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Abstract: Pulmonary diseases are life-threatening diseases commonly observed worldwide, and
timely diagnosis of these diseases is essential. Meanwhile, increased use of Convolution Neural
Networks has promoted the advancement of computer-assisted clinical recommendation systems for
diagnosing diseases using chest radiographs. The texture and shape of the tissues in the diagnostic
images are essential aspects of prognosis. Therefore, in the latest studies, the vast set of images with a
larger resolution is paired with deep learning techniques to enhance the performance of the disease
diagnosis in chest radiographs. Moreover, pulmonary diseases have irregular and different sizes;
therefore, several studies sought to add new components to existing deep learning techniques for
acquiring multi-scale imaging features from diagnostic chest X-rays. However, most of the attempts
do not consider the computation overhead and lose the spatial details in an effort to capture the larger
receptive field for obtaining the discriminative features from high-resolution chest X-rays. In this
paper, we propose an explainable and lightweight Multi-Scale Chest X-ray Network (MS-CheXNet)
to predict abnormal diseases from the diagnostic chest X-rays. The MS-CheXNet consists of four
following main subnetworks: (1) Multi-Scale Dilation Layer (MSDL), which includes multiple and
stacked dilation convolution channels that consider the larger receptive field and captures the variable
sizes of pulmonary diseases by obtaining more discriminative spatial features from the input chest
X-rays; (2) Depthwise Separable Convolution Neural Network (DS-CNN) is used to learn imaging
features by adjusting lesser parameters compared to the conventional CNN, making the overall
network lightweight and computationally inexpensive, making it suitable for mobile vision tasks;
(3) a fully connected Deep Neural Network module is used for predicting abnormalities from the chest
X-rays; and (4) Gradient-weighted Class Activation Mapping (Grad-CAM) technique is employed
to check the decision models’ transparency and understand their ability to arrive at a decision by
visualizing the discriminative image regions and localizing the chest diseases. The proposed work is
compared with existing disease prediction models on chest X-rays and state-of-the-art deep learning
strategies to assess the effectiveness of the proposed model. The proposed model is tested with a
publicly available Open-I Dataset and data collected from a private hospital. After the comprehensive
assessment, it is observed that the performance of the designed approach showcased a 7% to 18%
increase in accuracy compared to the existing method.

Keywords: multi-scale dilation layer; depthwise separable convolution; radiology; predictive analytics;
health informatics; chest X-ray prediction
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1. Introduction

For decades, chest diseases have been one of the prominent causes of anguish, fatality,
and use of health services worldwide. Chest or pulmonary diseases include fibrosis,
lung disease, pneumonia, asthma, thoracic disease, etc. According to the World Health
Organization, nearly 235 million people suffer from chronic respiratory illnesses every
year. Yearly, there are two million new chronic respiratory disease cases [1]. The impact
of these diseases varies and rapidly spreads depending on geographic features, lifestyle,
etc. Modern medical science relies on various radiology medical imaging data such as
Computed Tomography (CT), X-ray, and Magnetic Resonance Imaging (MRI) for disease
diagnosis. X-ray is a technique followed for decades by experts to visualize abnormalities
in the acute and internal organs. Chest X-rays (CXR) are considered the primary tool for
diagnosing chest diseases, which may be due to the factors such as accessibility, minimal
radiation exposure, and reasonable commercial pricing, along with the diagnostic capability
for identifying a wide variety of pathologies. Annually it was estimated that around
238 erect view CXR for every 1000 population was reported in developed countries [2].
Chest disease is analyzed from the CXR image in the form of blunted costophrenic angles,
cavitation’s, infiltrates, consolidation, and broadly distributed nodules [3]. By inspecting
the CXR images, the radiologist can analyze the diseases and note the valuable findings
in the reports. With the tremendous growth in diagnostic images, screening diseases
from CXR becomes a tedious and time-consuming task for a radiologist. The computer-
assisted clinical recommendation system can aid radiologists by minimizing the workload
by providing primary screening [4,5]. The advancement of Convolution Neural Network
(CNN) [6] has provided remarkable progress in various computer vision applications,
including computer-assisted clinical recommendation systems. The possible benefits of
automated clinical systems will be high sensitivity to the minute findings, automating the
tedious daily process and providing analysis during the unavailability of the experts.

Furthermore, the abnormalities in CXR images come in various shapes and sizes.
Additionally, every single abnormality of pulmonary disease occurs in variable sizes. For
example, different cases of a single pathology such as pulmonary infiltrate exist in various
forms and sizes. In CXR, there is a possibility of overlapping with the anatomical part and
abnormalities, making it challenging to interpret from the CXR. In the case of frontal CXR,
there are chances that the nodule posterior could be overlapped with the heart. Thus, there
is a need to learn multi-scale features from the CXR to predict the varied-sized disorders
accurately. Deep learning has been a preferred approach for medical image processing
tasks due to its significant impact in this field [7]. Deep learning approaches usually require
a massive amount of training data as there is a need to fine-tune the large number of
parameters during the learning process. This has promoted the research community to
publish many diagnostic CXR cohorts with expert annotations for research purposes (refer
Table 1). As the size of the input images increases, there is a requirement of using the deeper
network to assure that the receptive field of the network is wide enough. Several existing
studies have used ResNet-50 [8] and DenseNet-121 [9] for capturing imaging features. Even
though there is an improvement in the performance, the computation cost and network
parameters significantly increase due to the enlarged inputs integrated with the deep
networks, further increasing the time taken to train and optimize the model. Consequently,
this makes further deployment on mobile and embedded devices challenging.
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Table 1. List of some currently available diagnostic X-ray datasets for chest diseases.

Dataset Dataset Description Predictable Disease

NIH Chest X-ray14 [10] 112,120 images of 14 diseases
gathered from 30,805 patient

Atelectasis, Cardiomegaly,
Effusion, Infiltration, Mass,

Pneumonia, Nodule,
Pneumothorax, Edema,

Emphysema, Fibrosis, Pleural
Thickening and Hernia

Pediatric CXR [11] 5856 CXR images in which
3883 are Pneumonia images Pneumonia

CheXper [12] 224,316 CXR of 65,240 cases 14 Chest Diseases

MIMIC CXR [13] 227,827 images with 14 chest
disease images 14 Chest Diseases

Open-I [14] 7470 chest radiographs with
frontal and lateral view

Pulmonary Edema, Cardiac
Hypertrophy, Pleural effusion

and Opacity

MC dataset [15] 138 Chest images, 58 from
Tuberculosis patient Tuberculosis

Shenzhen [15] 662 Chest images, 336 from
Tuberculosis patient Tuberculosis

KIT dataset [16] 10,848 chest images, 3828 from
Tuberculosis patient Tuberculosis

In this research paper, we aim to expand the networks receptive field and learn
multi-scale discriminative features by maintaining the model parameters effectively.

Contribution

The major contribution in this study is summarized as follows:

• With the focus of designing an effective deep learning network suitable to employ
in cloud computing, mobile vision, and embedding system applications, we present
an explainable and lightweight Multi-scale Chest X-ray Network (MS-CheXNet) to
predict abnormal diseases from chest radiographs.

• To enlarge the receptive field and capture the discriminative multi-scale feature with-
out increasing convolution parameters, we propose an effective Multi-Scale Dilation
Layer (MSDL), which is conducive to learning varied-sized pulmonary abnormalities
and boosts the prediction performance.

• We adopt a lightweight Depthwise Separable Convolution Neural Network (DS-CNN)
to learn the dense imaging features by adjusting lesser network parameters than the
conventional CNN. We employed a fully connected Deep Neural Network to predict
the abnormalities from the chest radiographs.

• We incorporated Gradient-weighted Class Activation Mapping (Grad-CAM) technique
to visualize and localize the abnormalities in the chest region. This makes our network
explainable by checking the decision model’s transparency and understanding their
ability to arrive at a decision.

• We compared the proposed MS-CheXNet with the existing state-of-the-art deep learn-
ing strategies. We assessed our model’s competence by applying it on two datasets:
the publicly available Open-I dataset and Real-time diagnostic data collected from the
private hospital.

2. Literature Review

Due to the release of multiple, huge, publicly available diagnostic chest imaging
datasets presented in Table 1, there has been a series of significant research explored in the
field of disease diagnosis using deep learning techniques. The existing research focuses on
various tasks involving detection or localization, classification, prediction, segmentation,
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and visualization of multiple diseases from the chest X-rays. The disease detection or
localization task identifies the specific abnormalities within the CXR.

2.1. Disease Detection and Localization Task

For a disease detection or localization task, Wang et al. [17] presented the deep CNN
model for localizing of chest diseases from the Chest X-ray14 [10] dataset and compared
it with the traditional CNN: ResNet-50 [8], AlexNet [6], VGG16 [18], and GoogleNet [19].
Pranav et al. [20] proposed a 121-layered Dense Convolutional Network named CheXNet
to predict pneumonia pathology from the Chest X-ray14 [10] dataset. For the binary
classification of pneumonia detection, the pretrained ImageNet weights [21] were utilized.
The authors demonstrated that CheXNet performs better for pneumonia detection from
CXRs. Candemir et al. [22] presented Deep CNN models such as AlexNet, VGG-16, VGG-
19, and Inception V3 to detect Cardiomegaly from the Open-I CXR dataset. Hwang et
al. [23] proposed the ResNet-based model with 27 layers and 12 residual connections to
detect active pulmonary tuberculosis from the large private CXR cohort. Likewise, as
a detection task, John et al. [24] incorporated the DenseNet121 model pretrained with
ImageNet weights to detect pneumonia abnormality across NIH Chest X-ray14, MSH, and
Open-I CXR datasets. The authors have utilized pooled datasets from various cohorts and
trained the model on these datasets. Different radiologists will have different thresholds to
detect diseases to report them. Hence, the pooling of datasets has significantly degraded
the model’s performance. Pasa et al. [25] utilized the Convolution Neural Network-based
model for faster diagnosis of tuberculosis diseases from two CXR cohorts and used the Grad-
CAM technique to visualize the existence of tuberculosis in CXR. Zou et al. [26] presented
three deep learning models: ResNet50, Xception, and InceptionV3, for detecting and
screening pulmonary hypertension from a private dataset collected from three institutes
in China. Hashmi et al. [27] used a weighted classifier which combines the weighted
predictions of the state-of-the-art deep learning model to detect pneumonia in CXRs and
also uses a heatmap to visualize the abnormalities. Lee et al. [28] present the ResNet101
and U-Net model pretrained on ImageNet to segment and detect the cardiomegaly diseases
from the three medical cohorts.

2.2. Disease Classification and Prediction Task

Correspondingly, the image-level prediction task involves analyzing the CXR image
and predicting labels (classification) or continuous values (regression). We have grouped
classification and prediction tasks as they use a similar type of architecture. Rajkomar
et al. [29] proposed the GoogleNet architecture to classify the CXRs into frontal and lateral.
Chaudhary et al. [30] use the CNN-based deep learning model with three convolution lay-
ers, ReLU activation, pooling, and fully connected layers to diagnose pulmonary diseases
from the NIH Chest X-ray14 dataset. Tang et al. [31] identified the pulmonary abnormal-
ity using Deep CNN models and compares the performance with the radiologist labels.
Cohen et al. [32], conducted an investigative study to find discrepancies while generalizing
the classification models with five different CXR datasets. The DenseNet model has been
used for this cross-domain study and found that the model with good performance does
not agree on predictions, and the model with poor performance agrees on predictions.
The authors have shown that the models trained on multiple datasets do not achieve true
generalization. Li et al. [33] proposed the U-Net and ResNet-based model to segment,
classify, and predict pulmonary fibrosis from CXRs. Faik et al. [34] proposed a pretrained
Densenet121 model to classify the CXRs into normal and abnormal classes from the Open-
I dataset and have achieved 74% classification accuracy. Lopez et al. [35] also applied
the DenseNet121 model to classify the pulmonary abnormality in CXRs from the Open-I
dataset. The authors achieved an AUROC of 0.61 and investigated reducing annotation
burden by using the clinical report with CXR. Wang et al. [36] proposed a CNN-based
network to extract the imaging features and classify the common thorax diseases from
the three medical cohorts, including the Open-i dataset. The authors achieved an average
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AUROC of 0.741 and studied classifying the thorax diseases by jointly training the model
with clinical reports.

Recent research on pulmonary diseases also focuses on detecting and classifying
COVID-19 from CXRs. COVID-19 is a life-threatening infectious pulmonary disease that
caused a pandemic situation. Dalton et al. [37] used an ensemble of DenseNet-121 Networks
to classify COVID-19 from the private CXR dataset. Worapan et al. [38] utilized the
ResNet101 model to detect COVID-19 and produced a heatmap for segmenting lung areas
from the private CXR dataset. Helal et al. [39] proposed the CNN-based deep learning
model named SymptomNet to detect COVID-19 and a heatmap was generated to visualize
the disease. Agata et al. [40] presented the CNN-based deep learning method to classify
COVID-19 and pneumonia from 6939 CXRs pooled from different Kaggle repositories. The
authors also examined some preprocessing strategies such as blurring, thresholding, and
histogram equalization. Gouda et al. [41] proposed the ResNet-50-based two different deep
learning models to detect COVID-19 from the 2790 CXRs pooled from various open-source
repositories. A detailed summary of the literature review is shown in Table 2.

2.3. Outcome of the Literature Review

• We have found that deep convolution neural networks perform better in classifying
medical images from the above literature.

• The transfer learning strategy with well-established deep learning models trained on
ImageNet weights where initial learning is transferred during training addresses the
problem of the enormous dataset needed for deep learning training [20,24,28]. The
usage of imageNet weights yields good performance and solves the problem of an
enormous dataset to train deep learning models.

• Most existing models utilize increased network parameters to detect pulmonary
abnormalities, making them computationally expensive and challenging to use in
mobile-vision applications [20,22,24,28,29,33].

• The existing deep learning strategies lack capturing the more discriminative features
from the receptive field. Medical CXRs come with varied-sized abnormalities; thus,
most of the existing techniques do not focus on multiscale features.

In this study, we have proposed a multiscale dilation convolution layer to capture the
most discriminative features from the chest X-rays. The proposed network increases the
receptive field to acquire the more abundant local features of varied sized abnormalities,
improves the feature characterization and robustness, and enhances the network’s ability
to adapt to different-sized lesions. The proposed MS-CheXNet captures dense imaging
features by adjusting lesser network parameters making it more useful for mobile-vision
applications.
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Table 2. Summary of Literature Survey.

Author & Year Methodology Task Medical Domain Abnormality Imaging Data Dataset

Rajkomar et al. [29],
2017

The GoogleNet architecture is used to classify the
CXRs into frontal and lateral. Classification Radiology Pulmonary diseases Chest X-ray Private Dataset (909 Patients)

Pranav et al. [20], 2017

The 121-layered Dense Convolutional Network
named CheXNet to predict pneumonia pathology
from CXRs and for the binary classification of
pneumonia detection pretrained, ImageNet weights
were utilized.

Detection Radiology Pnuemonia Chest X-ray NIH Chest X-ray14 (112,120 from 30,805
patients)

Candemir et al. [22],
2018

Deep CNN models such as AlexNet, VGG-16,
VGG-19 and Inception V3 is utilized to detect
cardiomegaly from the CXRs.

Detection Radiology Cardiomegaly Chest X-ray Open-i (283 Cardiomegaly cases from
3683 patients)

Hwang et al. [23], 2018

The ResNet based model with 27 layers and 12
residual connections is utilized to detect active
pulmonary tuberculosis from the large private CXR
cohort.

Detection Radiology Pulmonary
Tuberculosis Chest X-ray Private Dataset (54,221 Normal CXRs

and 6768 tuberculosis CXRs)

John et al. [24], 2019
The DenseNet121 model pretrained with ImageNet
weights is further trained and tested across different
data cohorts to detect the pneumonia abnormality.

Detection Radiology Pnuemonia Chest X-ray

1. NIH Chest X-ray14 (112,120 from
30,805 patients)
2. MSH (42,396 from 12,904 patients)
3. Open-I (3807 from 3683 patients)

Pasa et al. [25], 2019
CNN-based model is proposed for faster diagnosis of
tuberculosis diseases and Grad-CAM technique is
incorporated for disease visualization.

Detection and
Visualization Radiology Tuberculosis Chest X-ray

1. NIH Tuberculosis CXR (138 and 662
patients)
2. Belarus Tuberculosis Portal dataset
(304 patients)

Chaudhary et al. [30],
2019

The CNN-based deep learning model with three
convolution, ReLU, pooling, and fully connected
layers was proposed to diagnose chest diseases from
CXRs.

Classification Radiology Pulmonary diseases Chest X-ray NIH Chest X-ray14 (1,12,120 CXRs)

Tang et al. [31], 2020 Identifying abnormality using Deep CNN models
and comparison with the radiologist labels. Classification Radiology Pulmonary diseases Chest X-ray

1. NIH ChestX-ray14 (112,120 from
30,805 patients)
2. Open-I (3807 CXRs from 3683 patients)
3. RSNA Dataset (21,152 patients)

Cohen et al. [32], 2020
Investigative study to find discrepancies while
generalizing the models with multiple chest X-ray
datasets.

Classification Radiology Pulmonary diseases Chest X-ray

1. NIH Chest X-ray14 (112,120 from
30,805 patients)
2. PadChest (160,000 from 67,000
patients)
3. MIMIC-CXR (227,827 CXRs)
4. Open-I (3807 CXRs from 3683 patients)
5. RSNA Dataset (21,152 patients)



Mathematics 2022, 10, 3646 7 of 29

Table 2. Cont.

Author & Year Methodology Task Medical Domain Abnormality Imaging Data Dataset

Zou et al. [26], 2020
Detection and screening of pulmonary hypertension
using three deep learning models (Resnet50,
Xception, and Inception V3)

Detection and
Visualization Radiology Pulmonary

hypertension Chest X-ray Private dataset (762 patients from three
institute in China)

Hashmi et al. [27], 2020
A weighted classifier combining the weighted
predictions of the state-of-the-art deep learning
model is introduced to detect pneumonia in CXRs

Detection and
Visualization Radiology Pnuemonia Chest X-ray Private dataset (7022 CXRs)

Dalton et al. [37], 2021
The classification of COVID-19 abnormality is
performed using ensemble of DenseNet-121
Networks

Classification Radiology COVID-19 Chest X-ray Private dataset (12,000 patients)

Lee et al. [28], 2021
The ResNet 101 and U-Net pretrained on ImageNet
is used to segment and detect the cardiomegaly
diseases from the CXRs

Segmentation and
Detection Radiology Cardiomegaly Chest X-ray

1. JSRT dataset (247 patients)
2. Montgomery dataset (138 patients)
3. Private dataset (408 patients)

Worapan et al. [38],
2021

The ResNet101 model is utilized to detect COVID-19
and heatmap is produced for segmented lung area.

Detection and
Visualization Radiology COVID-19 Chest X-ray Private dataset (5743 CXRs)

Helal et al, [39], 2022
The CNN-based deep learning model named
SymptomNet is proposed to detect COVID-19 and
heatmap is generated to visualize the disease.

Detection and
Visualization Radiology COVID-19 Chest X-ray Private dataset (500 CXRs from

Bangladesh)

Agata et al. [40], 2022

The CNN-based deep learning method is used to
classify between COVID-19 and pneumonia.
Furthermore, examined some preprocessing
strategies such as blurring, thresholding, and
histogram equalization.

Classification Radiology Pneumonia and
COVID-19 Chest X-ray Pooled data from various cohorts (6939

CXRs)

Gouda et al. [41], 2022 The ResNet-50-based two different deep learning
approaches have been proposed to detect COVID-19. Detection Radiology COVID-19 Chest X-ray Pooled data from various cohorts (2790

CXRs)

Li et al. [33], 2022
The U-Net and ResNet based model was proposed to
segment, classify and predict pulmonary fibrosis
from CXRs.

Segmentation,
Classification and
Prediction

Radiology Pulmonary Fibrosis Chest X-ray NIH Chest X-ray14 (Pulmonary fibrosis
CXRs from 112,120 images)
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3. Materials and Methods

We aim to design an effective deep learning network that is lightweight and explain-
able to predict abnormalities from chest X-rays. The general architecture of the proposed
MS-CheXNet is presented in Figure 1. The overall architecture of the proposed MS-CheXNet
with filter shape, stride, input size and output size is shown in Table 3. We propose an MSDL
subnetwork incorporating three dilation convolution channels with varied dilation rates
on the input CXR to obtain the multi-scale features. The discriminative features obtained
are passed through a series of DS-CNNs to learn the dense imaging features with lesser
network parameters than conventional convolution networks. Finally, fully connected
DNN is applied to the extracted features for predicting the abnormalities from the CXR,
and the Grad-CAM strategy is employed to visualize the abnormalities by superimposing
a heatmap on the CXR.

Table 3. Overall architecture of the proposed MS-CheXNet: Multi-Scale Dilated Network with
Depthwise Separable Convolution.

Type Filter Shape Stride Input Size Output Size

Dilated Convolution (dr = 1) 3 × 3 × 1 1 150 × 150 × 3 150 × 150 × 1
Dilated Convolution (dr = 2) 3 × 3 × 1 1 150 × 150 × 3 150 × 150 × 1
Dilated Convolution (dr = 3) 3 × 3 × 1 1 150 × 150 × 3 150 × 150 × 1

Concatenation
(Merge Layer) - -

150 × 150 × 1 (dr = 1)
150 × 150 × 1 (dr = 2)
150 × 150 × 1 (dr = 3)

150 × 150 × 3

Convolution 3 × 3 × 32 2 150 × 150 × 3 75 × 75 × 32
Depthwise Convolution 3 × 3 × 32 1 75 × 75 × 32 75 × 75 × 32
Seperable Convolution 1 × 1 × 64 1 75 × 75 × 32 75 × 75 × 64

Zero Padding - - 75 × 75 × 64 76 × 76 × 64
Depthwise Convolution 3 × 3 × 64 2 76 × 76 × 64 37 × 37 × 64
Seperable Convolution 1 × 1 × 128 1 37 × 37 × 64 37 × 37 × 128
Depthwise Convolution 3 × 3 × 128 1 37 × 37 × 128 37 × 37 × 128
Seperable Convolution 1 × 1 × 128 1 37 × 37 × 128 37 × 37 × 128

Zero Padding - - 37 × 37 × 128 38 × 38 × 128
Depthwise Convolution 3 × 3 × 128 2 38 × 38 × 128 18 × 18 × 128
Seperable Convolution 1 × 1 × 256 1 18 × 18 × 128 18 × 18 × 256
Depthwise Convolution 3 × 3 × 256 1 18 × 18 × 256 18 × 18 × 256
Seperable Convolution 1 × 1 × 256 1 18 × 18 × 256 18 × 18 × 256

Zero Padding - - 18 × 18 × 256 19 × 19 × 256
Depthwise Convolution 3 × 3 × 256 2 19 × 19 × 256 9 × 9 × 256
Seperable Convolution 1 × 1 × 512 1 9 × 9 × 256 9 × 9 × 512

5 × Depthwise Convolution
Seperable Convolution

3 × 3 × 512
1 × 1 × 512

1
1

9 × 9 × 512
9 × 9 × 512

9 × 9 × 512
9 × 9 × 512

Zero Padding - - 9 × 9 × 512 10 × 10 × 512
Depthwise Convolution 3 × 3 × 512 2 10 × 10 × 512 4 × 4 × 512
Seperable Convolution 1 × 1 × 1024 1 4 × 4 × 512 4 × 4 × 1024
Depthwise Convolution 3 × 3 × 1024 2 4 × 4 × 1024 4 × 4 × 1024
Seperable Convolution 1 × 1 × 1024 1 4 × 4 × 1024 4 × 4 × 1024
Global Average Pooling Pool 4 × 4 1 4 × 4 × 1024 1 × 1 × 1024
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Figure 1. The general architecture of the proposed MS-CheXNet: Multi-Scale Dilated Network with
Depthwise Separable Convolution for prediction of abnormalities in chest radiographs.

3.1. Data Augmentation

For our experiment, we have utilized two radiology cohorts: (1) publicly available
Open-i dataset [14]; (2) data collected from the KMC private hospital (Mangalore, India).
The detailed statistics of the dataset are presented in Table 4. The limited dataset may lead
to an overfitting problem when passed through the proposed deep learning framework
with multiple iterative layers. Data augmentation strategies are applied to resolve these
shortcomings. The data augmentation process is applied to the CXRs just before the training
process to improve the performance of the proposed model by preventing overfitting. Chest
X-rays are relatively sensitive to the different geometric transformation operations as they
might introduce new outliers; therefore, careful adoption of data augmentation techniques
is needed. We have applied a series of data augmentation techniques such as rotation,
zooming, brightness, and shearing for image augmentation. The process flow of the various
data augmentation pipeline is shown in Figure 2. The detailed image augmentation settings
of various augmentation strategies applied to diagnostic CXRs are presented in Table 5. In
this study, we have incorporated augmentor [42], a python toolkit for image augmentation
to increase the size of the medical cohort.

Table 4. Dataset Statistics: detailed description of the CXR diagnostic images from two medical
repositories.

Dataset Description Open-I Cohort KMC Cohort

Tot. # of CXR images 3996 502
Tot. # of CXR images after removal of missing reports 3638 502
Tot. # of CXR after standard data augmentation 6229 1498
Tot. # of Training/Validation Set 5606 1348
Tot. # of Test Set 623 150
Tot. % of Normal cases (i.e., No Pulmonary diseases) 38% 52%
Tot. % of Abnormal cases (i.e., Pulmonary diseases) 62% 48%
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Figure 2. Systematic data augmentation process flow of diagnostic CXRs.

Table 5. Image augmentation settings.

Augmentation Strategies Value

Rotation range [−5, +5]
Zoom range 0.95
Shear range [−5, +5]
Brightness range [0.5, 1.5]

3.2. Multi-Scale Dilation Layer (MSDL)

We propose a Multi-Scale Dilation Layer to obtain a broad receptive field using
three-channel dilation convolution with varied dilation rates to capture the multi-scale
discriminative features from the CXR images as shown in Figure 3. The MSDL enlarges
the receptive field using varied convolution kernels and captures the wider context from
the input CXR with less cost. The complete region that an eye can see in the human
visual system is called the field of view. The human visual system consists of millions of
neurons that collect various pieces of information. The receptive field can be defined as
the small part of the total field of view in a biological neuron. In short, it is a portion of
the information that is available to a single neuron. Correspondingly, the receptive field in
deep learning is the part of the input region that produces the output feature [43].
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Figure 3. The Proposed Multi-Scale Dilation Layer (MSDL). The three-channel atrous convolution
with dilation factors dr = 1, 2, 3 are stacked together to capture the wider receptive field. The resulting
outcome from the three layers are concatenated to obtain the Multi-scale feature.

Dilated or atrous convolution was initially developed as an algorithm for the wavelet
transformation [44]. The primary goal of dilation convolution is to enhance the image
resolution by inserting “holes” (zeroes) between every pixel in convolution filters, allowing
the deep learning model to capture the dense features. Here, the zeros are viewed as the
“gaps” between the pixels, and these gaps can be varied into different widths referred to as
dilation rates [45]. CNN is the widely applied deep learning model that includes various
layers such as input/output, convolution, pooling and fully connected layers. The image
features are captured by passing it through multiple layers at different levels. Out of all
the layers, convolution and pooling are considered the crucial layers to learn features from
the images. The convolution layer detects multiple spacial features from the input image
through the receptive field and the pooling layer progressively down-samples the size
of these spatial patterns to decrease the computation cost and the number of parameters
utilized [46]. The pooling layer in CNN provides a wider receptive field; however, the
increased usage of the pooling layer results in the loss of information [47]. Therefore, we
have leveraged dilation convolution to capture the widened features without increasing the
number of parameters to extract the discriminative features from the CXR. The standard
3D-convolution procedure can be mathematically shown as follows:

Z(th, tw, tc) =
TH−1

∑
l=1

TW−1

∑
m=1

TC−1

∑
n=1

Y(th + l, tw + m, n) · F(l, m, n) (1)
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In the above Equation (1), the standard convolution operation is applied on the
image Y(th, tw, tc) with the convolution filter F(l, m, n) to generate the output feature map
Z(th, tw, tc), where TH , TW and TC indicates the height, width and channel of the input
chest X-ray image. The dilated convolution operation is the variant of the convolution
operation, where filter parameters are varied differently. The same filter in the dilation
convolution is applied at different ranges using varied dilation rates. This allows dilation
convolution to have a broader receptive field than the traditional convolution operation.
For example, in a standard convolution filter, 4 × 4, the receptive field of 4 × 4 is created
with 16 parameters. In contrast, the dilation convolution filter with 4 × 4 and the dilation
factor of 4 will create a receptive field of 13 × 13 with 16 parameters. Henceforth, the
broader coverage of the CXR image is obtained with the wider receptive field by linearly
incrementing the parameter. Mathematically, the dilation convolution with the dilation rate
dr is represented as follows:

Z(th, tw, tc) =
TH−1

∑
l=1

TW−1

∑
m=1

TC−1

∑
n=1

Y(th + dr × l, tw + dr ×m, n) · F(l, m, n) (2)

As shown in Equation (2), when the dr = 1, the dilation convolution operation acts
similar to normal convolution operation. Using the atrous convolution operation, we
propose a Multi-Scale Dilated Layer (MSDL) with three channel dilation operation. MSDL
is obtained by stacking three atrous convolution operation with three different dilation
factors to effectively capture the wider receptive field (refer Figure 3). The features obtained
from three parallel dilation convolutions are concatenated to obtain the feature maps that
is further forwarded to DS-CNN. As shown in Figure 3, all the three atrous convolution
operation maintains the same number of parameters: 3× 3 ( dr = 1), 3× 3 ( dr = 2) and
3× 3 ( dr = 3). However, there is a broader coverage of receptive field capturing multi-
scale features from CXR by varying the dilation rates. Let Ih × Iw × R be the dimension
of the input CXR image ingested into three-channel atrous convolution in parallel and
concatenated to obtain the activation map of dimension Ih × Iw × R. Here, Ih represents
the height and Iw indicates the height and width of the input CXR, and R denotes the
number of channels. To preserve the output size of MSDL to Ih × Iw × R, we have used
three dilation convolutions (i.e., R/3). The MSDL adopts three dilation convolutions to
broaden the receptive field without increasing the number of parameters and captures
multi-scale features from the input diagnostic CXR image. The concatenated features from
MSDL are further given input to DS-CNN to learn the dense imaging features.

3.3. Depthwise Separable Convolution Neural Network (DS-CNN)

We have used DS-CNN to learn in-depth imaging features from the multi-scale features
extracted from the MSDL. The DS-CNN is a class of CNN, which is generally used for two
critical reasons: (1) It leverages a lesser number of parameters than the conventional CNN.
(2) It is computationally inexpensive and can be utilized in mobile-based applications.
DS-CNN have been utilized in some of the deep learning models such as Xception [48], and
MobileNets [49]. The DS-CNN can be further divided into Depthwise convolutions and
Pointwise convolutions. Figure 4 shows the difference between the traditional convolution
filters and the Depthwise Separable filters. During the depthwise convolution operation,
the convolution is applied on one channel at a time using the S depthwise convolution
filters (i.e., Cj × Cj × 1). Whereas in traditional convolution operation, the convolution is
applied on all the R channels using the S filters (i.e., Cj × Cj × R). After the Depthwise
Convolution operation, the Pointwise convolution is applied on all the R channels with the
S pointwise convolution filters (i.e., 1× 1× R).
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Figure 4. Conventional convolution filters and Depthwise Separable filters. (a) Traditional Convolu-
tion Filters, (b) Depthwise Convolution Filters and (c) Separable/Pointwise Convolution Filters.

The overall operation of the DS-CNN with depthwise and pointwise convolution
operation is shown in Figure 5. Let us assume that the input feature map obtained from
the MSDL layer applied on input CXR is Y with dimension Ih × Iw × R. If a multi-scale
feature map obtained from the MSDL is ingested into the traditional convolution layer
with kernels of size Cj × Cj × R, then this convolution operation can be mathematically
represented as follows:

Zi =
R

∑
k=1

Yk · C
j
i + bk, i = 1, 2, ..., S (3)

In Equation (3), the R and S indicate the input and output channels of the feature maps,
respectively. Here, · indicates the traditional convolution operator and the bk represents the
bias value. The output feature map generated from the standard convolution operation
is represented by Z with size Cp × Cp × S. In the conventional convolution operation, the
total number of multiplication in one convolution (TCNN) is equal to the size of the kernel
and is denoted as follows:

TCNN = Cj × Cj × R (4)

As there are S kernels, the convolution operation is performed by striding every kernel
vertically and horizontally Cp times. Hence, in the standard convolution operation, the
total number of multiplication (TotCNN) can be represented as follows:

TotCNN = S× Cp × Cp × Tsc (5)

Substituting Equation (4) in Equation (5), we obtain Equation (6),

TotCNN = S× Cp × Cp × Cj × Cj × R (6)
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Figure 5. Overall operation of Depthwise Separable Convolution Neural Network (DS-CNN).

Unlike traditional convolution, in depthwise convolution operation every kernel of
size Cj × Cj × 1 is applied on the single channel of the input activation map represented by,

Zi = Yk · Cj + bi, k, i = 1, 2, . . . , R. (7)

In Equation (7), the Cj represents the jth depthwise filter and bi indicates the bias
value. The output feature map produced from the depthwise convolution operation is
denoted by Z with size Cp×Cp×R. So, the number of multiplication for a single depthwise
convolution operation (Tdc) can be depicted as follows:

Tdc = Cj × Cj (8)
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The depthwise convolution operation is performed by sliding the kernel by Cp × Cp
times over R channels. So, the total number of multiplication by the depthwise convolution
can be represented as follows:

Totdc = R× Cp × Cp × Tdc (9)

Substituting Equation (8) in Equation (9), we obtain Equation (10),

Totdc = R× Cp × Cp × Cj × Cj (10)

The feature maps obtained from the depthwise convolution is passed through point-
wise convolution operation, where 1× 1× R kernel is applied on the input feature map to
generate the final map of size Ih × Iw × S. Here, a single pointwise convolution operation
needs 1× R multiplications. The pointwise kernel is slided by Cp × Cp times and hence,
the total no. of multiplication (Totpc) can be formally represented as follows:

Totpc = R× Cp × Cp × S (11)

Therefore, the overall multiplication required for depthwise separable convolution
operation is equal to the total number of multiplication needed in depthwise convolution
(Totdc) and pointwise convolution (Totdc). The total multiplication of depthwise separable
convolution operation (TotDS-CNN) is given as follows:

TotDS-CNN = R× Cp × Cp × Cj × Cj + R× Cp × Cp × S (12)

So, to compare the complexity of DS-CNN with standard CNN, the ratio of Equation (12)
to Equation (6) is computed as follows,

TotDS-CNN
TotCNN

=
R× Cp × Cp × Cj × Cj + R× Cp × Cp × S

S× Cp × Cp × Cj × Cj × R
(13)

Solve Equation (13) to obtain Equation (14),

TotDS-CNN
TotCNN

=
1
S
+

1
C2

j
(14)

Here, Equation (14) shows that the DS-CNN performs 1
S + 1

C2
j

times faster than the

standard CNN. Hence, dividing DS-CNN into two separate tasks (i.e., depthwise and
pointwise operation) has significantly improved the computation speed and is lightweight
compared to traditional CNN.

Figure 6 shows the general process flow of DS-CNN followed by Batch Normalization
and ReLU. To establish a larger gradient, we have utilized Batch Normalization, and ReLU
after every depthwise and pointwise convolution operation [50]. Gradient represents the
measure of the steepness of the slope. The higher the gradient, the steeper slope, and the
lower the gradient, the shallower slope. Furthermore, there is a need to learn in-depth
features from the diagnostic CXR and, hence, the use of the general process flow of DS-
CNN (Figure 6) will make the deep learning network shallow. Therefore, in our proposed
MS-CheXNet, we have utilized 27 Batch Normalization and ReLU operations, 13 depthwise
and pointwise convolution operations and a global average pooling layer to learn the
discriminative features from the input CXR. Table 3 depicts the overall architecture with the
network parameter details of the proposed MS-CheXNet. The extracted features are further
passed through the fully connected Deep Neural Network for abnormality prediction from
the input CXR.
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Figure 6. General process flow of the DS-CNN followed by Batch Normalization and ReLU.

3.4. Fully Connected Deep Neural Network for Abnormality Prediction

The multi-scale in-depth features obtained from DS-CNN are flattened into a single
dimension and ingested into fully connected DNN or dense layers to predict abnormalities
from the input CXR. In a fully connected DNN, every node or neuron in one layer is
connected to every other neuron in the previous layer. The main functionality of a fully
connected DNN is to take flattened features obtained from the MSDL and DS-CNN as
input and to predict whether pulmonary disease exists or not in a diagnostic CXR. Every
value from the flattened set of features obtained from MSDL and DS-CNN indicates the
probability of that feature fitting into a particular category (i.e., disease or no disease).
Hence, the fully connected DNN predicts and decides whether the diseases exist or not is
wholly based on the probabilities from the feature set. In our experiment, we have used a
three-layered DNN with two hidden layers of 256 and 128 units of neurons followed by the
output layer for binary predictions. Pictorially, the fully connected DNN for abnormality
prediction is presented in Figure 7.

Let M = m1, m2, m3, · · · , mn ∈ Rn be the flattened medical features obtained from the
DS-CNN and input to the fully connected DNN. Let Zj be the jth output obtained from
each layer and hence, Zj can be calculated as follows:

Zj = φ(W1 ·m1 + W2 ·m2 + · · ·+ Wn ·mn) (15)

In Equation (15), the φ represents the non-linear activation function, and W1, W2, ·, Wn
indicates the weight parameters. We have used ReLU [51] activation function for the first
two hidden layers and the Sigmoid [52] activation function for the final binary output layer.
We have applied dropout = 0.2 to eliminate any overfitting problem during the network
training.
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Figure 7. Fully Connected Deep Neural Network for abnormality prediction.

3.5. Disease Visualization Using Grad-CAM Technique

The MDSL and DS-CNN layer combined extracts the multi-scale features from the
input CXR. The features retrieved are given as input to the fully connected DNN to convert
these discriminative features into the probability score pertaining to both classes at the
Softmax Layer. The class with the highest probability score will lead to the final prediction
outcome (i.e., pulmonary disease present or not). Gradient Class Activation Map (Grad-
CAM) is a mechanism used to generate the heatmap related to a particular class [53]. The
Grad-CAM provides a mechanism to check the decision model’s transparency by localizing
the abnormal image regions and makes our proposed model explainable by allowing us
to understand the model’s ability to arrive at a particular decision. Grad-CAM takes the
gradients (or weights) from the final layers of DS-CNN and uses a heatmap to highlight
the critical regions in the CXR for prediction. The areas with the highest gradient weights
significantly impact the prediction result. Back propagating is computed with pulmonary
disease = 1 and no pulmonary disease = 0, and the Global Average Pooling (GAP) [54] of
the gradient for every possible channel is calculated as follows:

Yd =
1

fH × fW

fH

∑
l=1

fW

∑
m=1

wi(l,m) (16)

In Equation (16), Yd represents the dth one dimension feature after performing GAP
operation, fH and fW denotes the height and width of the two dimension activation map,
respectively, and wi is the ith feature map at position (l, m) obtained from the DS-CNN.
The updated weights are multiplied and added to the activation map. The output score of
both the classes (i.e., disease and no disease) are computed as follows:

ScoreC =
1

fH × fW
∑

j
WC

j Fj (17)

where ScoreC denotes the score of the proposed network in class C; fH and fW denote the
height and width of the two-dimension activation map, respectively; WC

j is the weight of
the jth activation map in class C; and Fj is the jth activation map. The class discrimination
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positioning map is produced by computing gradient between the score of the proposed
network in class ScoreC and the activation map Fj as follows:

∇C
j =

∂ScoreC
∂Fj

(18)

Here, ∇C
j represents the gradient of the jth activation map. The final sum produced is

passed to ReLU to generate the Grad-CAM image.

HMC = ReLU(∑
j
∇C

j Fj) (19)

where HMC denotes the normalized heat map of class C. The detailed visual explanation
of the proposed MS-CheXNet for abnormality prediction in diagnostic CXR images using
Grad-CAM is depicted in Figure 8.

Figure 8. A visual explanation of proposed MS-CheXNet for abnormality prediction in diagnostic
CXR images using Gradient-weighted Class Activation Mapping (Grad-CAM). (1) The CXR image
is given as input to the network and then prediction output is obtained by passing through the
proposed deep learning network. (2) Back propagation is computed with Pulmonary Disease = 1
and No Pulmonary Disease = 0. (3) Calculating the Global Average Pooling (GAP) of the gradient
for every possible channel and the gradient weights are updated for the proposed network. (4) The
Grad-CAM is generated by multiplication and addition of weights to the activation map and ingesting
the sum to the ReLU.
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4. Experimental Setup
4.1. Parameter Configurations of Proposed MS-CheXNet and State-of-the-Art Deep
Learning Models

For our experimental analysis, we have utilized the NVIDIA Tesla M40 server with
hardware specifications: 128 GB RAM, 24 GB GPU, 3 TB HD, and Linux server OS. We have
used Python 3.6 with open source software Keras and Tensorflow library [55]. The open-I
and data collected from KMC private hospital are divided into training/validation and test
sets, as given in Table 4. The proposed MS-CheXNet is trained for 20 epochs for 10-cross
fold validations. The overall layer-wise hyper-parameter information of the MS-CheXNet
is presented in the Table 3. The MS-CheXNet consists of MSDL with three-channel parallel
dilation convolution with dilation factor, dr = 1, 2, 3. We have employed a grid search
approach [56] to select the optimum hyperparameters for our proposed model and the
state-of-the-art deep learning models.

After fine-tuning the hyperparameters, the learning rate of 0.001 was used, and the
stochastic gradient descent-based Adam optimizer was leveraged. In the proposed MS-
CheXNet, the CXR image of size 150× 150 is passed as an input to the network and the
multi-scale feature of size 1024 is produced through the global average pooling layer.
Further, the output clinical features are ingested into Fully connected DNN, where two
hidden layers of 256 and 128 units are used with the ReLU activation function. Finally, the
sigmoid activation function is applied in the third dense layer with two units for binary
abnormality prediction from CXR. The dropout probability [57] of 0.2, and early-stopping
strategy [58] is employed to avoid the overfitting of the proposed MS-CheXNet. We have
used eight pretrained models as a baseline deep learning model for comparison with
the proposed MS-CheXNet model. We have tweaked the parameters of the pretrained
model to adapt to the task of abnormality prediction from chest X-ray. The state-of-the-art
deep learning models incorporated for performance comparison are initialized with the
ImageNet pretrained weights [21] and later retrained on the Open-I and KMC cohorts.
Usage of ImageNet pretrained weights addresses the problem of the enormous dataset
needed for deep learning training. For fine-tuning the model, we have frozen the initial
layers and retrained the later layers. Further, we have optimized the hyperparameters of
all the eight baseline models to extract the maximum performance for the abnormality
prediction task. The parameter details of all the state-of-the-art deep learning Models and
the proposed MS-CheXNet is shown in the Table 6. The proposed model is lightweight,
such as MobileNet and EfficientNetB1, which has mobile-centric applications.

Table 6. Parameter details of all the state-of-the-art deep learning models and the proposed MS-
CheXNet.

Models Total Parameters (in Millions)

MobileNet 3.2289
VGG16 14.7147

EfficientNetB1 6.5752
VGG19 20.0244

ResNet50 23.5877
Xception 20.8615

InceptionV3 21.8028
DenseNet121 25.1283

Proposed MS-CheXNet 4.8105

4.2. Radiology Cohort Selection

For our experiment, we have utilized two radiology cohorts: (1) Publicly available
Open-I dataset [14], (2) Data collected from the KMC private hospital (Mangalore, India).
The data collected from the KMC private hospital was de-identified, and approval from
Institutional Ethics Committee (IEC) was granted to use the dataset for research purposes.
The detailed statistics and descriptions of the two medical repositories are presented in
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Table 4. Both the radiology cohorts are categorized into “normal” (i.e., CXR images with no
pulmonary/chest diseases) and “abnormal” (i.e., CXR images with pulmonary diseases
such as pulmonary atelectasis, pulmonary fibrosis, pulmonary edema, etc.). Most of the
existing research on the Open-i dataset deals with cross-modal retrieval task to generate
a radiology report from CXR images [59–61]. After a thorough survey, it is observed that
limited study is carried out on classification and prediction task. In this regard, we have
refined the dataset according to the classification and prediction task. The CXR images
in the Open-I cohort consist of associated radiology reports with findings, impressions,
indications, and Medical Subject Heading (MeSH). MeSH comprises of the specific details
pertaining to the diseases, and we have extracted the ground-truth annotations from
the MeSH. The annotations are validated to check the correctness of it by experienced
radiologists. Furthermore, to evaluate the performance of the proposed MS-CheXNet
model, comprehensive benchmarking is performed and compared with various state-of-
the-art deep learning models. The experienced radiologists manually annotated the dataset
collected from KMC hospital as per the gold standards [62].

4.3. Evaluation Criteria

We have used six standard evaluation criteria: Accuracy (Acc.), Precision (P), Recall
(R), F1-Score(F1), Matthews Correlation Coefficient (MCC) and Area Under the Receiver
Operating Characteristic curve (AUROC) to examine the performance of the proposed
MS-CheXNet on the two medical CXR cohorts. We will define these evaluation metrics
using the basic terms such as true positive, true negative, false positive, and false negative.
In this study, the binary classification is considered where the CXRs are categorized into
two classes: “normal” (no disease existence) and “abnormal” ( with Pulmonary disease).
We can define the aforementioned terms as follows:

• True Positive (Tpositive) indicates the CXR sample belonging to the abnormal class is
being accurately categorized as an abnormal class

• True Negative (Tnegative) indicates the CXR sample belonging to the normal class is
being accurately categorized as an normal class

• False Positive (Fpositive) indicates the CXR sample belonging to the normal class is being
wrongly categorized as a abnormal class

• False Negative (Fnegative) indicates the CXR sample belonging to the abnormal class is
being wrongly categorized as a normal class

Equation (20) refers to the model’s accuracy, which is the metric used for measuring the
total number of the correct predictions made. However, the accuracy rate of the model does
not assure the model’s ability to categorize the classes if the dataset has unequal distribution
with class imbalance, while classifying medical images, it is essential to generalize to all
the classes. In such circumstances, precision and recall play a crucial role in providing
valuable information about the model’s performance. Precision refers to models accuracy
to predict the abnormal class. As shown in Equation (21), precision indicates the ratio
of correctly predicted abnormal cases to the total predictions by the model. In contrast
as shown in Equation (22), the recall indicates the ratio of correctly predicted abnormal
cases to the ground truth abnormal cases. The precision and recall metrics measure the
model’s ability to decrease the number of false positive and false negative predictions. The
F1-score considers the false positive and false negative and establishes the balance between
the precision and recall by calculating the harmonic mean as stated in Equation (23). The
F1-score provides valuable insights into the model’s performance when there is a class
imbalance problem. In our study, we also included MCC (refer. Equation (24)) metrics that
consider all four values of the confusion matrix and find the balance between the classes
with different sizes. The AUROC metric is used to assess binary classification performance
of disease and no disease across a range of thresholds by plotting a graph between true
positive rate (TPR) and false positive rate (FPR). Higher the AUROC (near to 1) shows that
the model can classify the CXR into normal and abnormal samples. The lower AUROC
(near to 0) indicates the bad separation between the classes.
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Acc. =
Tpositive + Tnegative

Tpositive + Tnegative + Fpositive + Fnegative
(20)

P =
Tpositive

Tpositive + Fpositive
(21)

R =
Tpositive

Tpositive + Fnegative
(22)

F1 = 2 · P · R
P + R

(23)

MCC =
Tpositive × Tnegative − Fpositive × Fnegative√

(Tpositive + Fpositive)(Tpositive + Fnegative)(Tnegative + Fpositive)(Tnegative + Fnegative)
(24)

5. Results and Discussions

This section highlights the experimental analysis of the proposed MS-CheXNet. We
have compared the proposed model with the state-of-the-art deep learning models. Fur-
thermore, we have compared the result of the proposed model with the existing work
on the Open-I dataset. We have also showcased the qualitative analysis of the proposed
MS-CheXNet model by visualizing and localizing the abnormalities in the chest regions.

5.1. Quantitative Analysis of Proposed MS-CheXNet with the Fine-Tuned Pre-Trained Deep
Learning Models

A detailed quantitative analysis of the proposed MS-CheXNet model is performed, and
the results are compared with the State-of-the-art deep learning frameworks for the publicly
available Open-I Dataset and the real-time diagnostic data collected from KMC Hospital
(refer to Tables 7 and 8). The graphical representation depicting the performance analysis
of the proposed MS-CheXNet with the different baseline deep learning models for Open-I
and KMC CXR datasets is shown in Figures 9 and 10. The proposed model has achieved
consistent performance for accuracy, precision, recall, F1-score, MCC and AUROC. For both
Open-I and KMC hospital cohorts, the model performs better than the existing pretrained
state-of-the-art deep learning models such as MobileNet, VGG16, EfficientNetB1, VGG19,
ResNet50, Xception, InceptionV3, and DenseNet121. It is evident from the Tables 7 and 8
that the MSDL layer considerably impacts performance by obtaining a broad receptive
field and capturing multi-scale features. The proposed MS-CheXNet model achieves
significantly higher precision and recall compared to the other baseline models. This shows
that our proposed model is able to decrease the false positive and false negative predictions.
The F1-score and MCC of the proposed model are high compared to other state-of-the-art
models indicating that our proposed model can effectively classify even though there
is a class imbalance. The proposed MS-CheXNet model has achieved a higher AUROC
of 0.8572 and 0.8793 for Open-I and KMC datasets compared to existing state-of-the-art
deep learning models indicating that the model can better distinguish between pulmonary
disease and no disease from the CXRs. The other lightweight deep learning networks such
as MobileNet and EficientNetB1 have also achieved promising results for both Open-I and
KMC hospital datasets.

It is also seen in Table 6 that the proposed MS-CheXNet requires only 4.8105 million
training parameters. The MS-CheXNet is lightweight and five times smaller compared to
the extensively utilized DenseNet121 model (25.1283 million parameters) on the Open-I
dataset for pulmonary disease classification [24,34,36]. As a result, the training of the
MS-CheXNet is faster than most of the existing deep learning strategies such as VGG16,
VGG19, EfficientNetB1, ResNet50, Xception, InceptionV3, and DenseNet121. The proposed
MS-CheXNet model utilizes comparatively shallow architecture, consisting of fewer layers
than other baseline deep learning models. However, the proposed model outperforms
the existing state-of-the-art models having deeper architectures making our model less
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computationally expensive with reduced training time. Figures 11 and 12 represents the
experimental observation of the loss and accuracy vs. the total number of epochs with
regard to 10-fold cross-validation for open-I and KMC hospital dataset. It is observed
that the loss gradually drops after every epoch for all the folds, and the accuracy remains
stable after a few initial variations. We have saved the model weights with the highest
performance for every fold.

Table 7. Benchmarked Experimental results of proposed MS-CheXNet Model with the state-of-the-art
deep learning Model on Open-I Dataset.

Models Accuracy Precision Recall F1-Score MCC AUROC

MobileNet 0.7675 0.7670 0.767 0.7668 0.5339 0.8108
VGG16 0.6357 0.6361 0.64 0.64 0.5605 0.8418

EfficientNetB1 0.7805 0.7803 0.7801 0.7802 0.5605 0.8418
VGG19 0.6357 0.6361 0.64 0.647 0.2722 0.6357

ResNet50 0.7465 0.7436 0.745 0.746 0.492 0.7901
Xception 0.77 0.776 0.77 0.76 0.573 0.8109

InceptionV3 0.7473 0.7471 0.748 0.746 0.4993 0.8004
DenseNet121 07336 0.74 0.7354 0.7346 0.4688 0.8003

Proposed
MS-CheXNet 0.7922 0.7926 0.7928 0.7927 0.5855 0.8572

Table 8. Benchmarked Experimental results of proposed MS-CheXNet Model with the state-of-the-art
deep learning Model on KMC Hospital Dataset.

Models Accuracy Precision Recall F1-Score MCC AUROC

MobileNet 0.7804 0.7801 0.7801 0.7803 0.5604 0.8228
VGG16 0.6623 0.6621 0.6623 0.6622 0.5731 0.8314

EfficientNet 0.7945 0.7943 0.7942 0.7941 0.5858 0.8330
VGG19 0.6642 0.6641 0.6641 0.6653 0.3822 0.6642

ResNet50 0.7657 0.7656 0.7656 0.7654 0.5102 0.8012
Xception 0.7821 0.7823 0.7822 0.7821 0.5168 0.8351

InceptionV3 0.7741 0.7743 0.7743 0.7741 0.4963 0.8103
DenseNet121 0.7511 0.7513 0.7513 0.7511 0.4826 0.8099

Proposed
MS-CheXNet 0.8225 0.8201 0.8200 0.8200 0.6401 0.8793

Figure 9. Performance analysis of proposed MS-CheXNet with the different baseline deep learning
model for Open-I CXR dataset.
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Figure 10. Performance analysis of proposed MS-CheXNet with the different baseline deep learning
model for KMC Hospital CXR dataset.

(a) (b)

Figure 11. Experimental observation of the loss and accuracy vs. total number of epochs with regard
to 10-fold cross-validation for Open-I X-ray dataset. (a) Loss vs. total no. of epochs. (b) Accuracy vs.
total no. of epochs.

5.2. Performance Analysis of Proposed MS-CheXNet with the Existing State-of-the-Art Deep
Learning Strategies on Open-I Dataset

We have also compared the performance of the proposed MS-CheXNet model with the
existing benchmarked deep learning models on the Open-I dataset. After a comprehensive
survey, we found four research work with the Open-I dataset being used for the classifica-
tion task. Table 9 presents the details of the evaluation metrics obtained from the existing
research articles on the Open-I dataset compared with the proposed MS-CheXNet. John
et al. [24], Faik et al. [34], and Lopez et al. [35] presented a variation of the denseNet121
model and it is observed that our proposed MS-CheXNet model has achieved better per-
formance with respect to the accuracy, precision, recall, F1-Score, and AUROC. It is also
observed that the existing works have not considered all the standard evaluation metrics,
which is essential while performing the prediction task on the Open-I dataset. Wang
et al. [36] proposed a CNN-based model to predict pulmonary disease from the Open-I
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dataset and attained an AUROC of 0.741. It is found that the proposed MS-CheXNet model
has produced a higher AUROC of 0.8572, showcasing the impact of the MSDL layer impact-
ing the performance of the model by obtaining the broader receptive field and capturing
the multi-scale features for efficient prediction of pulmonary diseases.

(a) (b)

Figure 12. Experimental observation of the loss and accuracy vs. total number of epochs with regard
to 10-fold cross-validation for KMC Chest X-ray dataset. (a) Loss vs. total no. of epochs. (b) Accuracy
vs. total no. of epochs.

Table 9. Performance analysis of the proposed MS-CheXNet with the existing state-of-the-art deep
learning strategies on Open-I Dataset.

Reference Accuracy Precision Recall F1-Score MCC AUROC

John et al. [24] (2018) - - - - - 0.725
Faik et al. [34] (2019) 0.74 - - - - -

Wang et al. [36] (2019) - - - - - 0.741
Lopez et al. [35] (2020) - 0.52 0.42 0.46 - 0.61
Proposed MS-CheXNet 0.7922 0.7926 0.7928 0.7927 0.5855 0.8572

5.3. Qualitative Analysis of Proposed MS-CheXNet

Figure 13 depicts some sample qualitative results of disease visualization from CXR
with the grad-CAM technique with its ground-truth label, and the radiologist highlighted
CXR. The visualization techniques allow our proposed model to be explainable by iterat-
ing back and understanding the model’s ability to arrive at a decision. The Grad-CAM
method [53] uses the gradient of the interesting concept in a given convolution layer. The
main goal is to highlight the significant regions and generate a coarse localization map.
The area with red color indicates the part of the model where the attention is strong, and
blue represents the part where attention is weak. The first four rows indicate the CXR with
pulmonary abnormalities, and the last row shows the CXR with no abnormalities. For
comparison purposes, we received localized and labeled CXRs from expert radiologists
and compared them with the predicted CXRs from the proposed MS-CheXNet Model. It
is observed from the findings that the proposed MS-CheXNet model can reach a perfor-
mance level similar to the expert radiologists. We can suggest that the lightweight and
explainable MS-CheXNet model has the potential for preliminary examination of CXRs
in radiology workflows to assist radiologists when resources are scarce and improve the
overall prediction accuracy.
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Figure 13. Disease visualization with Grad-CAM technique with its ground-truth label and the
radiologist highlighted radiographs. From left to right: (x) are the original chest radiographs, (y) are
the heatmap overlaid on the radiographs, where the areas marked with a peak (red) in the heatmap
indicate abnormalities with high probabilities, (z) are the same chest X-rays with abnormalities
highlighted (blue) by the experienced radiologist. From top to bottom: (a–d) are the chest radiographs
with pulmonary abnormalities, and (e) is the chest radiographs with no abnormalities.
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6. Conclusions

Pulmonary diseases are one of the leading causes of death worldwide, and timely
diagnosis of these diseases is crucial. The existing manual diagnoses of pulmonary diseases
are time-consuming and tedious. Hence, the automated computed assisted clinical system
can provide primary screening to aid the radiology workflow by expediting the radiology
reads, resolving resource shortages, boosting overall efficiency, and reducing the healthcare
cost. In this research, we propose a lightweight and explainable deep learning network
named Multi-Scale Chest X-ray Network that consists of MSDL and DS-CNN layers to
predict the pulmonary diseases from the CXR obtained from the publicly available Open-I
dataset and the CXR data collected from the private medical hospital. The MSDL layer
captures the multi-scale features with the help of a broader receptive field, and the DS-CNN
layer learns the imaging features by adjusting lesser parameters. The quantitative and
qualitative analysis of the proposed MS-CheXNet model is performed on both the CXR
datasets. The experimental validation was observed through the evaluation metrics such
as accuracy, precision, recall, F1-score, MCC and AUROC. The experimental results show
that the proposed model outperformed baseline deep learning techniques and the existing
state-of-the-art approaches. The MSDL layer in the proposed model has significantly
impacted the prediction outcome by capturing the multi-scale features from the CXR. The
grad-CAM method is employed to visualize the pulmonary abnormalities from the CXR
and to check the model’s ability to arrive at a decision. The obtained grad-CAM CXR
samples are compared with the CXRs labeled by expert radiologists. It is observed that the
MS-CheXNet can reach a performance level similar to the radiologists.

As the deep learning models require a larger dataset to achieve greater performances,
in the future, we would like to gather more CXR images with pulmonary diseases to boost
the efficiency of the proposed model. We also intend to explore the proposed MS-CheXNet
for multi-label prediction of various types of pulmonary diseases.
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Abbreviations
The following abbreviations are used in this manuscript:

CXR Chest X-ray
CT Computed Tomography
MRI Magnetic Resonance Imaging
CNN Convolution Neural Network
DNN Deep Neural Network
KMC Kasturba Medical College
MeSH Medical Subject Heading
MS-CheXNet Multi Scale Chest X-ray Network
MSDL Multi-Scale Dilation Layer
DS-CNN Depthwise Separable Convolution Neural Network
Grad-CAM Gradient-weighted Class Activation Mapping
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