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Abstract: This paper appertains the presentation of a Clenshaw–Curtis rule to evaluate highly
oscillatory Fredholm integro-differential equations (FIDEs) with Cauchy and weak singularities.
To calculate the singular integral, the unknown function approximated by an interpolation polynomial
is rewritten as a Taylor series expansion. A system of linear equations of FIDEs obtained by using
equally spaced points as collocation points is solved to obtain the unknown function. The proposed
method attains higher accuracy rates, which are proven by error analysis and some numerical
examples as well.
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1. Introduction

Integro-differential equations (IDEs) are studied in physics, biology, and engineering
applications, as well as in advanced integral equations literature. Applications of the IDEs
in electromagnetic theory, dispersive waves, and ocean circulations are enormous [1–6].
The addressed paper considers the highly oscillatory singular FIDEs of the following kind:

ν

∑
µ=0

Pµ(x)y(µ)(x) = f (x) +Q(x)∫
1

−1
k(x, t)y(t)dt, (1)

along with the initial condition:

y(µ)(−1) = αµ, 0 ≤ µ ≤ ν − 1. (2)

The given highly oscillatory kernel function k(x, t) possesses weak and Cauchy sin-

gularities, i.e., k(x, t) = w(t)eikt

t−x , w(t) = (1 + t)α(1 − t)β. P(x), f (x), Q(x) are smooth functions
on [−1, 1], whereas y(x) is the unknown function that needs to be determined. The FIDEs
having weak or strong singularities are considered in [7]. To gain analytical approxima-
tion, the author used the power series expansion technique. However, for the convergence
of the method, the author applied a ratio test and proved that the proposed method gives
exact solutions if the solutions of the equations are finite-degree polynomials. Otherwise,
by increasing the number of polynomials, better accuracies are obtained.
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For a FIDE of the kind

un(t) =
n0

∑
i=0

ai(t)u(i)(t) +
n0

∑
i=0

∫
b

0
ki(t, s)u(i)ds + f (t), 0 ≤ t ≤ b,

with
n−1

∑
i=0

[αiju
(i)(0) + βiju

(i)(b)] = 0, j = 1, 2,⋯, n,

(3)

a reproducing kernel method is introduced in [8], where the kernel function in the equation
is a weakly singular kernel. The method converts the weakly singular kernel into a loga-
rithmic kernel to a Kalman kernel. Furthermore, a smooth transformation helps to remove
the weak singularity of the Kalman kernel. The authors claimed that the reproducing kernel
method is not restricted by the order of the equation.

A quadrature formula is applied to discretize the FIDEs. Based on the behavior of the ex-
act solution, the special graded grid points are used for piecewise polynomial collocation
method [9]. Smooth parts of the integrands are approximated by the piecewise polynomial
interpolation, whereas the singular parts are integrated exactly. By the same authors in [10], two
approaches, an integral equation reformation and discrete Galerkin method, are used to find
the approximations for the solutions and derivatives of the nth order weakly singular FIDEs.
The approximations to the solutions are piecewise polynomial functions. In another research
work, the Taylor series expansion along with the Galerkin method is considered for FIDEs with
Cauchy singularity. The Legendre polynomials are used as basis to approximate the solution of
the FIDEs [11]. The traditional piecewise homotopy perturbation method is extended for FIDEs
with weak singular kernels. The accuracy and calculation speed with the Gauss quadrature rule
and piecewise low-order interpolation is significantly improved in [12].

For an FIDE

u′(t) = a(t)u(t) + ∫
b

0
k(t, s)u(s)ds + f (t), 0 ≤ t ≤ b,

with αu(0) + βu(b) = γ, α, β, b, γ ∈ (−∞,∞) and α + β ≠ 0,
(4)

with weak singular or other non-smooth kernels, the regularity properties of the solutions
are briefly studied by the author in [13]. These obtained results are further used in the anal-
ysis to solve such problems by piecewise polynomial collocation method. As compared
to highly oscillatory Volterra integral equations, Fredholm integral equations with high
oscillations have received less attention by researchers. Nevertheless, there is still a gap to
be filled to propose the approximate methods to obtain the numerical solutions of highly
oscillatory FIDEs along with the singular kernel functions. The purpose of this paper is to
represent an efficient algorithm for such highly oscillatory singular FIDEs and try to fill
this gap. The main novelty is the simplicity and accuracy of the proposed method. This
research work aims at introducing an approximation method for a highly oscillatory Fred-
holm integro-differential equation. The general form of the integral term in Equation (1)
with highly oscillatory function, weak singularities and Cauchy singularity in [−1, 1] is

defined as ⨍1
−1

w(t)y(t)eikt

t−x dt, w(t) = (1 + t)α(1 − t)β, −1 < α, β < 1, x ∈ (−1, 1).
Along with weak and Cauchy singularities, the highly oscillatory FIDE (1) is im-

possible to solve by the classical methods discussed above. To overcome such adversity,
an approximated method following the steps of the Clenshaw–Curtis rule is presented,
which interpolates the unknown function with an interpolation polynomial HN(x) of degree
N. In the integral term, the interpolation polynomial extended to a sum of Chebyshev series
of the first kind is rewritten in the form of truncated Taylor series expansion for x ∈ (−1, 1) .
The pivotal point of this method is that efficient results with higher accuracy rates can be
achieved for smaller values of N and m, where m defines the degree of the Taylor series
expansion of the Chebyshev polynomial. With the evaluation of the highly oscillatory
singular integral, a system of linear equations is constructed for Equation (1) by using
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the equally spaced points as the collocation points. This system is eventually solved to
obtain the unknown coefficients for the unknown function y(x).

The rest of this paper is organized as follows: Section 2 illustrates the methodology of
a newly proposed method briefly, and obtains a system of linear equations. Section 3 gives
an idea of error estimation. The efficiency and accuracy of the method is demonstrated
in Section 4 by some numerical examples.

2. Methodology

A function y(x) can be approximated by its interpolation polynomial HN(x) of de-
gree N at Chebyshev points of the second kind, xj = cos jπ

N , j = 0, 1,⋯N. We rewrite
the interpolation polynomial in terms of the Chebyshev series as [14]:

y(x) ≈ HN(x) =
N

∑
n=0

′′anTn(x), (5)

where Tn(x) is the Chebyshev polynomial of the first kind of degree n, double prime denotes
a sum whose first and last term are halved and an are the coefficients which can be efficiently
computed by FFT [15,16], defined as

an =
2
N

N

∑
j=0

′′y(xj)Tn(xj).

Equation (5) can further be written in the matrix form as follows:

y(x) =T(x)A,

T = [T0(x), T1(x),⋯, TN(x)], A = [a0, a1,⋯, aN]T .
(6)

Furthermore, the derivative of a function y(µ)(x), µ = 0, 1,⋯, in terms of Chebyshev
series and matrix form is defined as [17]

y(µ)(x) = T(x)A(µ),

y(µ)(x) = 2µT(x)M(µ)A,
(7)

where the matrix M(N+1)×(N+1) for odd and even values of N is defined, respectively, as:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/2 0 3/2 0 5/2 ⋯ N/2
0 0 2 0 4 0 ⋯ 0
0 0 0 3 0 5 ⋯ N
⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 0 0 0 ⋯ N
0 0 0 0 0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(N+1)×(N+1)

,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/2 0 3/2 0 5/2 ⋯ 0
0 0 2 0 4 0 ⋯ N
0 0 0 3 0 5 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 0 0 0 ⋯ N
0 0 0 0 0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(N+1)×(N+1)

.

By considering the Equation (5) for integral ⨍1
−1

w(t)y(t)eikt

t−x dt in (1), it transforms into
the following:

⨍
1

−1

∑N
n=0

′′w(t)anTn(t)eikt

t − x dt =
N

∑
n=0

anRn(x, k), (8)
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where Rn(x, k) are called the modified moments and defined as:

Rn(x, k) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Bn(x, k) = ⨍1
−1

Tn(t)eikt

t−x dt, for w(t) = 1,

Bn(x, k, α, β) = ⨍1
−1

w(t)Tn(t)eikt

t−x dt, for w(t) ≠ 1.

The following subsection appertains the Clenshaw–Curtis method with truncated
Taylor series to evaluate the moments Rn(x, k) accurately.

2.1. Computation of the Bn(x, k) Moments

For moments Bn(x, k), we transform these moments into a singular and non-singular
integrals by applying some basic steps as follows:

⨍
1

−1

Tn(t)eikt

t − x dt = ∫
1

−1

Tn(t) − Tn(x)
t − x eiktdt + Tn(x)⨍

1

−1

eikt

t − x dt. (9)

For the Cauchy singular integral ⨍1
−1

eikt

t−x dt, an explicit calculation has been performed
in [16] as

⨍
1

−1

eikt

t − x dt = eikx[sgn(k)πi + E1(ik(1 + x)) − E1(ik(x − 1))], (10)

where E1(z) = ∫∞z e−t

t dt is the exponential integral, and sgn(x) is the sign function. On
the other hand, by applying the truncated Taylor series expansion for Tn(t) in non-singular
integral, we obtain

∫
1

−1

Tn(t) − Tn(x)
t − x eiktdt = ∫

1

−1

[(t − x)T′n(x) + (t−x)2
2! T′′n(x) +⋯+

(t−x)m
m! Tm

n (x)]
t − x eiktdt

= T
′

n(x)∫
1

−1
eiktdt +

T
′′

n(x)
2!

∫
1

−1
(t − x)eiktdt +⋯+

Tm
n (x)
m!

∫
1

−1
(t − x)m−1eiktdt

= [T
′

n(x),
T
′′

n(x)
2!

,⋯,
Tm

n (x)
m!

] [A0, A1,⋯, Am−1]T ,

(11)

where

A0
= ∫

1

−1
eiktdt, A1

= ∫
1

−1
(t − x)eiktdt, Am−1

= ∫
1

−1
(t − x)m−1eiktdt.

To calculate the moments Am, a simple recurrence relation is illustrated by integrating
by parts

Am
= ∫

1

−1
(t − x)meiktdt

Am
= (1 − x)m eikt

ik
− (−1 − x)m e−ikt

ik
+

m
ik

Am−1, m ≥ 1,

(12)

with the initial value A0
=

eikt−e−ikt

ik , where m denotes the derivatives of the relative terms.

2.2. Computation of the Bn(x, k, α, β) Moments

For the moments Bn(x, k, α, β) = ⨍1
−1

w(t)Tn(t)eikt

t−x dt, by following the initial necessary
steps as above, we obtain

⨍
1

−1

w(t)Tn(t)eikt

t − x dt = ∫
1

−1

w(t)(Tn(t) − Tn(x))
t − x eiktdt + Tn(x)⨍

1

−1

w(t)eikt

t − x dt. (13)
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In addition, by applying the truncated Taylor series expansion for the left integral,
it becomes

∫
1

−1

w(t)(Tn(t) − Tn(x))
t − x eiktdt = [T

′

n(x),
T
′′

n(x)
2!

,⋯,
Tm

n (x)
m!

] [Ã0, Ã1,⋯, Ãm−1]T , (14)

where

Ãm
= ∫

1

−1
w(t)(t − x)meiktdt, m ≥ 0.

Ãm clearly possesses some weak singularities as well as high oscillation and cannot
be calculated easily without any numerical method. The following theorem presents
the steepest descent method to evaluate this integral significantly accurately.

Theorem 1. Suppose that a function g(t) is analytic in the half-strip of the complex plane −1 ≤

R(x) ≤ 1 and I(x) ≥ 0, and satisfies that

∫
1

−1
∣g(t + iR)∣dt ≤ MRα+β+mek0R, 0 < k0 < k, (15)

for M and k0 constants, the integral I[g] = ∫ 1
−1 g(t)w(t)(t − x)meiktdt can be evaluated as

I[g] = i1+αe−ik

k1+α
∫
∞

0
g( − 1 +

it
k
)(2 − it

k
)

β

( − 1 +
it
k
− x)

m
tαe−tdt

+
(−1)β(i)β+1eik

k1+β
∫
∞

0
g(1 + it

k
)(2 + it

k
)

α

(1 + it
k
− x)

m
tβe−tdt.

(16)

Proof. The integrand g(t)w(t)(t − x)meikt is analytic in the half-strip of the complex plane:
−1 ≤ R(x) ≤ 1 and I(x) ≥ 0; then, based on the Cauchy’s theorem, we obtain

∫
Γ1+Γ2+Γ3+Γ4+Γ5+Γ6+Γm

g(t)w(t)(t − x)meiktdt = 0, (17)

where paths of the integration are taken in counterclockwise direction and shown in the Figure 1.

Figure 1. The integration path for integral I[g].
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Since Γ1 = 1 + ip, p ∈ [r, R], where R is a large number, then

∫
Γ1

=∫
R

r
g(1 + ip)(2 + ip)α(−ip)β(1 + ip − x)meik(1+ip)idp

=
(−1)βi1+βeik

k1+β
∫

kR

kr
g(1 + it

k
)(2 + it

k
)

α

(1 + it
k
− x)mtβe−tdt.

Similarly,

∫
Γ3

= −
i1+αe−ik

k1+α
∫

kR

kr
g( − 1 +

it
k
)(2 − it

k
)

β

(−1 +
it
k
− x)mtαe−tdt.

In addition,

»»»»»»»»
∫

Γ2

»»»»»»»»
=

»»»»»»»»
∫

1

−1
g(t + iR)eik(t+iR)(t + iR + 1)α(1 − t − iR)β(t + iR − x)mdt

»»»»»»»»
≤ e−kR ∫

1

−1

»»»»»»g(t + iR)(t + iR + 1)α(1 − t − iR)β(t + iR − x)m»»»»»»dt → 0, as R →∞.

For Γ0, by taking t + 1 = reiθ and 0 ≤ θ ≤ π
2 ,

∫
Γ0

= − ire−ik ∫
π
2

0
g(−1 + reiθ)eikreiθ

eiθ(reiθ)α(2 − reiθ)β(−1 + reiθ
− x)mdθ (18)

then

»»»»»»»»
∫

π
2

0
g(−1 + reiθ)(2 − reiθ)β(−1 + reiθ

− x)meikreiθ

ei(1+α)θdθ − ∫
π
2

0
g(−1)2β(−1 − x)mei(1+α)θdθ

»»»»»»»»
=

»»»»»»»»
∫

π
2

0
g(−1 + reiθ)(2 − reiθ)β(−1 + reiθ

− x)meikreiθ

ei(1+α)θdθ − ∫
π
2

0
g(−1)2β(−1 − x)meikreiθ

ei(1+α)θdθ

+∫
π
2

0
g(−1)2β(−1 − x)meikreiθ

ei(1+α)θdθ − ∫
π
2

0
g(−1)2β(−1 − x)mei(1+α)θdθ

»»»»»»»»
≤∫

π
2

0
e−krsin(θ)»»»»»»g(−1 + reiθ)(2 − reiθ)β(−1 + reiθ

− x)m − g(−1)2β(−1 − x)m»»»»»»dθ

+
»»»»»»g(−1)»»»»»»2

β(−1 − x)m ∫
π
2

0

»»»»»»e
ikreiθ

− 1
»»»»»»dθ

≤∫
π
2

0

»»»»»»g(−1 + reiθ)(2 − reiθ)β(−1 + reiθ
− x)m − g(−1)2β(−1 − x)m»»»»»»dθ

+
»»»»»»g(−1)»»»»»»2

β(−1 − x)m ∫
π
2

0

»»»»»»»»
eikreiθ

− 1
»»»»»»»»
dθ.

It follows

»»»»»»»»
∫

π
2

0
g(−1 + reiθ)(2 − reiθ)β(−1 + reiθ

− x)meikreiθ

ei(1+α)θdθ − ∫
π
2

0
g(−1)2β(−1 − x)mei(1+α)θdθ

»»»»»»»»
→ 0, r → 0.

For r → 0, there exist

∫
π
2

0
g(−1 + reiθ)(2 − reiθ)β(−1 + reiθ

− x)meikreiθ

ei(1+α)θdθ = ∫
π
2

0
g(−1)2β(−1 − x)mei(1+α)θdθ

=
g(−1)2β(−1 − x)m

i(1 + α) [ei(1+α) π
2 − 1].

(19)
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By Equations (19) and (18), we yield

∫
Γ0

g(t)w(t)(t − x)meiktdt → 0, r → 0.

Similarly, for all integration paths Γm → 0, r → 0.
For r → 0, R →∞, Equation (17) implies

lim
r→0,R→∞

∫
Γ4+Γ5+Γ6

g(t)w(t)(t − x)meiktdt = − lim
r→0,R→∞

∫
Γ1+Γ2+Γ3+Γm

g(t)w(t)(t − x)meiktdt = 0. (20)

For the calculation of integrals involving weight functions tαe−t and tβe−t, the general-
ized Gauss–Laguerre quadrature rule can be used to approximate these integrals. For this
purpose, let xj and wj be the zeros and weight functions of generalized Gauss–Laguerre
quadrature rule, respectively, then these integrals are written as

Q̂l[g] =
i1+αe−ik

k1+α

l

∑
j=1

wjg( − 1 +
itj

k
)(2 −

itj

k
)

β

( − 1 +
itj

k
− x)

m

+
(−1)β(i)β+1eik

k1+β

l

∑
j=1

wjg(1 +
itj

k
)(2 +

itj

k
)

α

(1 +
itj

k
− x)

m
.

(21)

The above theorem is proved for a highly oscillatory weakly singular integral which
has an analytic function; however, this can be extended to the integral Ãm of our choice.

The integral ⨍1
−1

w(t)eikt

t−x dt in Equation (13) is also explicitly calculated by steepest
descent method in [18,19].

With the successful evaluation of the moments Rn(x, k), the Equation (1) is transformed
after some necessary substitutions as

ν

∑
µ=0

2µPµ(x)T(x)M(µ)A = f (x) +Q(x)ARn(x, k). (22)

Furthermore, to obtain the unknown coefficients A in Equation (22), we can apply
collocation method for equally spaced points xi as

ν

∑
µ=0

2µPµT(xi)M(µ)A = F +QAR(xi, k), (23)

where

Pµ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pµ(x0) 0 ⋯ 0
0 Pµ(x1) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Pµ(xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q(x0) 0 ⋯ 0
0 Q(x1) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Q(xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R(xi, k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R0(x0, k) R1(x0, k) ⋯ Rn(x0, k)
R0(x1, k) R1(x1, k) ⋯ Rn(x1, k)

⋮ ⋮ ⋱ ⋮
R0(xN , k) R1(xN , k) ⋯ Rn(xN , k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T(x0)
T(x1)
⋮

T(xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (x0)
f (x1)
⋮

f (xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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For unknown coefficient vector A, the Equation (23) is obtained in matrix form

(
ν

∑
µ=0

2µPµT(xi)M(µ)
−QR(xi, k))A = F

WA = F,

(24)

where W is an (n + 1) × (n + 1) matrix and corresponds to a system of linear equations that
can be solved to obtain the unknown coefficients A. Similarly for the initial conditions (2),
we obtain

y(µ)(−1) = 2µT(−1)M(µ)A = αµ. (25)

Consequently, by replacing the rows of W with the rows of Equation (25), the new
obtained system of equations W̃A = F is solved for the unknown coefficients A. Once
the unknown coefficients are derived, these can be substituted in the Equation (5) to
obtain the unknown function y(x). It should be noted that the matrix W of the linear
system of equations WA = F (24) can be ill-conditioned, which indicates that increasing
the parameter N does not guarantee the greater accuracy of the approximated solution.
To avoid such adversity, small values of N are taken as the proposed method, giving more
accurate results for smaller N. The value of the N in numerical examples is taken as N ≤ 15.
The increment in the N values gives no such improvement in the accuracy.

3. Error Analysis

Theorem 2 ([15]). A Lipschitz continuous function f on [−1,1] has a unique representation
as a Chebyshev series

f (x) =
∞

∑
j=0

ajTj(x), (26)

which is absolutely and uniformly convergent. The coefficients are given for j ≥ 1 by the formula

aj =
2
π ∫

1

−1

f (x)Tj(x)
√

1 − x2
dx, (27)

for j = 0, the factor 2
π

changes to 1
π

.

Lemma 1 ([15,20]).

• If f is analytic with ∣ f (z)∣ ≤ M in the region bounded by the ellipse with foci ±1 and major
and minor semiaxis lengths summing to ρ > 1, then for each j ≥ 0,

∣aj∣ ≤
2M
ρj

. (28)

• For an integer κ0 ≥ 0, let f and its derivatives through f (κ0−1) be absolutely continuous
on [−1, 1] and suppose the κ0th derivative of bounded variation Vκ0 . Then for j ≥ κ0 + 1,
the Chebyshev coefficients of f satisfy:

∣aj∣ ≤
2Vκ0

π j(j − 1)⋯(j − ν) . (29)

Theorem 3. Suppose that y(t) is an analytic function and satisfies the conditions of the Theorem 1;
then, the error bound for the integral I[y] = ∫ 1

−1 w(t)y(t)(t − x)meiktdt, m ≥ 0, is denoted as

I[y] − Q̂l[y] = E[y] = O( l!
2l!

min{Γ(l + α + 1)
k2l+α+1

,
Γ(l + β + 1)

k2l+β+1
}), k ≫ 1. (30)
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Proof. For integral ∫+∞0 f (x)xσe−xdx, σ > −1, the error formula for the l−point general
Gauss–Laguerre quadrature rule is defined as [21]

l!Γ(l + σ + 1)
(2l)! f (2l)(ζ), 0 < ζ < +∞. (31)

By applying the above formula for the error E[y], we obtain

E[y] ≤ l!Γ(l + α + 1)
k1+α(2l!)

»»»»»»»»
[ f (−1 +

it
k
)(2 − it

k
)β(−1 − x +

it
k
)m]

»»»»»»»»

2l

t=ξ1

+
l!Γ(l + β + 1)

k1+β(2l!)
»»»»»»»»
[ f (1 + it

k
)(2 + it

k
)α(1 − x +

it
k
)m]

»»»»»»»»

2l

t=ξ2

=
l!

(2l)!{
Γ(l + α + 1)

k2l+α+1

»»»»»»»»
[ f (−1 + iζ1)(2 − iζ1)β(−1 − x + iζ1)m]

»»»»»»»»

2l

ζ1=
ξ1
k

+
l + β + 1

k2l+β+1

»»»»»»»»
[ f (1 + iζ2)(2 + iζ2)α(1 − x + iζ2)m]

»»»»»»»»

2l

ζ2=
ξ2
k

},

where ζ1, ζ2, ξ1, ξ2 ∈ (0,+∞). For k ≫ 1, the error for E[y] decays asymptotically as

O( l!
2l! min{ Γ(l+α+1)

k2l+α+1 , Γ(l+β+1)
k2l+β+1 }), k ≫ 1, which proves the theorem.

Theorem 4. For an analytic function y(t) satisfying the conditions of the Theorem 2 and Lemma 1,

the error bound for integral term ⨍1
−1

w(t)y(t)eikt

t−x dt for the proposed method is defined as

E[y] ≤
2(N + 1)N+1l!Vκ0

π(2l)!(κ0 − 2m)(N − κ0)κ0−2m
min{Γ(l + α + 1)

k2l+α+1
,

Γ(l + β + 1)
k2l+β+1

}. (32)

Proof. The error between a function y(t) and its Taylor series at a point x is defined as

Rm(x) = (t − x)m+1

(m + 1)! y(m+1)(ς), ∣t − ς∣ < ∣t − x∣. (33)

For an analytic function y(t) and its interpolation polynomial HN(t), the error bound
is considered by the Taylor’s series expansion as follows:

E[y] =
»»»»»»»»
⨍

1

−1

(y(t) − HN(t))w(t)eikt

t − x dt
»»»»»»»»

=

»»»»»»»»
⨍

1

−1

(y(m+1)(ς) − H(m+1)
N (ς))w(t)(t − x)(m+1)eikt

(m + 1)!(t − x) dt
»»»»»»»»

≤

∥(y(m+1)(ς) − H(m+1)
N (ς))∥∞

(m + 1)! ⨍
1

−1
∣w(t)(t − x)meikt∣dt

(34)

by applying the Theorem 3 and bounds for ∥y(m+1)(t) − H(m+1)
N (t)∥∞ [22]

E[y] ≤
2(N + 1)2m+1l!Vκ0

π(2l)!(N − 2m)2m+1(κ0 − 2m)(N − κ0)κ0−2m
min{Γ(l + α + 1)

k2l+α+1
,

Γ(l + β + 1)
k2l+β+1

}.
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Remark 1. Another practical error estimation e(i)N = ∣y(i) − H(i)
N ∣ can be adduced for Equation (1),

substituting its approximated polynomial interpolation

r

∑
i=0

Pi(x)H(i)
N (x) = f (x) +Q(x)∫

1

−1
k(x, t)HN(t)dt + DN(x), (35)

where DN(x) is the residual function associated with HN(x). Subtracting the Equation (35) from (1),
we obtain

r

∑
i=0

Pi(x)e(i)N (x) −Q(x)∫
1

−1
k(x, t)eN(t)dt = −DN(x), (36)

by solving this equation, the residual function should be zero DN(x) ≃ 0 or less than the error
estimated in the above lemmas.

4. Numerical Examples

Example 1. In the following example, we have presented an absolute error estimation for the mo-
ments Rn(x, k). The approximated values are calculated by the proposed method, and the ex-
act values are obtained in Mathematica11 software. The Tables 1 and 2 illustrate the efficiency
of the method, as for really small values of N, higher error estimations are derived. The pro-
posed method is simple and gives good results. Table 1 shows the absolute error for the moments

Bn(x, k) = ⨍1
−1

Tn(t)eikt

t−x dt for x = 0.2. However, Table 2 represents the absolute error for the mo-

ments Bn(x, k, α, β) = ⨍1
−1

w(t)Tn(t)eikt

t−x dt for w(t) = (1 + t)α(1 − t)β, x = 0.2, α = 0.5, β = −0.5,
and the value of m should be equal to N.

Table 1. The absolute error for Bn(x, k).

N k = 10 k = 100 k = 1000 k = 10,000

1 9.995 × 10−16 1.019 × 10−15 8.371 × 10−15 2.791 × 10−13

3 4.010 × 10−15 3.730 × 10−15 2.318 × 10−14 7.955 × 10−13

5 4.440 × 10−15 3.468 × 10−15 3.488 × 10−14 1.182 × 10−12

10 1.194 × 10−13 9.460 × 10−15 2.244 × 10−14 6.008 × 10−13

15 3.653 × 10−11 1.643 × 10−13 1.025 × 10−13 1.727 × 10−13

Table 2. The absolute error for Bn(x, k, α, β).

N k = 10 k = 100 k = 1000

1 4.126 × 10−14 2.792 × 10−14 1.400 × 10−14

3 2.779 × 10−14 2.823 × 10−14 2.687 × 10−14

5 2.410 × 10−13 2.705 × 10−14 4.807 × 10−14

10 4.100 × 10−14 4.279 × 10−14 3.397 × 10−14

15 3.698 × 10−12 3.867 × 10−13 2.809 × 10−13

Example 2. A second-order FIDE is

y
′′

(x) + xy′(x) − xy(x) + ⨍
1

−1

y(t)eikt

t − x dt = f (x)

y(−1) = −0.8415, y′(−1) = 0.5403,
(37)

where the value of f (x) is taken as f (x) = − sin(x) + x cos(x) − x sin(x) + ⨍1
−1

sin(t)eikt

t−x dt. The error
for this equation is provided for N = 2, N = 5 in Table 3. It is shown that even with small values
of m, high accuracy can be achieved for large values of k, i.e., k = 104. Figure 2 also presents
this phenomenon.
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Table 3. The absolute error for k = 104.

N = m = 2 N = 5, m = 2

x Error x Error

−0.5 5.551 × 10−17 −0.714 1.023 × 10−14

0 1.241 × 10−16 −0.428 1.282 × 10−14

0.5 2.482 × 10−16 −0.142 5.614 × 10−15

- - 0.142 3.619 × 10−15

- - 0.428 2.242 × 10−16

- - 0.714 5.709 × 10−15

Figure 2. The absolute error for N = 5, m = 2.

Example 3. A second-order weak singular FIDE

(1 + x2)2y
′

(x) + x3 ⨍
1

−1

w(t)y(t)eikt

t − x dt = f (x)

w(t) = (1 + t)α(1 − t)β, α = −0.25, β = 0.25, with y(−1) = 1,

(38)

for f (x) chosen as f (x) = −(1 + x2)22π sin(2πx) + x3 ⨍1
−1

w(t) cos(2πx)eikt

t−x dt, the absolute error is
presented at equally spaced points in Table 4 and Figure 3.

Table 4. The absolute error for N = 5.

N = m = 5

x k = 1000 k = 10,000

−0.714 8.909 × 10−15 3.936 × 10−14

−0.429 1.299 × 10−15 3.718 × 10−14

−0.143 7.268 × 10−15 2.717 × 10−14

0.143 1.116 × 10−14 1.077 × 10−14

0.429 9.392 × 10−15 4.247 × 10−14

0.714 2.669 × 10−15 1.779 × 10−15
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Figure 3. The absolute error for N = 5, m = 5.

Example 4. For FIDE of the following form

log (1 − x
1 + x

)y
′

(x) + x2 ⨍
1

−1

w(t)y(t)eikt

t − x dt = f (x)

with f (x) = 2
9

x2
+

2
7

x4
+

2
5

x6
+

2
3

x8
+ 2x10

+ (9x8
+ x11) log (1 − x

1 + x
)

(39)

the error for w(t) = (1 + t)α(1 − t)β, α = −0.5, β = −0.5, is shown in Table 5, and for larger values of
k, Figure 4 shows the absolute error for N = 10.

Table 5. The absolute error for N = 5.

N = m = 5

x k = 10

−0.714 4.652 × 10−16

−0.429 2.544 × 10−16

−0.143 3.940 × 10−16

0.143 5.534 × 10−16

0.429 5.003 × 10−17

0.714 2.224 × 10−16

Figure 4. The absolute error for N = 10, m = 10.
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Example 5. Consider the FIDE as

(x − 1)3(x − 2
5
)2y′(x)+x2 ⨍

1

−1

y(t)eikt

t − x dt = f (x),

with y(−1) = y(1) = 0,
(40)

where k = 0 and f (x) = 2(−1 + x)3(− 2
5 + x)2x + x2(2x + (−1 + x2) ln [ 1−x

1+x ]). The absolute error
for this equation is compared with the results given in [7,23]. The proposed method in [7] produces
solution for N ≥ 2, whereas [23] gives an absolute error of order 10−7 for N = 100. The method
introduced in this paper converges to the exact solution for N ≥ 1. The Table 6, presents the absolute
error for N = 1, N = 2, N = 5.

Table 6. The absolute error for N = 1, 2, 5.

N = m = 1 N = m = 2 N = m = 5

x Error x Error x Error

−0.333 0 −0.5 0 −0.714 8.882 × 10−16

0.333 0 0 2.776 × 10−16 −0.429 2.220 × 10−16

- - 0.5 1.665 × 10−16 −0.143 1.665 × 10−16

- - - - 0.143 1.632 × 10−17

- - - - 0.429 0
- - - - 0.714 0

Example 6. For the FIDE of the following form

y
′

(x) + ⨍
1

−1

w(t)y(t)eikt

t − x dt =
2
3

x2
+ 7x4

+
2
5
+ x5 log (1 − x

1 + x
)

w(t) = (1 + t)α(1 − t)β, α = 0.25, β = −0.75,

(41)

Table 7 for N = 10 and Figure 5 for N = 15 represent the absolute error.

Table 7. Absolute error for N = 10.

N = m = 10

x k = 100

−0.833 1.716 × 10−14

−0.667 1.603 × 10−14

−0.500 3.257 × 10−14

−0.333 5.064 × 10−15

−0.167 3.659 × 10−14

0 3.635 × 10−14

0.167 3.581 × 10−14

0.333 1.811 × 10−14

0.500 2.179 × 10−14

0.667 4.369 × 10−14

0.833 1.046 × 10−14
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Figure 5. The absolute error for N = m = 15.

Example 7. A second-order weak singular FIDE

y
′′

(x) + 1
x y′(x) + y(x) + ⨍

1

−1

w(t)y(t)eikt

t − x dt = f (x)

w(t) = (1 + t)α(1 − t)β, α = 0.5, β = 0.5, with y(−1) = 2.719, y′(−1) = −5.437.

(42)

For f (x) = 2ex2
+ 4x2ex2

+ 1
x 2xex2

+ ex2
+ ⨍1

−1
w(t)ex2

eikt

t−x dt, the absolute error is presented
at equally spaced points in Table 8 and Figure 6 for small values of N, whereas k is taken to be
large enough.

Table 8. The absolute error for k = 10, 000.

N = m = 3

x Error

−0.6 8.882 × 10−16

−0.2 8.882 × 10−16

0.2 8.006 × 10−16

0.6 1.986 × 10−15

Figure 6. The absolute error for N = 5, m = 5.
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5. Conclusions

In this paper, we have given a really simple but efficient method to solve the highly
oscillatory singular FIDEs. For a small number of equally spaced points xi, i = 0, 1, 2,⋯, N
as collocation points, the proposed method provides efficient higher accuracy. We do not
need to take the higher mth degree Taylor series expansion of the Chebyshev polynomial,
as even for m = 1 we obtain satisfactory approximation to the exact values. However,
for weak singularities, the w(t) ≠ 1 values of m and N are taken to be identical. All the
exact values of the integrals are calculated in Mathematica11 software, whereas the code
for the proposed method is developed in MatlabR2018a.
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