402.0 1.4485 5.3046 422.8 1.31 361.4874 186.8 13.2504 20.6362

200 10 421.0 2.9958 11.0945 444.0 862.4717 1301.4488 199.8 44.9657 57.7674

200 20 418.0 1.7099 22.8645 418.6 2661.0911 5393.6283 181.6 44.927 110.284

200 40 420.0 45.7771 56.4051 436.0 6848.2599 25,271.4722 178.7 212.0086 257.4372

500 5 421.0 30.1391 30.2641 435.5 2122.968 7159.2775 190.0 43.844 63.6809

500 10 417.0 14.5123 93.8408 429.8 4701.7931 23,959.7151 185.0 85.5298 137.7637

500 20 389.0 22.4112 194.3102 423.1 100,073.4386 124,577.1437 184.8 182.1964 292.4497

500 40 404.0 7.1911 498.5430 409.3 72,913.9465 357,630.9028 179.4 501.9859 681.6409



Mathematics 2022, 10, 3647 16 of 24

Table 4. Performance comparison of proposed optimized discrete adapted DA and discrete adapted DA in solving TSP of 20 cities.

Maximum
No. of
Iterations

No. of
Search
Agents

Enhanced SSPSO Discrete Adapted DA Proposed Optimized Discrete
Adapted DA

Cost of Solu-
tion (km)

Time Taken
to Converge
to Optimum
(s)

Total Time
Taken (s)

Cost of Solu-
tion (km)

Time Taken to Con-
verge to Optimum
(s)

Total Time
Taken (s)

Cost of
Solution
(km)

Time Taken to Con-
verge to Optimum
(s)

Total Time
Taken (s)

20 5 195.0 0.004488 0.01227 191.9 2.0448 3.8275 117.5 0.32687 1.0266

20 10 173.0 0.02451 0.0298 187.6 5.9708 14.7066 109.1 1.7194 1.8762

20 20 182.0 0.0096 0.0752 192.7 7.3479 64.1203 107.1 2.2349 3.5711

20 40 168.0 0.09121 0.1348 186.1 18.9694 396.1467 106.1 3.7612 6.3904

50 5 173.0 0.0035 0.0603 175.0 6.4056 24.9236 105.4 0.63344 1.9217

50 10 176.0 0.1615 0.2060 160.1 0.0092196 97.1998 106.1 3.8454 3.9797

50 20 162.0 0.0033 0.4717 168.9 192.3332 501.511 105.4 3.4697 6.4025

50 40 151.0 1.0569 1.4717 168.8 341.0088 2616.6784 105.4 1.6023 16.6091

100 5 171.0 0.0048 0.2566 186.1 68.1113 125.241 108.8 1.0233 3.0716

100 10 173.0 0.2345 0.6208 171.6 269.7031 475.5543 106.8 3.3758 5.4659

100 20 167.0 0.3571 1.9250 171.1 7.419 2047.3412 105.7 11.401 12.6007

100 40 170.0 2.0494 4.0331 174.9 5646.5838 8242.855 105.4 1.6434 32.2757

200 5 163.0 0.9734 1.1322 180.1 89.7254 164.0154 105.7 0.8572 6.74

200 10 166.0 0.1077 3.3940 175.4 11.5837 624.1664 105.4 3.9401 10.1722

200 20 163.0 0.0767 6.4863 162.7 202.5637 2352.474 105.4 9.3677 21.9359

200 40 155.0 0.0475 19.5566 170.7 4165.0315 11,489.6363 105.4 23.7822 60.105

500 5 164.0 0.0311 10.7217 163.4 875.6302 3632.2101 105.4 9.4902 13.2498

500 10 164.0 3.2880 25.2614 175.8 1215.4295 15,191.4602 105.4 9.2816 30.2117

500 20 153.0 0.0044 56.4343 155.7 37,104.5216 61,427.5274 105.4 2.6679 64.409

500 40 155.0 1.7389 111.9266 161.9 83,639.0656 247,067.0486 105.4 79.663 157.4536



Mathematics 2022, 10, 3647 17 of 24

Table 5. Performance comparison of proposed optimized discrete adapted DA and discrete adapted DA in solving TSP of 10 cities.

Maximum
No. of
Iterations

No. of
Search
Agents

Enhanced SSPSO Discrete Adapted DA Proposed Optimized Discrete
Adapted DA

Cost of Solu-
tion (km)

Time Taken
to Converge
to Optimum
(s)

Total Time
Taken (s)

Cost of Solu-
tion (km)

Time Taken to Con-
verge to Optimum
(s)

Total Time
Taken (s)

Cost of
Solution
(km)

Time Taken to Con-
verge to Optimum
(s)

Total Time
Taken (s)

20 5 80.0 0.0022 0.0028 82.9 0.50424 3.4169 65.9 0.26697 0.56227

20 10 78.0 0.0072 0.0074 71.2 4.8409 9.6044 65.9 0.25308 0.91832

20 20 75.0 0.0055 0.0171 78.0 21.0104 35.849 65.9 0.22486 1.2627

20 40 69.0 0.0248 0.0369 79.0 0.72344 146.1099 65.9 0.41628 2.3977

50 5 75.0 0.0124 0.01961 81.7 13.2891 15.7673 65.9 0.12756 1.0816

50 10 71.0 0.0055 0.0440 80.2 25.3691 48.5602 65.9 0.61573 1.4417

50 20 72.0 0.0996 0.1174 73.4 13.4782 222.6126 65.9 0.22748 2.5893

50 40 67.0 0.1659 0.2397 76.9 661.0827 915.7478 65.9 0.37537 5.4787

100 5 73.0 0.0715 0.0733 81.3 42.137 71.0761 65.9 0.21733 1.6297

100 10 72.0 0.2668 0.2721 77.3 27.525 229.6083 65.9 0.35535 2.3059

100 20 66.0 0.4829 0.4832 76.7 102.0761 959.875 65.9 0.22507 4.4552

100 40 68.0 0.3644 0.8834 72.1 607.6719 5944.7225 65.9 1.1377 11.2092

200 5 75.0 0.3177 0.3179 75.8 1.117 70.7217 65.9 0.47184 3.1885

200 10 65.0 0.0234 1.080 77.5 6.5001 253.8453 65.9 0.17053 4.7651

200 20 71.0 1.7071 1.7748 72.0 372.1562 991.3132 65.9 0.24187 8.242

200 40 67.0 3.4541 4.0137 68.8 416.1922 4307.4956 65.9 0.56337 19.9458

500 5 69.0 0.0880 2.4140 74.7 0.59851 1637.606 65.9 0.15524 5.3221

500 10 71.0 5.7717 5.9135 69.8 502.382 6421.5464 65.9 0.90636 9.7569

500 20 68.0 12.0173 12.7403 71.4 8413.495 28,095.8444 65.9 0.25608 19.0239

500 40 67.0 25.6158 25.8277 69.6 8756.6288 117,232.4453 65.9 0.37032 47.7772



Mathematics 2022, 10, 3647 18 of 24

Figure 2. Convergence curve of optimized discrete adapted DA and discrete adapted DA in solving
TSP of 50 cities.

Figure 3. Convergence curve of optimized discrete adapted DA and discrete adapted DA in solving
TSP of 40 cities.



Mathematics 2022, 10, 3647 19 of 24

Figure 4. Convergence curve of optimized discrete adapted DA and discrete adapted DA in solving
TSP of 20 cities.

Figure 5. Convergence curve of optimized discrete adapted DA and discrete adapted DA in solving
TSP of 10 cities.



Mathematics 2022, 10, 3647 20 of 24

Figure 6. TSP path provided by optimized discrete adapted DA for 20 locations.

Moreover, the costs of the best TSP paths that can be provided by the adapted discrete
DA for 50, 40, 20, and 10 locations are 487.2, 409.3, 155.7, and 69.6 respectively while the
costs of the best TSP paths that can be provided by the proposed optimized adapted discrete
DA for 50, 40, 20, and 10 locations are 193.6, 179.4, 105.4, and 65.9 respectively.

In comparison to the enhanced SSPSO algorithm in [8], the proposed optimized
discrete DA algorithm has a higher effectiveness as it provides solutions with a lower cost
in all the experiments conducted.

In terms of efficiency, it can be seen from Tables 2–5 that the proposed optimized
adapted discrete DA algorithm takes less time than the adapted discrete DA algorithm for
execution until the maximum number of iterations. Moreover, in terms of the time taken to
converge to the global optimal solution, it can be seen that the proposed algorithm is better
than the discrete adapted DA as it takes less time to converge. Hence, it can be deduced
that the proposed algorithm has a higher convergence rate as compared to the adapted
discrete DA algorithm.

From Figures 2–5, it can be seen that the proposed optimized adapted discrete DA
algorithm provides better solution than the adapted discrete DA as the proposed algorithm
converges to solutions with lower costs in all cases. Moreover, it can be seen that in multiple
cases the proposed algorithm has a higher convergence rate than the adapted discrete DA
as the proposed algorithm converges at earlier iterations.

6.3.2. Benchmark TSP Problems

In this section, we present a comparison and discussion on the performance of the
proposed algorithm in solving benchmark TSP problems.

Table 6 shows a comparison of the performance of the proposed optimized DA al-
gorithm and other swarm intelligence algorithms, namely ACO, GA, PSM, and GWO in
solving benchmark TSP problems. The results of ACO, GA, PSM, and GWO are taken
from [32]. The results are compared in terms of the cost of the best solution that can be
obtained by the algorithm. The maximum number of iterations used for the proposed
optimized DA, and the other swarm intelligence algorithms is 500, and the maximum
number of search agents used is 100.

Table 7 shows a comparison of the performance of the proposed optimized DA algo-
rithm and other swarm intelligence algorithms, namely ACO, VTPSO, ABCSS and DSMO



Mathematics 2022, 10, 3647 21 of 24

in solving benchmark TSP problems. The results for ACO, VTPSO, ABCSS and DSMO are
taken from [34]. The results are compared in terms of the cost of the best solution that can
be obtained by the algorithm. The maximum number of iterations used for ACO, VTPSO,
and DSMO is 500, while that for ABCSS is 1000. The number of search agents used for
ACO, VTPSO, ABCSS and DSMO is between 100 and 300. For the proposed optimized
DA, the maximum number of iterations used is 500, and the maximum number of search
agents used is 100. Although the number of search agents and maximum iteration for the
proposed algorithm and the other swarm intelligence algorithms are not the same, the
results are shown for comparison purposes.

Table 6. Performance comparison of proposed optimized discrete adapted DA and other swarm
intelligence algorithms in solving benchmark TSP using a maximum of 100 search agents.

TSP Instance
Cost of Best Solution Obtained

Proposed Optimized DA ACO GA PSM GWO

burma14 30.8785 31.21 30.87 30.87 30.87

ulysses16 73.9876 77.13 74.0 73.99 73.99

ulysses22 75.3097 86.74 76.09 75.51 75.51

bays29 9074.148 9964.78 9336.82 9076.98 9076.98

eil51 430.244 499.92 524.18 438.7 455.24

berlin52 7544.3659 8046.06 9184.19 8109.91 8048.91

st70 687.0724 734.19 1015.0 767.65 752.84

eil76 566.5564 595.58 805.78 591.89 604.32

kroA100 24,205.4508 24,504.9 51446.8 26,419.8 25,983.8

Table 7. Performance comparison of proposed optimized discrete adapted DA and other swarm
intelligence algorithms in solving benchmark TSP using different number of search agents.

TSP Instance
Cost of Best Solution Obtained

Proposed Optimized DA ACO VTPSO ABCSS DSMO

burma14 30.8785 31.21 30.87 30.87 30.87

ulysses16 73.9876 77.13 73.99 73.99 73.99

ulysses22 75.3097 84.78 75.31 75.31 75.31

bays29 9074.148 9964.78 9074.15 9074.15 9074.15

eil51 430.244 499.92 429.51 428.98 428.86

berlin52 7544.3659 7870.45 7544.37 7544.37 7544.37

st70 687.0724 734.19 682.57 682.57 677.11

eil76 566.5564 581.42 559.25 550.24 558.68

rat99 1298.888 1366.3 1256.25 1242.32 1225.56

kroA100 24,205.4508 24,504.9 21,307.44 21,299.0 21,298.21

From Table 6, it can be seen that the proposed algorithm achieves the same optimal
solution for burma14 as GA, PSM, and GWO. For the ulysses16 dataset, the proposed
algorithm provides the same optimal solution as PSM, and GWO. As for all the other
datasets, that is, ulysses22, bays29, eil51, berlin52, st70, eil76, and kroA100, the proposed
optimized DA provides better solutions as compared to ACO, GA, PSM, and GWO when
the same number of search agents and maximum iterations is used.

From Table 7, it can be seen that the proposed algorithm can achieve the optimal
solution for five of the datasets, namely for burma14, ulysses16, ulysses22, bays29, and
berlin52, even though a smaller number of search agents and maximum iteration is used as
compared to ACO, VTPSO, ABCSS, and DSMO. Although in some cases, VTPSO, ABCSS,
and DMSO can provide a solution with lower cost as compared to our proposed algorithm,



Mathematics 2022, 10, 3647 22 of 24

it is expected that our proposed algorithm will be able to provide similar or even better
solutions if the same number of search agents and maximum iteration is used.

7. Conclusions and Future Work

Swarm intelligence algorithms are popular metaheuristic algorithms for solving com-
plex optimization problems owing to the simple interactions of the search agents which
give rise to a global intelligent behaviour. The dragonfly algorithm is a swarm intelligence
algorithm inspired by the swarming behaviours of dragonflies while hunting and migrat-
ing. It has been found to have a higher performance than multiple other swarm intelligence
algorithms in various applications.

Since DA has been found to have a better performance than multiple swarm intel-
ligence algorithms in various applications, it is worth considering its application to the
traveling salesman problem which is a popular discrete optimization problem having a
plethora of real-world applications. In [3], a binary version of the dragonfly algorithm
is proposed. However, this algorithm is difficult to be adapted for discrete problems
like TSP. Hence, in [12], we proposed a discrete adapted dragonfly algorithm suitable
for TSP. However, this algorithm has not been applied to large TSP problems and it has
low effectiveness.

In this paper, we propose an optimized adapted discrete dragonfly algorithm which
improves the low effectiveness of the adapted discrete DA in [12]. The proposed algorithm
improves the exploitation phase of the adapted discrete DA by using the steepest ascent
hill climbing algorithm as a local search. The proposed optimized adapted discrete DA has
been tested using TSP instances consisting of 50, 40, 30, 20, and 10 cities. It has been found
to provide better solutions, that is TSP paths with a lower cost, as compared to the adapted
discrete DA [12], and the enhanced swap sequence based PSO [8] algorithms. It also has a
higher convergence rate than the adapted discrete DA. Moreover, it has been tested using
several benchmark TSP problems and it has been found to provide optimal solutions or
solutions close to the optimal solutions.

For future work, the proposed algorithm can be applied to other real-world applica-
tions such as channel routing, planning, scheduling, and logistics.

Author Contributions: Conceptualization, B.A.S.E. and M.B.J.; writing—original draft preparation,
B.A.S.E. and M.B.J.; writing—review and editing, M.B.J., A.A. and A.W.M.; supervision, M.B.J.;
project administration, M.B.J.; funding acquisition, M.B.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Sunway University Internal Grant Scheme 2022 grant number
GRTIN-IGS-DCIS[S]-11-2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DA Dragonfly Algorithm
TSP Traveling Salesman Problem
BDA Binary Dragonfly Algorithm
MODA Multi-Objective Dragonfly Algorithm
PSO Particle Swarm Optimization
ACO Ant Colony Optimization
HC Hill Climbing



Mathematics 2022, 10, 3647 23 of 24

GA Genetic Algorithm
GWO Grey Wolf Optimizer
XPSO Expanded PSO
SO Swap Operator
SS Swap Sequence
VTPSO Velocity Tentative PSO
ABCSS Artificial Bee Colony with Swap Sequence
DSMO Discrete Spider Monkey Optimization
PSM Producer Scrounger Method

References
1. Yang, X.S. Nature-Inspired Optimization Algorithms; Academic Press: Cambridge, MA, USA, 2020.
2. Slowik, A.; Kwasnicka, H. Nature inspired methods and their industry applications—Swarm intelligence algorithms. IEEE Trans.

Ind. Inform. 2017, 14, 1004–1015. [CrossRef]
3. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput. Appl. 2015, 27, 1053–1073. [CrossRef]
4. Emambocus, B.A.S.; Jasser, M.B.; Mustapha, A.; Amphawan, A. Dragonfly algorithm and its hybrids: A survey on performance,

objectives and applications. Sensors 2021, 21, 7542. [CrossRef] [PubMed]
5. Gutin, G.; Punnen, A.P. The Traveling Salesman Problem and Its Variations; Springer Science & Business Media: Berlin/Heidelberg, Ger-

many, 2006; Volume 12.
6. Zhi, X.H.; Xing, X.; Wang, Q.; Zhang, L.; Yang, X.; Zhou, C.; Liang, Y. A discrete PSO method for generalized TSP problem. In

Proceedings of the 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826), Shanghai,
China, 26–29 August 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 4, pp. 2378–2383.

7. Yang, J.; Shi, X.; Marchese, M.; Liang, Y. An ant colony optimization method for generalized TSP problem. Prog. Nat. Sci. 2008,
18, 1417–1422. [CrossRef]

8. Emambocus, B.A.S.; Jasser, M.B.; Hamzah, M.; Mustapha, A.; Amphawan, A. An enhanced swap sequence-based particle swarm
optimization algorithm to solve TSP. IEEE Access 2021, 9, 164820–164836. [CrossRef]

9. Yao, X.S.; Ou, Y.; Zhou, K.Q. TSP solving utilizing improved ant colony algorithm. J. Phys. Conf. Ser. 2021, 2129, 012026.
[CrossRef]

10. Wei, B.; Xing, Y.; Xia, X.; Gui, L. A novel particle swarm optimization with genetic operator and its application to tsp. Int. J. Cogn.
Inform. Nat. Intell. 2021, 15, 1–17. [CrossRef]

11. Rokbani, N.; Kumar, R.; Abraham, A.; Alimi, A.M.; Long, H.V.; Priyadarshini, I.; Son, L.H. Bi-heuristic ant colony optimization-
based approaches for traveling salesman problem. Soft Comput. 2021, 25, 3775–3794. [CrossRef]

12. Emambocus, B.A.S.; Jasser, M.B.; Amphawan, A. A discrete adapted dragonfly algorithm for solving the traveling salesman prob-
lem. In Proceedings of the 2021 Fifth International Conference on Intelligent Computing in Data Sciences (ICDS), Fez, Morocco,
20–22 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6.

13. Spanaki, K.; Karafili, E.; Sivarajah, U.; Despoudi, S.; Irani, Z. Artificial intelligence and food security: Swarm intelligence of
AgriTech drones for smart AgriFood operations. Prod. Plan. Control. 2021, 32, 1–19. [CrossRef]

14. Boveiri, H.R.; Khayami, R.; Elhoseny, M.; Gunasekaran, M. An efficient swarm-intelligence approach for task scheduling in
cloud-based internet of things applications. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 3469–3479. [CrossRef]

15. Jahwar, A.; Ahmed, N. Swarm intelligence algorithms in gene selection profile based on classification of microarray data: a
review. J. Appl. Sci. Technol. Trends 2021, 2, 1–9. [CrossRef]

16. Brezočnik, L.; Fister, I.; Podgorelec, V. Swarm intelligence algorithms for feature selection: A review. Appl. Sci. 2018, 8, 1521.
[CrossRef]

17. Bacanin, N.; Bezdan, T.; Tuba, E.; Strumberger, I.; Tuba, M. Optimizing convolutional neural network hyperparameters by
enhanced swarm intelligence metaheuristics. Algorithms 2020, 13, 67. [CrossRef]

18. Emambocus, B.A.S.; Jasser, M.B. Towards an optimized dragonfly algorithm using hill climbing local search to tackle the low
exploitation problem. In Proceedings of the 2021 International Conference on Software Engineering & Computer Systems and
4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), Pekan, Malaysia,
24–26 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 306–311.

19. Yang, J.; Qu, L.; Shen, Y.; Shi, Y.; Cheng, S.; Zhao, J.; Shen, X. Swarm intelligence in data science: Applications, opportunities and
challenges. In International Conference on Swarm Intelligence; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–14.

20. Sun, W.; Tang, M.; Zhang, L.; Huo, Z.; Shu, L. A survey of using swarm intelligence algorithms in IoT. Sensors 2020, 20, 1420.
[CrossRef]

21. Paramanandham, N.; Rajendiran, K. Infrared and visible image fusion using discrete cosine transform and swarm intelligence for
surveillance applications. Infrared Phys. Technol. 2018, 88, 13–22. [CrossRef]

22. Janga Reddy, M.; Nagesh Kumar, D. Evolutionary algorithms, swarm intelligence methods, and their applications in water
resources engineering: A state-of-the-art review. H2Open J. 2020, 3, 135–188. [CrossRef]

http://doi.org/10.1109/TII.2017.2786782
http://dx.doi.org/10.1007/s00521-015-1920-1
http://dx.doi.org/10.3390/s21227542
http://www.ncbi.nlm.nih.gov/pubmed/34833621
http://dx.doi.org/10.1016/j.pnsc.2008.03.028
http://dx.doi.org/10.1109/ACCESS.2021.3133493
http://dx.doi.org/10.1088/1742-6596/2129/1/012026
http://dx.doi.org/10.4018/IJCINI.20211001.oa31
http://dx.doi.org/10.1007/s00500-020-05406-5
http://dx.doi.org/10.1080/09537287.2021.1882688
http://dx.doi.org/10.1007/s12652-018-1071-1
http://dx.doi.org/10.38094/jastt20161
http://dx.doi.org/10.3390/app8091521
http://dx.doi.org/10.3390/a13030067
http://dx.doi.org/10.3390/s20051420
http://dx.doi.org/10.1016/j.infrared.2017.11.006
http://dx.doi.org/10.2166/h2oj.2020.128


Mathematics 2022, 10, 3647 24 of 24

23. Soni, G.; Jain, V.; Chan, F.T.; Niu, B.; Prakash, S. Swarm intelligence approaches in supply chain management: Potentials,
challenges and future research directions. Supply Chain. Manag. Int. J. 2018, 24, 107–123. [CrossRef]

24. Davendra, D. Traveling Salesman Problem: Theory and Applications; BoD–Books on Demand: Rijeka, Croatia, 2010.
25. Xu, Y.; Che, C. A brief review of the intelligent algorithm for traveling salesman problem in UAV route planning. In Proceedings

of the 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing,
China, 12–14 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7.

26. Huang, S.H.; Huang, Y.H.; Blazquez, C.A.; Chen, C.Y. Solving the vehicle routing problem with drone for delivery services using
an ant colony optimization algorithm. Adv. Eng. Inform. 2022, 51, 101536. [CrossRef]

27. Muren; Wu, J.; Zhou, L.; Du, Z.; Lv, Y. Mixed steepest descent algorithm for the traveling salesman problem and application in air
logistics. Transp. Res. Part Logist. Transp. Rev. 2019, 126, 87–102. [CrossRef]

28. Foumani, M.; Moeini, A.; Haythorpe, M.; Smith-Miles, K. A cross-entropy method for optimising robotic automated storage and
retrieval systems. Int. J. Prod. Res. 2018, 56, 6450–6472. [CrossRef]

29. Nedjatia, A.; Vizvárib, B. Robot path planning by traveling salesman problem with circle neighborhood: Modeling, algorithm,
and applications. arXiv 2020, arXiv:2003.06712.

30. Teng, L.; Li, H. Modified discrete firefly algorithm combining genetic algorithm for traveling salesman problem. TELKOMNIKA
(Telecommun. Comput. Electron. Control.) 2018, 16, 424–431. [CrossRef]

31. Zhang, Z.; Han, Y. Discrete sparrow search algorithm for symmetric traveling salesman problem. Appl. Soft Comput. 2022,
118, 108469. [CrossRef]

32. Sopto, D.S.; Ayon, S.I.; Akhand, M.; Siddique, N. Modified grey wolf optimization to solve traveling salesman problem. In
Proceedings of the 2018 International Conference on Innovation in Engineering and Technology (ICIET), Dhaka, Bangladesh,
27–28 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4.

33. Liu, Y.; Liu, Q.; Tang, Z. A discrete chicken swarm optimization for traveling salesman problem. J. Phys. Conf. Ser. 2021,
1978, 012034. [CrossRef]

34. Akhand, M.; Ayon, S.I.; Shahriyar, S.; Siddique, N.; Adeli, H. Discrete spider monkey optimization for travelling salesman
problem. Appl. Soft Comput. 2020, 86, 105887. [CrossRef]

35. Wang, K.P.; Huang, L.; Zhou, C.G.; Pang, W. Particle swarm optimization for traveling salesman problem. In Proceedings of the
2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693), Xi’an, China, 5 November 2003;
Volume 3, pp. 1583–1585. [CrossRef]

http://dx.doi.org/10.1108/SCM-02-2018-0070
http://dx.doi.org/10.1016/j.aei.2022.101536
http://dx.doi.org/10.1016/j.tre.2019.04.004
http://dx.doi.org/10.1080/00207543.2018.1456692
http://dx.doi.org/10.12928/telkomnika.v16i1.4752
http://dx.doi.org/10.1016/j.asoc.2022.108469
http://dx.doi.org/10.1088/1742-6596/1978/1/012034
http://dx.doi.org/10.1016/j.asoc.2019.105887
http://dx.doi.org/10.1109/ICMLC.2003.1259748

	Introduction
	Background on Swarm Intelligence, Dragonfly Algorithm, and Hill Climbing Algorithm
	Swarm Intelligence Algorithms
	Dragonfly Algorithm
	Hill Climbing Algorithm

	Problem Formulation
	Related Works
	Existing Swarm Intelligence Algorithms Applied to TSP
	Discrete Adapted Dragonfly Algorithm
	Initialization
	Calculation of Factors
	Update of Positions

	Proposed Enhanced Adapted Discrete DA
	Solution Representation
	Objective Function
	Update of Positions
	Experimental Parameters

	Experimental Results and Analysis
	Experimental Dataset
	Experimental Setup
	Results and Discussion
	Greater Kuala Lumpur TSP Problem
	Benchmark TSP Problems


	Conclusions and Future Work
	References

