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Abstract: With the help of machine learning, many of the problems that have plagued mammography
in the past have been solved. Effective prediction models need many normal and tumor samples.
For medical applications such as breast cancer diagnosis framework, it is difficult to gather labeled
training data and construct effective learning frameworks. Transfer learning is an emerging strategy
that has recently been used to tackle the scarcity of medical data by transferring pre-trained convo-
lutional network knowledge into the medical domain. Despite the well reputation of the transfer
learning based on the pre-trained Convolutional Neural Networks (CNN) for medical imaging, sev-
eral hurdles still exist to achieve a prominent breast cancer classification performance. In this paper,
we attempt to solve the Feature Dimensionality Curse (FDC) problem of the deep features that are
derived from the transfer learning pre-trained CNNs. Such a problem is raised due to the high space
dimensionality of the extracted deep features with respect to the small size of the available medical
data samples. Therefore, a novel deep learning cascaded feature selection framework is proposed
based on the pre-trained deep convolutional networks as well as the univariate-based paradigm.
Deep learning models of AlexNet, VGG, and GoogleNet are randomly selected and used to extract
the shallow and deep features from the INbreast mammograms, whereas the univariate strategy
helps to overcome the dimensionality curse and multicollinearity issues for the extracted features.
The optimized key features via the univariate approach are statistically significant (p-value ≤ 0.05)
and have good capability to efficiently train the classification models. Using such optimal features,
the proposed framework could achieve a promising evaluation performance in terms of 98.50%
accuracy, 98.06% sensitivity, 98.99% specificity, and 98.98% precision. Such performance seems to be
beneficial to develop a practical and reliable computer-aided diagnosis (CAD) framework for breast
cancer classification.

Keywords: feature dimensionality curse (FDC); deep transfer learning; feature reduction and
selection; CAD system; breast cancer

MSC: 92B20

1. Introduction

According to the World Health Organization (WHO) [1], there were 2.3 million
new cases of breast cancer diagnosed in women around the world in 2020, leading to
685,000 deaths. It is projected that by the end of the year 2020, there will be 7.8 million
living women who have been diagnosed with breast cancer within the previous five years,
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making it the most prevalent form of cancer in the world [2]. Radiotherapy, including
digital mammography, ultrasound [3], and magnetic resonance imaging, plays an essential
role in the treatment of breast cancer. With breast cancer in its early stages, radiation can
prevent a woman from requiring a mastectomy. Radiologists may misdiagnose 30% of
breast cancers based on breast density [4]. Even experienced radiologists struggle to inter-
pret many screening mammograms. Computer-aided diagnosis, CAD, is a major medical
imaging diagnosing tool. CAD is an Artificial Intelligence-based diagnosing tool and was
originally developed to help radiologists in examining medical images and highlighting
possible areas of concern [5,6].

Convolutional neural networks, CNNs, are a type of machine learning approach and
necessitate the training of numerous parameters. Typically, an effective training of CNNs
for computer vision applications requires millions of training samples [7,8]. Representation
learning enables a CNN to learn how to extract features from an image using convolutional
layers from the shallow to the deep. Lines and edges are more generic in the shallow
layers of a CNN but become more relevant to the target application as the layers become
deeper. It is possible to extract features using convolutional filter weights. Transfer learning
is commonly used to train CNNs for extracting the deep features in medical imaging
due to the lack of medical datasets [9]. Transfer learning is oriented on the premise that
previously acquired knowledge can be uniquely applied for solving new problems more
efficiently and effectively. Consequently, transfer learning involves reusing previously
learned relevant knowledge [10,11]. In 2016, numerous pre-trained CNN learning models,
including AlexNet [12], GoogLeNet [13], ResNet [14], VGG [15], and Inception V3 [16],
emerged to solve classification problems in natural images using ImageNet. Subsequently,
transfer learning was recently applied to breast cancer imaging [17]. The utilization of
pre-trained CNNs as a feature extraction approach for the classification of lesions in breast
tissues has overcome the overfitting problem [18]. Because of the relatively small amount of
data compared to the extensive number of network parameters, overfitting is a significant
problem that arises when deep learning models are applied to medical data [19]. However,
there still exist some challenges when attempting to apply the transfer learning approach
in the classification of medical images.

The dimension space of the extracted features through the use of transfer learning
has the potential to be quite large due to the fact that the number of features extracted is
dependent on the architecture and the number of layers of the pre-trained CNN that is being
used. For instance, the number of features retrieved from AlexNet/VGG16 and GoogleNet
are, respectively, 4096 and 1024. The high dimensionality of the space of the extracted deep
features and the limited number of the available medical samples creates the ‘Curse of
Dimensionality’ problem [9]. In addition, the extracted features from the pre-trained CNN
may suffer from the multicollinearity problem. When the extracted features of a dataset
are highly correlated with one another, a phenomenon known as multicollinearity occurs.
The effectiveness of regression and classification models is impacted by this problem [20].
Subsequently, a subset of the significant features has be chosen either before or at the
same time as the classifier is being formulated. In this work, we extend our prior work in
using deep learning for breast cancer classification in digital mammograms by proposing
a cascaded feature selection framework using pre-trained CNNs and a univariate-based
paradigm. The extracted features from training the pre-trained CNNs to classify breast
mammograms are submitted to a next stage of feature filtration using our previously
published univariate FS-based method for finding biomarkers in gene microarrays [21].

1.1. Research Questions

In order to overcome the inaccuracy of breast tumor diagnosis in mammography, the
following are some research questions that need to be answered.

• How to construct a CAD system based on pre-trained CNNs for more precisely
classifying breast lesions from mammograms as benign or malignant?
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• How to deal with the feature dimensionality curse and multicollinearity in pre-trained
CNN extracted features?

1.2. Research Contributions

The following contributions have been provided within the scope of this study:

• A novel breast classification framework is proposed based on the hybrid CNN with a
univariate-based approach.

• Transfer learning using three state-of-the-art deep learning models is used to derive
the high-level deep features.

• Resolving the overfitting problem that could arise when the pre-trained deep learning
models are applied to the medical breast mammograms.

• Resolving the feature dimensionality curse (FDC) problem to avoid feature redundancy
and select only the optimal significant key features for breast cancer classification.

• INbreast, a publicly available benchmark dataset, was used to perform a comprehen-
sive evaluation of the proposed CAD system.

• A comprehensive evaluation and comparison study is conducted to show the capability
and the feasibility of the proposed CAD system against the latest deep learning models.

2. Related Work

Breast cancer is the second major cause of death in women, affecting 12.5 percent of
women in various societies worldwide [22]. According to current literature, early detection
of breast cancer is vital since it can result in up to a 40% decrease in mortality [23]. Medical
imaging examination is the most effective method of diagnosing breast cancer. Some of the
imaging techniques used for the diagnosing of breast cancer include digital mammography,
ultrasound, and magnetic resonance imaging (MRI); however, digital mammography
imaging can be considered the most important method for early detection [24]. Many of the
issues that are associated with mammography in terms of the classification and detection
of breast cancer have been resolved through the use of machine learning. These issues
include false positive rates, subjective judgments, and a limitation in indicating changes
caused by cancer [25]. Building effective prediction models requires a vast number of
normal/tumor samples. However, it is challenging to obtain the necessary training data
and develop effective learning models when used in medical applications such as breast
mammography [26]. As a result, it is recommended to reduce, as much as possible, the
amount of time and effort needed to acquire the training data [27]. In situations like these,
it would be beneficial to transfer the knowledge gained from one activity to the target task.
Transfer learning allows for a model that was trained on one domain to be used as the
focus of learning in another one [10,28,29]. Transfer learning has been used extensively
in mammography classification to improve CNN architectures [30–35]. Improvements
in classification accuracies, precision, and speed of training are the major advantages of
transfer learning [35]. Fusion of extracted deep features has yielded better performance of
transfer learning in the classification of mammograms [36,37].

As the number of extracted deep features depends on the architecture and the number
of layers of the pre-trained CNN being utilized, the dimension space of the extracted deep
features through the application of transfer learning has the potential to be rather huge.
To the best of our knowledge, only a few previous studies have addressed the Curse of
Dimensionality induced by the extracted deep features using transfer learning. In [38]
the space of the extracted deep features has been reduced using the principal component
analysis (PCA) and then submitted to conventional classifier, Support Vector Machine
(SVM). The application of PCA for reducing the feature space for retrieved features from
transfer learning was originally proposed in [39] and has resulted in greater performance
in the classification precision than yielded one from the usage of only the extracted deep
features. Another contribution for resolving the problem of the Curse of Dimensionality of
the recovered deep features has been introduced by Samee et al., in [18], by empowering
the performance of PCA through applying the Logistic Regression to identify the significant
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principal components produced from the PCA analysis. Inspired by such mentioned ideas,
we propose a new framework for selecting the most prominent key deep features from the
extracted ones via the pre-trained CNNs after being trained on breast mammograms of
benign or cancerous breast tissues. The remainder of the paper is structured as follows:
Section 2 introduces the proposed methodology; Section 3 summarizes the experimental
results and discusses them. The conclusion and future trends are presented in Section 5.

3. Methodology

We propose a cascaded Feature Selection framework for selecting non-redundant
and relevant features for the classification of breast lesions in digital mammograms in
this study. This work is an extension of our previous work utilizing transfer learning to
classify breast cancer. Two cascaded FS stages are used to pick the features. Pre-trained
CNNs such as AlexNet, VGG, and GoogleNet are used in the initial stage to extract
shallow and deep features in the region of interest in breast mammograms. This will
aid in avoiding the overfitting issue discussed in [40]. The selection of non-redundant
significant characteristics in the returned set of features from the first stage is strengthened
in the second stage by the use of the univariate-based FS paradigm, which can help in
overcoming the high dimensionality and multicollinearity issues due to the extracted deep
features. As depicted in Figure 1, the proposed framework is comprised of four modules.
These modules include preprocessing of digital mammograms and region of interest (ROI)
extractions, feature selection, feature classification utilizing conventional machine learning
techniques, and classifier evaluation utilizing the performance metrics that are associated
with CAD systems.
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Figure 1. Deep learning cascaded feature selection framework for breast cancer classification.

3.1. Images Pre-Processing and ROI Extraction

The data that were used in this investigation came from a variety of publicly available
sources, such as the INbreast for data based on full-field, high-resolution digital mam-
mography. All of the mammograms included in the INbreast database were acquired in a
Breast Centre located within a University Hospital [41]. The INbreast contains a total of
410 mammograms, which correspond to 115 unique patient cases. The INbreast dataset
contains the correct diagnosis for all mammograms as well as the locations of the potential
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abnormalities within each image, specified by the center and radius of the surrounding
circle for each lesion. To perform our experiments, 32 × 32 square regions of interest
(ROIs) inside of the lesion were picked up. Keeping the ROI as narrow as possible and also
providing a statistically representative sample of the lesion facilitated improved localiza-
tion performance of the developed method [42]. To eliminate any possibility of bias, the
aberrant locations were hand-picked from among the available lesions. The samples also
reflected the various abnormality subclasses, with lesion or cluster sizes that were adequate
to encompass the selected ROI size.

We have recently introduced an effective method, pseudo-color mapping [18], for
the preprocessing of these datasets and it has yielded good impact on the precision of
the classification of lesions in the mammograms. When using a CNN, the pseudo-color
mapping can take advantage of the three input channels available (Red, Green, and Blue).
Therefore, we have employed the same datasets, pseudo-colored images in this study. The
pseudo-color mapping can be summarized as follows. An area of size of 32 by 32 pixels was
extracted from the lesion, ROIs. We chose such a size for the ROI in order to compare our
proposed framework to previous work that handled the same classification problem using
other techniques [43–45]. The produced files contain 34, and 73 ROIs extracted from the
benign/malignant samples in the INbreast dataset. Data augmentation, principally based
on the flipping (up/down and left/right) and rotation approach, was employed to increase
the size of the datasets used. Pseudo-color mapping incorporates the original image into
the red channel. The green and blue channels, on the other hand, receive different processed
images as a result of the application of contrast-limited adaptive histogram equalization
(CLAHE) [46] and intensity adjustment [43]. The pseudo-color mapping makes it possible
for several levels of global information to be embedded into each pixel.

3.2. Feature Selection Using Pre-Trained CNNs and the Univariate-Based Approach

Pre-trained CNNs have convolutional, pooling, and fully connected (FC) layers [47].
A fully connected layer classifies the features extracted by convolution layers [48]. In
this investigation, we used the convolutional and pooling layers of pre-trained CNNs to
extract key characteristics from benign/malignant breast cancer images. AlexNet, VGG,
and Googlenet are popular pre-trained CNN image classifiers. Alex Krizhevsky and his
team introduced AlexNet [12] in 2012’s ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). Their CNN has more levels than earlier models. They’ve achieved top-5 error
rates in the ILSVRC challenge. As shown in Figure 2, AlexNet has an input image layer of
size 227 × 227 × 3, five convolutional layers, three max pooling layers, two fully connected
(FC) layers, and a SoftMax layer as an output layer. The 1st convolutional layer has
96 filters [49], kernels, of sizes of 11 × 11. The output of this layer is normalized using the
response normalization [12] and followed by an overlapping max pooling layer. The 2nd
convolutional layer has 256 kernels of sizes of 5 × 5, and the output is then normalized
and pooled by the same approaches mentioned above. The structure of the 3rd, 4th, and
5th convolutional layers is similar and each one has 384 filters of sizes of 3 × 3. Then, the
output of the 5th convolutional layer is similarly normalized and pooled and applied to
two FC layers, each having 4096 neurons. Finally, a SoftMax layer of two neurons are used
as an output layer.

Karen Simonyan and Andrew Zisserman introduced VGG [15] in 2014. Using VGG,
network depth affects the CNN’s accuracy. After convolutional layers and before pooling,
ReLU is activated. The architecture of the VGG 16 is very straightforward, as illustrated in
Figure 3. It contains an input layer that takes images with a size of 224× 224× 3. The input
layer is followed by a stack of convolutional layers. Each convolutional layer comprises a
set of small size filters, 3 × 3. The small size of the convolution kernels permits adding the
large number of convolutional layers in the VGG networks and has helped in yielding an
enhanced of their performance [15]. The stack of convolutional layers is followed by three
fully connected layers. The first two FC layers contain 4096 neurons each, but the third one
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has only two neurons for the binary classification of the mammogram’s tissues (normal,
and abnormal). Finally, a soft-max layer of size 1 × 1 × 2 is employed.
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Szegedy C. et al., introduced GoogleNet [13] in 2014’s ILSVRC challenge. GoogleNet
CNN contains 22 layers. The architecture of GoogleNet is wider and deeper than AlexNet.
The processing of such deeper network can be very expensive unless other approaches
are used to help in decreasing such computations. So, in the GoogleNet, there are three
approaches from the NIN (Network in Network) that have been employed, including:
inception modules, global average pooling, and the 1 × 1 convolution. The major concept
of the inception module is employing multiple convolutional and pooling operations with
several kernel sizes in parallel, which can help in extracting more features from the input
patches. As shown in Figure 4a, an inception module has three convolutional layers, colored
by gray color, of sizes 1× 1, 3× 3, and 5× 5 that works in parallel along with a max pooling
layer of size 3× 3. The inception module receives its input from its earlier layer and applies
its parallel operations, then the output feature maps are concatenated and passed to the
following module. This approach creates a wider network. The processing of the inception
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module has been alleviated by using a 1× 1 convolution, shown in Figure 4b, on its internal
layers. The 1 × 1 convolution has been created in the NIN deep network. This approach
can help in reducing the number of required operations in the processing of the deep
convolutional layers. It has been used in the GoogleNet as a step of nonlinear dimensional
reduction, which in turn reduces the necessary computational cost. By decreasing the
computation overhead of the deep convolution layers, more inception modules can be
added. Finally, the global average pooling is employed before the FC layer by averaging
the extracted feature maps. The overall architecture of GoogleNet consists of 22 layers,
including the input layer, convolutional layers, max pooling, inception modules, FC, and
softmax layers. GoogleNet contains 12 less parameters than AlexNet, making it easier
to train.
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Abdelhafiz et al. [50] reviewed various research articles on breast cancer classification.
Because of their great accuracy and minimal complexity, AlexNet, VGG, and GoogleNet
CNNs were used in this study. Given its high dimensionality and non-convex objective
function, determining the ideal parameters for each pre-trained CNN to provide the
highest performance is a difficult optimization problem. As a result, stochastic optimization
approaches are commonly used. The stochastic gradient descent with momentum (SGDM)
optimizer is utilized in this work with the learning parameters listed in Table 1. These
settings were chosen after monitoring validation outcomes through testing and were
applied to all networks to allow direct comparison of their results and computational costs.

Table 1. The values of learning parameters for training pre-trained CNNs.

Learning Parameters Value

Learning rate 0.0001
Number of training epochs 400

Batch size 16
Momentum factor 0.9
L2-Regularization 0.0005

The process of selecting a feature subset (FS) involves deleting features that are either
unnecessary or duplicated elsewhere in the system. The subset of features that is chosen
should, in accordance with the criteria of some objective function, produce the highest
level of performance. FS is an NP-hard problem, which means that it is difficult in a
nondeterministic polynomial amount of time [51]. Because the amount of data that needs
to be processed has become more substantial over the course of the past years, feature
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selection has developed into a prerequisite for developing effective ML models. In contrast
to the methods of feature extraction, the approaches of feature selection do not change the
initial representation of the data [52]. Avoiding overfitting the data is one of the goals of
both the feature extraction and selection. This is done in order to make further learning
effective and accurate. FS algorithms are classified into three types: filter, wrapper, and
embedding. The filter-based FS method retrieves features from data without requiring
any learning. Wrappers employ ML approaches to determine which features are useful.
Embedded approaches merge the feature selection and classifier development steps. They
can be classified as either multivariate or univariate approaches [19]. Univariate approaches
focus on analyzing a single feature at a time, and multivariate methods analyze the features
in a way that enables them to discover links amongst themselves.

A common objective of the univariate filter-based FS approaches is feature rank-
ing. The feature ranking can be done by several ways, including unconditional mixture
modelling and information gain (IG) [53]. The unconditional mixture model makes the
assumption that there are two distinct states of the feature, on and off, and determines
whether or not the underlying binary state of the feature has an effect on the classifica-
tion [21]. The unconditional mixture model is a univariate filter-based FS method and can
do its job without taking the classifier into account. Because of this, it is extremely effective
in terms of computing [53]. We have utilized it in earlier work for detecting key genes in a
microarrays dataset for the classification of normal and abnormal liver tissues [19,21], and it
has yielded great results. This inspired us to study the power of the unconditional mixture
model univariate filter-based FS in picking the key features in the extracted set of features
yielded from pre-trained CNNs for classifying breast lesions (benign/malignant). The main
notion is based on identifying an on/off ideal feature whose values vary in normal and
abnormal samples. As depicted in Figure 5, two ideal features have been applied in this
study. The upregulated ideal feature is represented by a vector with two distinct sets of
values (−1, 1) for normal and abnormal instances, and a downregulated ideal feature with
values of (1, −1) is presented for both specimens. The Pearson correlation coefficient (PCC),
the cosine coefficient (CC), the Euclidean distances (ED), and the mutual information (MI)
are then used to determine the degree of similarity between the features that have been
retrieved from pre-trained CNNs and the ideal features. The features are ranked according
to the similarities that have been measured, and then the features that have the highest
rankings are the ones that are returned as key features, which are used for the classification
of breast lesions.
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feature (downregulated).

The extracted feature matrix (EFM) from the pre-trained CNNs is then submitted to
the second stage of feature filtration. The entries of the EFM have been normalized using
the z-score technique. The normalized values have a standard deviation of one and are
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centered around zero. The Zscore of a random feature F with a mean value of M and a
standard deviation of σ are determined by Equation (1).

Zscore =
F−M

σ
(1)

The Pearson’s correlation coefficient [54,55], which is indicated in Equation (2), can be
used to determine the degree of similarity between the ideal feature, FIdeal, and a feature F.
This can be done by comparing the two sets of values.

r =
∑S

i=1
(

Fi − F
) (

FIdeali − FIdeal
)√

∑S
i=1
(

Fi − F
)2
√

∑S
i=1
(

FIdeali − FIdeal
)2

(2)

Measuring the space-based distance between two vectors allows one to determine
their similarity. Therefore, we utilized the Euclidean distance between the ideal feature,
FIdeal, and all features in the EFM. S denotes the size of the extracted feature matrix. Fi and
F denote the value of a feature in any sample, i, and its mean value in all input samples
respectively. The value of the ideal feature sample i is represented by FIdeali , whereas the
mean value of this feature across all input samples is represented by FIdeal .

For a given feature Fi in the EFM, the cosine coefficient can be used to determine the
degree of dependence between the ideal feature and Fi, as illustrated in Equation (3). It
is possible to tell if two angles are pointing in the same direction by looking at the cosine
coefficient; if it is zero, it shows that the angles are independent.

rcosine =
∑S

i=1
(

Fi − F
)

FIdeali√
∑S

i=1
(

Fi − F
)2
√

∑Q
i=1 FIdeal

2
i

(3)

The mutual information between the ideal feature, FIdeal, and all features in the EFM
can also be used to pick the key features [56–58]. In Equation (4), the formula for calculating
mutual information is given, where the H(FIdeal) is the entropy of the ideal feature and
H(FIdeal|F) is the conditional entropy between FIdeal and a feature, F, in the EFM.

I(FIdeal, F) = H(FIdeal)− H( FIdeal|F) (4)

3.3. Classification and Model Assessment

The statistical ML system that was used in this investigation consisted of the im-
plementation of six major types of conventional classifiers. Techniques that fall within
this category include decision trees [59], naive Bayes, discriminant analysis, ensembles,
KNN, and SVM [28,43]. The many parameters and variants that make up each classifier
were tuned in order to get the highest feasible performance and decrease the problem of
overfitting to the greatest extent feasible. This was done by utilizing 5-fold cross-validation
to produce an accurate estimation of the performance. Within each fold, distinct parts of
the images are delegated to their respective sets. To determine the overall performance
of the system, the results gained from every fold are aggregated overall, and this process
is repeated five times, which is like the number of folds. To be more specific, the data for
cancerous cases are randomly divided into three sets, which are referred to as the training
dataset, the validation, as well as the testing set. The percentages of split between both the
various divides are as follows: 70%, 15%, and 15% for the training set, the validation set,
and the testing set, respectively.

The introduced learning model has been assessed using the well-known performance
metrics including the model accuracy, specificity, sensitivity, false negative rate (FNR),
area under the curve (AUC), false positive rate (FPR), F1-score, and Matthew’s correlation
coefficient [28,43]. Because accuracy is a key performance indicator since it indicates the
proportion of right classifications compared to the total number of observations, it does
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not differentiate between false-positive and false-negative errors. This is detrimental to
the success of a CAD system, because a false-negative classification potentially has far
more severe consequences than a false-positive classification. This issue is solved by the
sensitivity measure, which indicates the proportion of malignant cases for which a proper
diagnosis was made. However, specificity indicates the fraction of typical individuals
whose diseases were correctly identified. Together, they provide the complete picture,
allowing an observer to draw accurate comparisons between different systems. In a CAD
system, for example, if systems use the same degree of accuracy, the framework with the
greater level of sensitivity is preferable.

3.4. Execution Environment

The experimental study is executed via a PC with CPU of Intel(R) Core (TM) i7-
10700KF @ 3.80 GHz, 32.0 GB RAM, six CPUs and one GPU of NVIDIA GeForce RTX 3060.

4. Results and Discussion

In this investigation, we are introducing a significant framework of a computer-aided
diagnosing system for the classification of breast tumor lesions using cascaded stages of
pre-trained CNNs and unconditional mixture model univariate-based FS techniques. The
framework comprises four stages including the data preparation, FS using pre-trained
CNNs, univariate-based FS, and Classification. In [18], we have introduced the use of
pseudo-colored mapping for the submission of input images to pretrained CNNs. The
resulting performance prompted us to implement them in this study. Pseudo-colored
mapping has been performed to INbreast, and the pseudo-colored images are used to
evaluate the adequacy of the newly developed CAD system.

Pre-trained CNNs have been utilized as the first stage of FS. The ROIs for each dataset
were resized to the respective size of each network (224 × 224 for the VGG/GoogleNet
and 227 × 227 for AlexNet) using bilinear interpolation with an anti-aliasing filter in an
effort to meet specifications, preserve image quality, and keep them free of aliasing artifacts,
as the input layer cannot be modified as an aspect of the transfer learning approach.
Throughout training of pre-trained CNNs, it is necessary to set the learning parameters.
A stochastic gradient descent with momentum (SGDM) optimizer was used in this study.
This optimizer’s learning rate was adjusted to 0.0001, the L2-regularization setting to 0.0005,
the momentum term factor to 0.9, and the gradient threshold technique to L2-norm. The
maximum number of training epochs permitted was 400, and the maximum mini-batch
size allowed was 16. The selection of these training alternatives was based on the validation
findings gained from the running trials. They were applied across all networks to enable
a direct comparison of the networks’ respective results. According to what have been
revealed in [18], the topology of the network influences the number of features that can
be recovered from it. Using AlexNet, GoogleNet, and VGG16, respectively, a total of 4096,
1024, and 4096 features have been retrieved from the data.

An educational edition of MATLAB 2020a and the ML toolbox were used to develop
and execute this study. At 2.60 GHz, the computing system’s microprocessor is an Intel®

CoreTM i7-6700HQ quad core. It also includes 16 gigabytes of memory storage (RAM) and
a gpu that supports CUDA (NVIDIA GeForce GTX 950M with 4 gigabytes of memory).
However, despite the fact that the results of the studies are machine and environment
particular, their relative values can still be used to compare different approaches.

4.1. Signal Profiles and Hypothesis Testing of the Extracted Key Features

The extracted feature matrices from AlexNet, GoogleNet, and VGG16 have the fol-
lowing dimensions: 4096 × 2168, 1024 × 2168 and 4096 × 2168 respectively. The EFM
is then submitted to the second stage of feature filtration. To determine the degree of
similarity between the features retrieved from pre-trained CNNs and the ideal features,
four univariate-based FS methods including the Pearson correlation coefficient, the cosine
coefficient, the Euclidean distances, and the mutual information were used. The features are
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sorted based on the similarities that have been measured, and the variables with the highest
rankings are returned as key features, which are then exploited to classify breast lesions.

The significance of the extracted key features has been evaluated using the ANOVA
F-statistics test [60], and it has been determined whether or not the means of their values in
the benign and malignant samples are different from one another. The following metrics
were used to calculate significance: the degree of freedom (DF), the t statistics (t), and
the p-value of the retrieved features. Figures 6–9 depict the signal profiles for the top ten
ranking extracted key features (upregulated and downregulated features) utilizing PCC,
CC, ED, and MI on the EFM extracted from the AlexNet pre-trained CNN. This is done
for the purpose of providing an illustration and inspection of the retrieved on/off features.
Each feature is plotted in both normal and abnormal samples, and the p-value associated
with that feature is appended to the same plot. The samples are shown along the X axis;
there are 1084 samples for each of the disinfected samples, and the infected samples also
have a total of 1084 samples. The value of the feature’s expression is shown along the Y
axis. The signal profile, in conjunction with the appropriate p-values of each on/off feature,
ensures that the significance of these features for the classification of normal/up-normal
breast lesions. Figure 7 shows that the majority of the features that were yielded by the
ED feature selection do not have signal profiles that are comparable to those of the ideal
key features and have insignificant p-values (> 0.0.5). But, as shown in Figures 6–9, the
signal profiles and p-values of the extracted features from PCC, CC, and MI on the EFM
extracted from AlexNet show that the returned key features are statistically significant
(p-value < 0.05) and can be used to train the classification model. Figures 10 and 11 show
the retrieved p-values of the top 50 ranked features (upregulated and downregulated) using
all univariate-based FS methods on the EFM extracted from the GoogleNet and VGG16,
respectively. The figures showing the results of statistical analysis of extracted on/off
features from the GoogleNet and VGG16 reveal that features with high rankings from PCC,
CC, and MI have significant p-values (0.05), whereas those with high rankings from ED
feature selection have negligible p-values (> 0.05).

4.2. Classification Model Construction and Evaluation

The top ranked significant features (20 features) are then submitted to six distinct fam-
ilies of classical classifiers as the final step in the proposed CAD framework. These classical
classifier families include decision trees, discriminant analysis, SVM, KNN, naive Bayes,
and ensemble. In order to test and evaluate how well the newly developed CAD system
works, we have carried out five separate experiments. In each experiment, the features that
have been extracted from the pre-trained CNNs (AlexNet, VGG, and GoogleNet) are fed
to one method of the univariate filter-based FS methods (PCC, CC, ED, and MI) in order
to determine the degree of similarity between the features that have been retrieved from
pre-trained CNNs and the ideal features before they are submitted to the classical classifiers.
This is done before the features are submitted to the classical classifiers. In the last phase of
the experiment, a hybrid collection of the extracted features from all of the univariate FS
approaches is utilized for the classification of breast tissues. Table 2 contains the results
that were obtained from the conducted tests on the INbreast dataset. Only the results of
the best performing models among the aforementioned ones are shown in Table 2. The
application of a hybrid set of features given from all univariate FS method on the features
that were derived from AlexNet has resulted in the best performance, as shown in Table 2
with a gray highlight color.
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Figure 6. Signal profiles for the top ten ranking extracted key features (i.e., upregulated and downreg-
ulated features) utilizing PCC as well as the retrieved results from the ANOVA F-test, including the
t-value, degree of freedom (DF), and p-value. The extracted upregulated and downregulated profile
features are depicted in (a–j), respectively. (a) Top ranked upregulated feature no. 1. (b) Top ranked
upregulated feature no. 2. (c) Top ranked upregulated feature no. 3. (d) Top ranked upregulated
feature no. 4. (e) Top ranked upregulated feature no. 5. (f) Top ranked downregulated feature no. 1.
(g) Top ranked downregulated feature no. 2. (h) Top ranked downregulated feature no. 3. (i) Top
ranked downregulated feature no. 4. (j) Top ranked downregulated feature no. 5.
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Figure 7. Signal profiles for the top ten ranking extracted key features (i.e., upregulated and down-
regulated features) utilizing Euclidean distance as well as the retrieved results from the ANOVA
F-test, including the t-value, degree of freedom (DF), and p-value. The profiles in (a–e) depict the
upregulated features, whereas the profiles in (f–j) show the downregulated features. (a) Top ranked
upregulated feature no. 1. (b) Top ranked upregulated feature no. 2. (c) Top ranked upregulated
feature no. 3. (d) Top ranked upregulated feature no. 4. (e) Top ranked upregulated feature no. 5.
(f) Top ranked downregulated feature no. 1. (g) Top ranked downregulated feature no. 2. (h) Top
ranked downregulated feature no. 3. (i) Top ranked downregulated feature no. 4. (j) Top ranked
downregulated feature no. 5.
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Figure 8. Top ten signal profiles identified key features (i.e., upregulated and downregulated features)
using CC feature selection and ANOVA F-test results, including t-value, degree of freedom (DF), and
p-value. The profiles in (a–e) depict the upregulated features, whereas the downregulated features are
presented in (f–j). (a) Top ranked upregulated feature no. 1. (b) Top ranked upregulated feature no. 2.
(c) Top ranked upregulated feature no. 3. (d) Top ranked upregulated feature no. 4. (e) Top ranked
upregulated feature no. 5. (f) Top ranked downregulated feature no. 1. (g) Top ranked downregulated
feature no. 2. (h) Top ranked downregulated feature no. 3. (i) Top ranked downregulated feature no.
4. (j) Top ranked downregulated feature no. 5.
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Figure 9. Top ten signal profiles identified key features (i.e., upregulated and downregulated features)
using the mutual information FS method and ANOVA F-test results, including t-value, degree of
freedom (DF), and p-value. The profiles of the upregulated and the downregulated features are
depicted in (a–e) and (f–j), respectively. (a) Top ranked upregulated feature no. 1. (b) Top ranked
upregulated feature no. 2. (c) Top ranked upregulated feature no. 3. (d) Top ranked upregulated
feature no. 4. (e) Top ranked upregulated feature no. 5. (f) Top ranked downregulated feature no. 1.
(g) Top ranked downregulated feature no. 2. (h) Top ranked downregulated feature no. 3. (i) Top
ranked downregulated feature no. 4. (j) Top ranked downregulated feature no. 5.
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Figure 10. The p values of the top 50 upregulated and downregulated features that were retrieved
using a univariate-based feature selection approach on the extracted features matrix (EFM) retrieved
via the GoogleNet. The p values of both the extracted upregulated and the downregulated deep
features retrieved from all univariate-based feature selection (PCC, ED, MI, and CC) are shown. (a) p
Value of up-regulated feature retrieved using PCC-FS. (b) p Value of downregulated feature retrieved
using PCC-FS. (c) p Value of upregulated feature retrieved using ED-FS. (d) p Value of upregulated
feature retrieved using ED-FS. (e) p Value of upregulated feature retrieved using MI-FS. (f) p Value
of downregulated feature retrieved using MI-FS. (g) p Value of upregulated feature retrieved using
CC-FS. (h) p Value of downregulated feature retrieved using CC-FS.
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Figure 11. The p-values of the top 50 upregulated and downregulated features that were retrieved
using a univariate-based feature selection approach on the EFM retrieved via the VGG16. The p-
values of both the extracted upregulated and the downregulated deep features retrieved from all
univariate-based feature selection (PCC, ED, MI, and CC) are shown. (a) p-value of upregulated
feature retrieved using PCC-FS. (b) p-value of downregulated feature retrieved using PCC-FS. (c) p-
value of upregulated feature retrieved using ED-FS. (d) p-value of upregulated feature retrieved
using ED-FS. (e) p-value of upregulated feature retrieved using MI-FS. (f) p-value of downregulated
feature retrieved using MI-FS. (g) p-Value of upregulated feature retrieved using CC-FS. (h) p-Value
of downregulated feature retrieved using CC-FS.
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Table 2. Evaluation performance of the different classical classifiers trained on features retrieved
using all univariate-based feature selecting techniques on the extracted feature matrix (EFM) that was
retrieved from pertained CNN. The ensemble (sub-space KNN) classifier is used for this evaluation.

Pre-Trained
CNN for
Feature

Extraction

Univariate
Feature

Selection
TP TN FP FN Accuracy

(%)
Sensitivity(

%)
Specificity

(%)
Precision

(%)

False
Negative
Rate (%)

False
Positive
Rate (%)

AUC
Matthew’s
Correlation
Coefficient

F1-Score
(β = 1)

AlexNet
PCC

1051 1074 10 33 98.00 96.96 99.08 99.06 3.04 0.92 1 0.9605 0.9800
VGG16 1050 1066 18 34 97.60 96.86 98.34 98.31 3.14 1.66 1 0.9521 0.9758

GoogleNet 1017 1042 42 67 95.00 93.82 96.13 96.03 6.18 3.87 0.98 0.8997 0.9491

AlexNet
CC

1050 1072 12 34 97.90 96.86 98.89 98.87 3.14 1.11 0.99 0.9578 0.9786
VGG16 1035 1063 21 49 96.80 95.48 98.06 98.01 4.52 1.94 1 0.9357 0.9673

GoogleNet 1018 1037 47 66 94.80 93.91 95.66 95.59 6.09 4.34 0.99 0.8959 0.9474

AlexNet
ED

763 1004 80 321 81.50 70.39 92.62 90.51 29.61 7.38 0.95 0.6462 0.7919
VGG16 760 1009 75 324 81.60 70.11 93.08 91.02 29.89 6.92 0.94 0.6493 0.7921

GoogleNet 957 1018 66 127 91.10 88.28 93.91 93.55 11.72 6.09 0.98 0.8233 0.9084

AlexNet
MI

1054 1065 19 30 97.70 97.23 98.25 98.23 2.77 1.75 1 0.9548 0.9773
VGG16 1018 1057 27 66 95.70 93.91 97.51 97.42 6.09 2.49 0.99 0.9148 0.9563

GoogleNet 999 1040 44 85 94.00 92.16 95.94 95.78 7.84 4.06 0.98 0.8816 0.9394

AlexNet
Hybrid

1063 1073 11 21 98.50 98.06 98.99 98.98 1.94 1.01 1 0.9705 0.9852
VGG16 1043 1059 25 41 97.00 96.22 97.69 97.66 3.78 2.31 0.99 0.9392 0.9693

GoogleNet 1006 1044 40 78 94.60 92.80 96.31 96.18 7.20 3.69 0.99 0.8917 0.9446

5. Comparing the Performance & Conclusions

Transfer learning (pre-trained deep learning CNN models including AlexNet, VGG16,
and GoogleNet) is a technique in which a model trained on one problem is used in some
way on another related problem. Transfer learning has the advantage of shortening the
training time for CNN models, which reduces computational complexity. Pre-trained
CNN, on the other hand, suffers from the feature dimensionality curse (FDC). We present
a framework, in this study, that includes a second stage of feature selection to select only
the most important key features for precise breast cancer classification. The unconditional
mixture model is a univariate filter-based FS method proposed for selecting significant
features that can work without taking into account the classifier. As a result, they are
extremely efficient in terms of computing. Our introduced CAD system is hypothesized to
improve in performance through the application of a second stage of feature selection on
the extracted set from the Pre-trained CNN. To test this, we compared the system’s efficacy
with and without the second stage of feature filtration. Figure 12 depict the accuracy,
and sensitivity of the system achieved by using the standalone pre-trained CNNs and
the proposed framework. As shown in Figure 12, the proposed framework improves the
CAD’s performance in terms of accuracy and sensitivity for all types of employed AlexNet,
VGG16, and GoogleNet.
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Figure 12. The system’s accuracy, and sensitivity achieved by using the standalone pre-trained CNNs
and the proposed framework. (a) Accuracy. (b) Sensitivity.
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To explore the impact of input size on the suggested approach’s performance, the
training time for each CNN model is recorded using both INbreast and mini-Mias datasets.
The compression of the execution training time for all deep learning models is depicted in
Figure 13.
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Figure 13. The system’s training execution time recorded by using the standalone pre-trained deep
learning CNN models of the proposed framework.

The total images (i.e., labelled ROI) used for this study in terms of benign and ma-
lignant categories is 576 from mini-MIAS and 1095 from INbreast, respectively. We can
conclude that the training process takes a longer time as the size of the input image dataset
increases, but this only has a negligible effect on the overall system complexity because
it only needs to be done once, before the system is deployed to its final destination. The
classification of abnormal breast lesions is one of the more well-known uses of machine
learning in medicine. Numerous investigations and attempts have been made to develop
an accurate CAD system for such applications, and these studies and efforts have been
published as part of a body of work. Table 3 compares the classification performance of
the proposed system to that of many advanced breast cancer detection systems. This com-
parison is conducted in order to evaluate the effectiveness of the newly developed system.
Using a standard machine learning technique, the primary objective of these exploratory
tests was to develop a method for identifying breast tissue based on texture. Due to their
poor precision and sensitivity, the outcomes of these approaches are unsuitable for precise
mass classification. Compared to previous work utilizing standard ML techniques [43,61]
and deep learning-based approaches [38,45,62–67], the CAD system developed utilizing
ROI classification produced promising results. The suggested CAD framework outper-
formed the system developed by Zhang et al. [64] on the INbreast dataset in terms of
accuracy and sensitivity, and the recovered accuracy and sensitivity are comparable with
our previously reached values in [18] in comparison to our past work on the INbreast. As
long as we have solved the FDC problem, which is a different problem rather than the
previous published work in [18]. Although the previous study in [15] and the current one
are different and presented to solve two different issues, the final classification evaluation
results are comparable and almost the same (around 98%). The slight difference among
both results could be due to the randomness of the deep learning model in fine-tuning and
optimizing the trainable (weights and biases) during the training process. It is common and
known that at each training time of the deep learning models the results might be slightly
changed. In terms of overall performance, the proposed CAD system performed well and
provided promising and comparable evaluation results as summarized in Table 3.
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Table 3. Comparison results against the state-of the-art breast cancer deep learning
classification models.

Feature Extraction Approach Classifier Dataset Sensitivity (%) Accuracy(%) Reference

Microcalcification detection
using digital mammograms

Support-vector
machines INbreast 92 - [68]

Deep neural networks are used
for feature extraction and breast

lesion classification.
CNN INbreast - 96.8 [62]

End-to-end CAD system for
breast mass segmentation and

classification
YOLO classifier INbreast 95.6 89.9 [45,66]

AlexNet, ResNet-18, ResNet-50,
and ResNet-10 deep feature

fusion

Support-vector
machines

CBIS-DDSM
miniMIAS

98
99

97.9
97.4 [69]

Transfer learning via
GoogleNet, AlexNet, VGG-16

GoogLeNet
AlexNet
VGG-16

miniMIAS
98.3
98.3
98.7

98.3
98.3
98.3

[43]

Gist, HOG, SIFT, LBP, ResNet,
VGG, and DenseNet were used

to extract and fuse features.

SVM, XGBoost,
Naïve Bayes,

k-NN, DT,
AdaBoosting

CBIS-DDSM
INbreast

98.6
57.2

90.9
87.9 [64]

Transfer learning via
Inception-v2, and GoogleNet XGBoost DDSM 99.7 92.8 [67]

Deep feature fusion using
GoogleNet, VGG-16, VGG-19,

and ResNet-50.
Pre-trained CNNs CBIS-DDSM

miniMIAS 98 96.6 [63]

Transfer learning and LR-PCA
are used to select features from

pseudo colored images.

LR-PCA and
Transfer Learning

miniMIAS
INbreast

99.60
98.28

98.80
98.60 [18]

Pre-trained CNNs and a
Univariate filter-based

approach are used to choose
features in a cascaded FS

architecture.

Cascaded
pre-trained CNNs
and a univariate

filter-based
approach

INbreast 98.06 98.50 Proposed
Approach

To conclude this study, we proposed a cascaded feature selection framework for
selecting nonredundant important features for the classification of breast lesions in digital
mammograms. This research builds on our prior work using transfer learning to classify
breast cancer. The features are selected using two cascaded FS stages. In the initial stage,
pre-trained CNNs such as AlexNet, VGG, and GoogleNet are utilized to extract shallow and
deep features in the region of interest in breast mammograms. The usage of the univariate-
based FS paradigm in the second stage strengthens the selection of nonredundant relevant
characteristics in the returned set of features from the first stage, which can assist overcome
the dimensionality curse and multicollinearity difficulties in the retrieved deep features.
The features are ordered based on similarities, and the top variables, 20 features, are used to
classify breast lesions. The retrieved key features have been analyzed using signal profiles
and hypothesis testing (ANOVA F-statistics test). Hence, it has been calculated whether or
not there is a significant difference between the median values of benign and malignant
samples. The importance of these features for the classification of normal/up-normal
breast lesions is ensured by the signal profile in conjunction with the proper p-values of
each on/off feature. The on/off features were utilized to train six different families of
classical classifiers: decision trees, discriminant analysis, SVM, KNN, naive Bayes, and
ensemble. There have been fifteen classification experiments. In each experiment, the
features extracted from pre-trained CNNs (AlexNet, VGG, and GoogleNet) are fed into one
of the univariate filter-based FS methods (PCC, CC, ED, and MI) to determine the degree
of similarity between the pre-trained CNN features and the ideal features before they are
submitted to the classical classifiers. The best performance was obtained by applying
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a hybrid set of features from all univariate FS methods. The performance of our CAD
system’s proposed framework was compared to that of similar systems reported in the
literature, and the results of the comparison revealed that the proposed one outperforms
all other systems.
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We’ve added the abbreviations for more convenience, listing each acronym with its related term

in the article.

CNN Convolutional Neural Network
FS Feature Selection
CAD Computer-Aided Diagnosis
FDC Feature Dimensionality Curse
PCA Principal Component Analysis
SVM Support Vector Machine
CLAHE Contrast-Limited Adaptive Histogram Equalization
PCC Pearson Correlation Coefficient
CC Cosine Coefficient
ED Euclidean Distances
MI Mutual Information
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