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Abstract: Public live streaming web cameras are quite common now and widely used by drivers for
qualitative analysis of traffic conditions. At the same time, they can be a valuable source of quantita-
tive information on transport flows and speed for the development of urban traffic models. However,
to obtain reliable data from raw video streams, it is necessary to preprocess them, considering the
camera location and parameters without direct access to the camera. Here we suggest a procedure for
estimating camera parameters, which allows us to determine pixel coordinates for a point cloud in
the camera’s view field and transform them into metric data. They are used with advanced moving
object detection and tracking for measurements.

Keywords: depth map; radial distortion; perspective distortion; camera calibration; transport traffic
statistics
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1. Introduction

There are many ways to measure traffic [1–3]. The most common in the practice of
road services are radars combined with video cameras and other sensors. The measuring
complexes are above or at the edge of the road. Inductive sensors are the least dependent
on weather conditions and lighting. The listed surveillance tools assume installation by the
road or on the road. Providers of mobile navigator applications receive data about the car’s
movement from the sensors of mobile devices. Autonomous cars collect environmental
information using various sensors, including multiview cameras, lidars, and radars. The
results of the data collection systems of road services, operators of navigators, and au-
tonomous cars are usually not available to third-party researchers. Notably, pioneering
traffic analysis work describes processing video data recorded on film [3] (pp. 3–10).

Operators worldwide install public web cameras, many of which look at city highways;
e.g., there are more than a hundred similar cameras available in Vladivostok.

A transport model verification requires actual and accurate data on transport traffic,
covering a wide range of time intervals with substantial transport activity. Public live-
streaming cameras can be a good and easily accessible source of data for that kind of
research. Of course, this accessibility is relative. Video processing involves storing and
processing large amounts of data.

The ref. [4] demonstrates road traffic statistics collection from a public camera video,
where the camera has little perspective and radial distortions in the region of interest in
the road (Region Of Interest, ROI). However, the distortions make significant changes in
images for the majority of public cameras. The current article generalizes this approach to
the case where a camera has essential radial and perspective distortions.

Street camera owners usually do not announce camera parameters (focal length, radial
distortion coefficients, camera position, orientation). Standard calibration procedures with
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a pattern rotation can be useless for cameras on a wall or tower. In this case, we suggest
the implementable camera calibration procedure, which uses only online data (global
coordinates of some visible points, photos, and street view images).

With known camera parameters, we construct the mapping between the ROI pixel
coordinates and metric coordinates of points on the driving surface, which gives a way to
estimate traffic flow parameters in standard units such as car/meter for traffic density and
meter/second for car velocity with improved accuracy.

2. Coordinate Systems, Models

We select an ENU coordinate frame Fenu (East, North, Up) with an origin on a fixed
object to localize points P = (xe, ye, ze), where xe, ye, and ze are coordinates of P in Fenu.

A camera forms an image in the sensor (Figures 1 and 2). A digital image is a pixel
matrix N ×M (N columns, M rows). A pixel position is described in the image coordinate
frame Fim in the image plane Pim = (u, v) where u and v are real numbers, coordinates of
Pim in Fim. Axis U corresponds to the image matrix rows (towards the right), and axis V
corresponds to columns (from up to down). The camera orientation determines the image
sensor plane orientation. Integer indexes define pixel position in the image matrix. We can
obtain them by rounding u and v to the nearest integers. Let w and h be the image pixel
width and height, respectively. For the image width and height, we have W = Nw and
H = Mh.

Camera position and orientation define the camera coordinate frame Fc (Figure 1). The
camera perspective projection center O is the origin of Fc. We denote by (Oxe, Oye, Oze) the
O coordinates in Fenu. Axis Zc follows along the camera optical axis, axis Xc is parallel to
axis U, and Yc is parallel to axis V. Axis Xc defines the camera horizon. The deviation of
Xc from the horizontal plane XenuYenu defines the camera horizon tilt. Unlike Fim, the Fenu
and Fc are metric coordinate frames. Fim coordinates (u, v) approximate matrix indexes. To
obtain meters from u on axis U, we use the expression m(u) = wu, and to obtain meters
from v on axis V, we use m(v) = hv.

Suppose the camera builds an image close to a perspective projection of a 3D scene.
We describe this camera transformation as the pinhole camera model (Figures 1 and 2
and ref. [5]). A point image Pim = (u, v) is the transformation of the original 3D point P
coordinates described in Fenu. The matrices A and [R|t] define this transformation:

A =

 fu 0 cu
0 fv cv
0 0 1

, (1)

[R|t] =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

. (2)

The triangular matrix A contains the intrinsic parameters of the camera. Camera
position and orientation determine matrix [R|t]. Matrix [R|t] defines transformation from
frame Fenu to camera coordinates Fc:

xc
yc
zc

 = [R|t]


xe
ye
ze
1

,

tx
ty
tz

 = −R

Oxe
Oye
oze

. (3)

Here, R is a rotation matrix, and t is the shift vector from the origin of Fenu to O (origin
of Fc). Matrix A includes the principal point C coordinates (cu, cv) in frame Fim and the
camera focal length f divided by pixel width and height:

fu = f /w, fv = f /h. (4)
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The camera’s optical axis and the image plane intersect at C. It is the spatial point G
image (Figures 1 and 2). Usually, the coordinates (cu, cv) point to the image sensor matrix
center (e.g., full HD resolution is 1920 × 1080, so cu = 960, cv = 540). Some modes of
cameras can produce cropped images shifted from the principal point; we do not consider
this case here.

Zc

G

cu

u

z=f

v
cv

V

U

O

P = ( xc, yc, zc )

Pim

C

Xc

Yc

Figure 1. Coordinate frames Fc, Fim. Pim are the image of the 3D point P. Axis Zc follows the camera
optical axis. The camera forms a real image on the image sensor behind aperture O in the plane
z = − f ; however, the equivalent virtual image in the plane z = f is preferable in illustrations.

XU

Z
OC

f

θ

f

P
virtual image real image

zc G

w(u-cu)

xc

Pim

Pim

Figure 2. Virtual and real images for a camera with aperture O. The scene is projected on the plane
XZ of frame Fc. The coordinates of the point P in Fc are denoted by xc, zc, and the u, cu are coordinates
of points P, C on the axis U of frame Fim.

The triangles (O, Pim, C) and (O, P, (zc, 0, 0)) are similar on the plane ZXc and on ZYc
(Figure 2), so

xc/zc = w(u− cu)/ f = tan θx
yc/zc = h(v− cv)/ f = tan θy

. (5)

It follows from (5) that pixel coordinates in Fim are connected with coordinates of the
spatial source in Fc by the equations

Ph
im =

u
v
1

 = A

xc/zc
yc/zc

1

 =

 fuxc/zc + cu
fvyc/zc + cv

1

, (6)

where Ph
im are homogeneous coordinates of Pim. If fu 6= 0 and fv 6= 0, the pixel (u, v)

defines the relations xc/zc, yc/zc (5). However, we need to know the value zc(u, v) (“depth
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map”) to recover original 3D coordinates xx, yc, and zc from the pixel coordinates (u, v).
Additional information about the scene is needed to build the depth map zc(u, v) for some
range of pixels (u, v). Perspective projection preserves straight lines.

A wide-angle lens, used by most street public cameras, introduces perspective dis-
tortion described by the pinhole camera model and substantial radial distortion. Usually,
the radial distortion is easily detectable, especially on ”straight” lines near the edges of
the image. An extended model was used to take it into account. A popular quadratic
model of radial distortion ([6] (pp. 63–66), [7] (pp. 189–193), [5]) changes the pinhole camera
model (6) as follows:

r2 = (xc/zc)
2 + (yc/zc)

2, (7)[
x̂
ŷ

]
= (1 + k1r2 + k2r4)

[
xc/zc
yc/zc

]
, (8)

Ph
im =

u
v
1

 = A

x̂
ŷ
1

 =

 fu x̂ + cu
fvŷ + cv

1

, (9)

where k1 and k2 are radial distortion coefficients. In addition to the quadratic, more complex
polynomials and models of other types are used ([5], [6] (pp. 63–66, 691–692), [7] (pp. 189–193)).
Let the coefficients fu, fv, cu, cv, k1, and k2 be selected so that the formation of images from
the camera is sufficiently well described by (7)–(9). To construct the artificial image on
which the radial distortion k1 and k2 is eliminated, we must for each pair of relations
(xc/zc, yc/zc) obtain new positions of pixels (û, v̂) according to the pinhole camera model:[

û
v̂

]
=

[
fuxc/zc + cu
fvyc/zc + cv

]
. (10)

To do this, we need all values (xc/zc, yc/zc) (coordinates in Fc), which form the original
image. To obtain the relations from an image, you have the image pixel coordinates (u, v)
and equations (follows from (7)–(9))

Q(u, v) =
fv(u− cu)

fu(v− cv)
, D(u, v) = Q2 + 1, (11)

xc/zc = Q(u, v)yc/zc, (12)

k2D(u, v)2(yc/zc)
5 + k1D(u, v)(yc/zc)

3 + yc/zc +
cv − v

fv
= 0, (13)

if v 6= cv. Similar equations are valid for v = cv and u 6= cu. Equation (13) has five roots
(complex, generally speaking), so we need an additional condition to select one root. We
can select the real root nearest to (v− cv)/ fv. The artificial image will not be a rectangle,
but we can select a rectangle part of it (see figures of Example 2). Note that the mapping
(u, v)→ (û, v̂) is determined by the camera parameters fu, fv, cu, cv, k1, and k2. It does not
change from frame to frame and can be computed once and used before the parameters
are changed.

3. Public Camera Parameters Estimation

Model parameters (3), (7)–(9) define the transformation of the 3D point, visible by
camera, to pixel coordinates in the image. These parameters are: rotation matrix of the
camera orientation R (2) and (3); camera position coordinates (point O) in Fenu (3); intrinsic
camera parameters fu, fv, cu, and cv, (1) and (4); and radial distortion coefficients k1 and
k2, (8) and (9).

The camera calibration process estimates the parameters using a set of 3D point
coordinates {Pi

enu} and a set of the point image coordinates {Pi
im}. The large set {Pi

enu} is
called a point cloud. There are software libraries that work with point clouds. Long range
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3D lidars or geodesic instruments measure 3D coordinates values for a set {Pi
enu}. Another

camera depth map can help obtain a set {Pi
enu}. Stereo/multi-view cameras can build

depth maps, but it is hard to obtain high accuracy for long distances. When the tools listed
above are unavailable, it is possible to obtain global coordinates of points in the camera
field of view by GNSS sensors or from online maps. The latter variants are easier to access
but less accurate. There are many tools [8] to translate global coordinates to an ENU.

Camera calibration procedure is well studied ([7] (pp. 178–194), [9] (pp. 22–28), [10], [6]
(pp. 685–692)). It looks for the parameter values that minimize the difference between
pixels {Pi

im} and pixels generated by the model (3), (7)–(9) from {Pi
enu}. Computer vision

software libraries include calibration functions for a suitable set of images from a camera [5].
The OpenCV function calibrateCamera [5,11] needs a set of points and pixels of a special
pattern (e.g., “chessboard”) rotated before the camera. The function returns an estimation
of intrinsic camera parameters and camera placements concerning the pattern positions.
These relative camera placements are usually useless after outdoor camera installation. If
the camera uses a zoom lens and the zoom changes on the street, the camera focal length
changes too, and new calibration is needed. If we use a public camera installed on a wall or
tower, it is hard to collect appropriate pattern images from the camera to apply a function
such as calibrateCamera. Camera operators usually do not publish camera parameters,
but this information is indispensable for many computer vision algorithms. We need a
calibration procedure applicable to the available online data.

Site-Specific Calibration

If the unified calibration procedure data are unavailable, we can estimate camera
position and orientation parameters (R,O) separately from others. Resolution N ×M of
images/video from a camera is available with the images/video. As noted earlier, usually

cu = N/2, cv = M/2. (14)

Many photo cameras (including phone cameras) add the EXIF metadata to the image
file, which often contain focal length f . The image sensor model description can contain
a pixel width w and height h, so (4) gives fu and fv values. The distortion coefficients are
known for high-quality photo lenses. Moreover, the raw image processing programs can
remove the lens radial distortion. If lucky, we can obtain intrinsic camera parameters and
radial distortion coefficients and apply a pose computation algorithm (PnP, [12,13]) to sets
{Penu}, {Pim} to obtain R,O estimates. When EXIF metadata from the camera are of no help
(this is typical for most public cameras), small sets {Penu} and {Pim} and Equation (5) can
help to obtain fu and fv estimations. Suppose we know the installation site of the camera
(usually, the place is visible from the camera’s field of view). In that case, we can estimate
GNSS/ENU coordinates of the place (point O coordinates) by the method listed earlier.
The camera orientation (matrix R) can be detected with the point G coordinates (Figure 1)
and the estimation of the camera horizon tilt. Horizontal or vertical 3D lines (which can be
artificial) in the camera’s field of view can help evaluate the tilt.

4. Formulation of the Problem and Its Solution Algorithm

Designers and users of transport models are interested in the flow density (number
of vehicles per unit of lane length or direction at a time); speed of vehicles (on a lane or
direction); and intensity of the flow (number of vehicles crossing the cross section of a lane
or direction). We capture some areas (ROI) of the frames to determine these values from
a fixed camera. The camera generates a series of ROI images, usually at a fixed interval,
such as 25 frames/second. The algorithms (object detection or instance segmentation
or contours detection and object tracking, see [14–17]) find a set of contours describing
the trajectory of each vehicle crossing the ROI. The contour description consists of the
coordinates of the vertices in Fim. We count the number of contours per meter in the ROI
of each frame to estimate flow density. We choose the vertex (e.g., “bottom left”) of the
contour in the trajectory and count the meters that the vertex has passed in the trajectory to
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estimate the car speed. Both cases require estimation in meters of distance given in pixels,
so we need to convert lengths in the image (in Fim) to lengths in space (in Fenu or Fc). In
some examples, distances in pixels are related to metric distances almost linearly (where
radial and perspective distortions are negligible). We will consider the public cameras
that produce images with significant radial and perspective distortions in the ROI (more
common case).

Problem 1.

1. Let Q be the area that is a plane section of the road surface in space (the road plane can be
inclined);

2. Φ is the camera frame of N ×M resolution containing the image of Q, denoting the image
by Qim;

3. The camera forms pixel coordinates of the image Φ according to the model (3), (7)–(9) with
unknown parameters fu, fv, k1, k2, R,

Qim = Λ(Qenu);

4. Φ contains the image of at least one segment, the prototype of which in space is a segment of a
straight line with a known slope (e.g., vertical);

5. The image is centered relative to the optical axis of the video camera, that is, cu = N/2 and
cv = M/2;

6. The Fenu coordinates of the points O (camera position) and G (the source of the optical center
C) are known;

7. The Fim coordinates of one or more pixels of {Pu
im 6= C} located on the line v = cv and the

Fenu coordinates of their sources {Pu
enu} are known;

8. The Fim coordinates of one or more pixels of {Pv
im 6= C} located on the line u = cu and the

Fenu coordinates of their sources {Pv
enu} are known;

9. The Fenu coordinates of three or more points {PQ
enu} ∈ Q are known; at least three of them

must be non-collinear;
10. The Fim coordinates of one or more groups of three pixels {(Pa

im, Pb
im, Pc

im)} are known, and in
the group, the sources of the pixels are collinear in space.

Find the parameters of the camera fu, fv, R, k1, and k2 and construct the mapping

Qenu = Λ−1(Qim).

Online maps allow remote estimation of global coordinates of points and horizontal
distances. Many such maps do not show the altitude, and most do not show the height of
buildings, bridges, or vegetation. Online photographs, street view images, and horizontal
distances can help estimate such objects’ heights. Camera locations are often visible in
street photos. This variant of measurements suggests that the coordinate estimates may
contain a significant error. The errors result in some algorithms (e.g., PnPransac) being able
to generate a response with an unacceptable error.

To find {Pu
im},{Pu

enu},{Pv
im}, and {Pv

enu} coordinates, the points must be visible both in
the image and on the online map.

4.1. Solution Algorithm

We want to eliminate the radial distortion of area Qim to go to the pinhole camera
model. From (10)–(13), it follows that for this you need values fu and fv.

4.1.1. Obtain the Intrinsic Parameters (Matrix A)

Note that from vu = cv and (7)–(9) it follows yc/zc = 0 for the point Pu
im = (uu, vu)

(because 1 + k1r2 + k2r4 = 0 leads to uu = cu and Pu
im = C). So, the point Pu

im stays on the
central horizontal line of the image for any values k1 and k2. By analogy, for Pv

im = (uv, vv)
take place xc/zc = 0, and the point stays on the central vertical line for any values k1 and k2.
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Evaluate the angles between the optical axis OG and vectors OPu
enu and OPv

enu (Figure 2,
Figure 1):

θx = arccos (OG ·OPu
enu/(|OG||OPu

enu|))
θy = arccos (OG ·OPv

enu/(|OG||OPv
enu|))

. (15)

It follows from (5) that if the effect of radial distortion on the values (uu, vu) and
(uv, vv) can be ignored (camera radial distortion is moderate, and the points are not too far
from C), then

fu = (uu − cu)/ tan θx
fv = (vv − cv)/ tan θy

. (16)

Equation (16) gives the initial approximation of coefficients fu and fv and an evaluation
of matrix A.

4.1.2. Obtain the Radial Distortion Compensation Map

Let Φ̂ be the image obtained from Φ by the transformation (10) and solution of
Equations (11)–(13). Denote Θ the mapping of Φ to Φ̂:

Φ̂ = (û, v̂) = Θ(u, v; k1, k2, fu, fv, cu, cv) = ( fuxc/zc + cu, fvyc/zc + cv). (17)

We create the image Φ̂ according to the pinhole camera model. The model transforms
a straight line in space into a straight line in the image.

Let Pa
im = (ua, va), Pb

im = (ub, vb), and Pc
im = (uc, vc) in Fim and

P̂a
im = (ûa, v̂a) = Θ(ua, va), P̂b

im = (ûb, v̂b) = Θ(ub, vb), P̂c
im = (ûc, v̂c) = Θ(uc, vc). (18)

We can find k1 and k2 values that minimize the sum of distances from pixels P̂b
im to the

lines passing through P̂a
im and P̂c

im. We calculate the distance as:

|(ûc − ûa)(v̂a − v̂b)− (ûa − ûb)(v̂c − v̂a)|√
(ûa − ûc)2 + (v̂a − v̂c)2

(19)

for each triplet (Pa
im, Pb

im, Pc
im). This approach is a variant of the one described, for example,

in [7] (pp. 189–194). OpenCV offers the realization of Θ−1 (initUndistortRectifyMap). It
is fast, but we need to invert it for our case. We solve Equations (11)–(13) (including version
for v = cv, u 6= cu) to obtain Θ. The Θ−1 is polinomial from û, v̂ (see (7)–(10)).

4.1.3. Obtain the Camera Orientation (Matrix R )

To determine the camera orientation, we use the point O and the point G given in the
coordinates Fenu (Figure 1). Unit vector

~ezc = OG/|OG| = (ezc
x , ezc

y , ezc
z )enu (20)

gives direction to axis Zc of frame Fc.~ezc, and O determines the plane of points x, for which
the vector ~Ox is perpendicular to~ezc. In this plane, lie the axes Xc and Yc of coordinate
frame Fc. Unit vector~ed = (0, 0,−1)enu is downward. Let Fv be camera coordinates with
the same optical axis Zc as Fc, but the Fv has zero horizon tilt. Axis Xv of the frame is
perpendicular to ~ed as far as Xv is parallel to the horizontal plane. We can find axes
directions Yv and Xv of the frame Fv:

~nyv =~ed − (~ed ·~ezc)~ezc =~ed + ezc
z ~ezc

~eyv = ~nyv/|~nyv|
~exv =~eyv ×~ezc

. (21)
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Vectors (21) form the orthonormal basis, which allows us to construct a rotation matrix
Rv2e for transition from Fv to Fenu:

Rv2e =

exv
x eyv

x ezc
x

exv
y eyv

y ezc
y

exv
z eyv

z ezc
z

 =
[
~exv ~eyv ~ezc

]
. (22)

If Rv2e is a rotation matrix, the following equations hold:

Re2v = R−1
v2e = RT

v2e. (23)

From Clause 4 of the problem statement, there is a line segment in the artificial image
Φ̂ with a known slope in space. It is possible to compare the segment slope in the image
Φ̂ and the slope of its source in space. So, we can estimate the camera horizon tilt angle
(denote it as γ) and rotate the plane with the axes Xv and Yv around the optical axis Zc
at this angle. The resulting system of coordinates Fc corresponds to the actual camera
orientation. To pass from the camera coordinates Fc to Fenu, we can first go from Fc to Fv by
rotation with the angle γ around the optical axis Zc using the rotation matrix

Γ =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

. (24)

We can describe the transition from Fc to Fenu (without origin displacement) as a
combination of rotations by the matrix

Rc2e = Rv2eΓ, (25)

which is also a rotation matrix. The matrix that we have already designated R (2) gives the
inverse transition from Fenu to the coordinates of the camera frame Fc :

R = RT
c2e (26)

and the shift t, which in the coordinates Fc characterizes the transition from the beginning of
the coordinates of Fenu to the point of installation of the camera O. The t is often more easily
expressed through the coordinates Oenu given in Fenu, see (3). To convert the coordinates of
a Penu from Fenu to Pc coordinates for the Fc camera frame, use the following expressions:

Pc = R(Penu −O) = RPenu + t. (27)

Typically, an operator aims to set a camera with zero horizon tilt.

4.1.4. Obtain the Mapping Λ−1 for Qim

Let Q̂im = Θ(Qim) be the area in Φ̂ corresponding to Qim in the image Φ. Qenu and
Qc are the domain Q on the road plane in coordinates Fenu, and Fc, respectively. From (27),
we obtain

Qenu = RTQc + O, Qc = R(Qenu −O). (28)

From Clause 2 of the problem statement, it follows that an image of Qc is visible in Φ
(and in Φ̂, so Q̂im ⊂ Φ̂ ).

We can convert the ENU coordinates of points {PQ
enu} to Fc by following (27). We

denote the result as {PQi
c }L

i=1. Let PQi
c = (xi

c, yi
c, zi

c).
We approximate its plane with the least squares method. The plane is defined in Fc by

the equation

pxxc + pyyc + zc = pz, p =

px
py
pz

. (29)
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The matrix D and vector E represent the points on the road:

D =


x1

c y1
c −1

x2
c y2

c −1
...

...
...

xL
c yL

c −1

, E =


−z1

c
−z2

c
...
−zL

c

. (30)

The plane parameters p can be found by solving the least squares problem

min
q
‖Dq− E‖2 = ‖Dp− E‖2, (31)

the exact solution to the least squares task is:

p = (DT D)−1DTE. (32)

We denote by Π the plane defined by (29) and, (32). Note that Qc ⊂ Π.
For a point (xc, yc, zc) ∈ Π represented by the pixel coordinates (û, v̂) in Φ̂ we obtain,

taking into account (6)
zc = pz − pxxc − pyyc

xc/zc = (û− cu)/ fu
yc/zc = (v̂− cv)/ fv

(33)

.
If û 6= cu and v̂ 6= cv (it means that xc 6= 0 and yc 6= 0) then

pz − pxxc − pyyc = xc fu/(û− cu)
pz − pxxc − pyyc = yc fv/(v̂− cv)

, (34)

so there are linear equations that allow us to express xc and yc through û and v̂. Let

a(û) = fu/(û− cu) + px
b(v̂) = fv/(v̂− cv) + py

. (35)

From (34), we obtain solution:

[
xc(û, v̂)
yc(û, v̂)

]
=



[
pz(py − b(v̂))/(px py − a(û)b(v̂))
pz(px − a(û))/(px py − a(û)b(v̂))

]
, if û 6= cu, v̂ 6= cv[

0
pz/b(v̂)

]
, if û = cu, v̂ 6= cv[

pz/a(û)
0

]
, if û 6= cu , v̂ = cv[

0
0

]
, if û = cu , v̂ = cv

, (36)

where a(û) and b(v̂) defined in (35) and

zc(û, v̂) = pz − pxxc(û, v̂)− pyyc(û, v̂). (37)

We have constructed a function that assigns to each pixel coordinates g = (û, v̂) (in
image Φ̂) a spatial point in the coordinate system Fc, according to (36) and (37):

ξ(g) =

xc(û, v̂)
yc(û, v̂)
zc(û, v̂)

. (38)
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If g ∈ Q̂im ξ(g) ∈ Qc, so
Qc = ξ(Q̂im), (39)

Qenu = RTQc + O = RTξ(Q̂im) + O = RTξ(Θ(Qim)) + O = Λ−1(Qim). (40)

Next, we will refer more to (39). Fenu helps obtain measurement results, but Fc is
sufficient for calculating metric lengths. There are other ways to map pixels to meters (see,
e.g., [7] (pp. 47–55)), but their applicability depends on the data available.

4.2. Auxiliary Steps
4.2.1. Describing of the Area Q

Different Q shapes help for varying tasks. We fix Q̂im as a quadrilateral on the image
Φ̂. The Qc (source of the quadrilateral in space) in the plane Π may be a rectangle or a
tetragon. We choose the four corners of g1, g2, g3, and g4 of the domain Q̂im as pixels in the
Φ̂. The “tetragon” Qim = Θ−1(Q̂im) is the ROI in the original image Φ, in which we use
object detection to estimate transport flows statistics. The lines bound Q̂im are ([7] (p. 28)):

lh
bl = gh

1 × gh
2 , lh

tl = gh
1 × gh

3 , lh
tr = gh

3 × gh
4 , lh

br = gh
2 × gh

4 , (41)

where gh
i = (ûi, v̂i, 1) are the homogeneous coordinates of pixel gi = (ûi, v̂i). Pixel gh ∈ Q̂im

must be the solution to a system of four inequalities:
lh
tl · g

h ≥ 0
lh
tr · gh ≥ 0

lh
bl · g

h ≤ 0
lh
br · g

h ≤ 0

. (42)

The Qim is a continuous domain in R2, but the whole image Φ contains only a fixed
number of actual pixels (N × M). The same is true for Q̂im = Θ(Qim). We can obtain
real pixels that fall in Qim from Q̂im with the per-pixel correspondence Qim = Θ−1(Q̂im).
We apply the mapping (39) and obtain the set of points in Fc which correspond to actual
pixels in Qim. Fc is a metric coordinate system, so the distance in Fc can be used to estimate
meters/second or objects/meter. The same is true for any rotations or shifts of the frame Fc.

4.2.2. Coordinate Frame Associated with the Plane Π

We can go from Fc to a coordinate system associated with the plane Π. We apply it for
illustrations, but it can be helpful for other purposes. We can regard the traffic in Qim as
anything that rises above the plane Π . We denote by Fπ the coordinate system connected
to Π. and use the normal to the plane Π at the coordinates Fc from (32) as the axis Zπ .

~nπ =

px
py
1

, ~ezπ = ~nπ/|~nπ |. (43)

We choose in the Π plane the direction of another axis (e.g., Yπ), and the third axis is
determined automatically. Let the Y axis be pointed by the g4 − g2 vector (that is, along the
direction of traffic movement in the Q area), then

~eyp = (ξ(g4)− ξ(g2))/|ξ(g4)− ξ(g2)|
~exp = ~eyp ×~ezp

. (44)

Select the origin of the coordinate system Fπ as follows

o = ξ(g2). (45)
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The rotation matrices from Fp to Fc and their inverses look like the following:

Rπ2c =
[
~exπ ,~eyπ ,~ezπ

]
=

exπ
x eyπ

x ezπ
x

exπ
y eyπ

y ezπ
y

exπ
z eyπ

z ezπ
z

, Rc2π = RT
π2c. (46)

Use the following expression for the translation of coordinates of Pc given in frame Fc
to Pπ given in frame Fπ :

Pπ = Rc2π(Pc − o). (47)

5. Examples

Consider a couple of public camera parameters evaluations, where the images and
small sets of coordinates {Penu} and {Pim} of limited accuracy are available.

5.1. Example 1: Inclined Driving Surface and a Camera with Tilted Horizon

Figure 3 shows a video frame from the public camera.

Pu

Figure 3. Field of view of the public street camera in Vladivostok. Example 1, image Φ.

The camera is a good example, as its video contains noticeable perspective and radial
distortion. In the image, there is a line demonstrating the camera’s slight horizon tilt (the
wall at the base of which is Pv). The visible part of the road has a significant inclination. This
is a FullHD camera (N = 1920, M = 1080). Select a point P0 as the origin of Fenu. Assess
ENU coordinates of the point O (the camera position), point G (the source of the principal
point C, Figures 1 and 3), and points Pu and Pv on the lines v = cv and u = cu, respectively.
Using maps and online photos, we obtained the values listed in Table 1. Convert global
coordinates to the Fenu coordinates (see [8]) and add it to the table (in meters).

Table 1. The points used for the calibration. Latitude and longitude in degrees, altitudes and ENU
coordinates in meters, coordinates of pixels in Fim units (u is the column index, v is the row).

Name Lat Long Height u v xenu yenu zenu

P0 43.175553◦ 131.917725◦ 56 0 0 0
G 43.176295◦ 131.918380◦ 57 960 540 53.3 82.4 1
O 43.176934◦ 131.917912◦ 98 15.2 153.4 42
Pu 43.176033◦ 131.917937◦ 57 1534 540 17.2 53.3 1
Pv 43.175828◦ 131.918728◦ 52 960 353 81.6 30.6 −4
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The points from Table 1 can be found on the satellite layer of [18] using the latitude
and longitude of the query.

We obtain fu = 1166.2 and fv = 1241.55 by using (15), (16) and Table 1 data. Street
camera image sensors usually have square pixels, so w = h and fu = fv (4). If the difference
fu and fv is small, let fu, fv be equal fu = fv = 1203.89 (we use mean value). So we have an
approximation of matrix A.

Now, we can estimate radial distortion coefficients k1 and k2 by minimizing dis-
tances (19) or in another way. Put k1 = −0.24 and k2 = 0 to compute the mapping
Θ (17) and apply it to eliminate radial distortion k1 and k2 from the original image (Φ).
The mapping does not change for different frames from the camera video. We obtained the
undistorted version of image Φ, which we have identified Φ̂ (Figure 4).

Figure 4. The image after compensation of radial distortion. Example 1, image Φ̂ = Θ(Φ).

The radial distortion of the straight lines in the vicinity of the road has almost dis-
appeared in Φ̂. The camera’s field of view decreased, the C point remained in place, and
the p1 and p2 points moved further along the lines v = cv and u = cu. The values of fu and
fv can be recalculated, but radial distortion is not the only cause of errors. Therefore, we
will perform additional cross-validation and compensate the values of fu and fv if required.

We can estimate the horizon tilt angle from the image (Figure 4) and rotate the plane
with the axes Xv and Yv of frame Fv around the optical axis Zc at this angle. As a result
of rotating the image around the optical axis of the camera on 4.1◦, the verticality of the
required line was achieved (Figure 5), so let γ = 4.1◦ in (24).
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Figure 5. The image Φ̂ rotated by 4.1◦ around the optical axis of the camera.

We compute the camera orientation matrix R with (20)–(26). Now, we can convert Fenu
coordinates to Fc with (27).

Let us use the area nearest to the camera carriageway region as the ROI (area Q). We
select several points in Q, estimate their global coordinates, and convert them to Fenu [8].
Next, we convert Fenu coordinates to Fc with (27). The results are in Table 2.

Table 2. The spatial points used for the road plane approximation (global and Fc coordinates); Fc

coordinates are in meters.

Num Lat Long Height xc yc zc

1 43.176500◦ 131.918103◦ 59.36 8.22 12.45 61.94
2 43.176442◦ 131.918310◦ 59 −3.12 5.76 74.25
3 43.176532◦ 131.918362◦ 59.3 −11.75 7.97 68.04
4 43.176329◦ 131.918286◦ 58.6 4.82 2.07 83.47
5 43.176139◦ 131.917970◦ 57 37.46 2.9 89.96
6 43.176093◦ 131.918187◦ 56.9 24.76 −3.76 101.44
7 43.175553◦ 131.917725◦ 56 87.14 −14.46 133.16
8 43.175495◦ 131.917991◦ 55.9 71.67 −22.71 147.37
9 43.175794◦ 131.917845◦ 56 65.33 −7.39 116.24

We obtain et the road plane Π approximation with the (29) and (32):

p = (−0.20316, 2.04433, 86.99813). (48)

We choose four corners of g1, g2, g3 and g4 of the domain Q̂im in the Φ̂ (see Table 3 and
Figure 6).

Table 3. Domain Q̂im corners coordinates in Φ̂.

Corner Name u v

top left g1 504 849
bottom left g2 739 1079
top right g3 1468 410
bottom right g4 1642 462

We calculate the lines that bound domain Q̂im by (41) and detect the set of pixel
coordinates that belong to Q̂im. Note that this set does not change for different frames from
the camera video. We can save it for later usage with the camera and the Q.
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We compute the Qc as ξ(Q̂im) by (48) and (35)–(39). We convert the pixel coordinates
from Qc to Fπ by (43)–(47):

Qπ = Rc2π(Qc − o) (49)

and save the result. The coordinates set Qπ does not change for the (fixed) camera and the
Q. The obtained discrete sets Qc and Qπ are sets of metric coordinates. We can use Qπ for
measurements on the plane Π as is or apply an interpolation.

Since Qπ ⊂ Π, the point set is suitable to output in a plane picture. If for each point,
we use ξ(g) ∈ Qπ and the color of the pixel g for all g ∈ Q̂im ⊂ Φ̂, and output the plane as
the scatter map, we obtain the bottom image from Figure 6. We chose a multi-car scene in
the center of Q for the demonstration. We obtain the accurate ”view from above” for the
points that initially lie on the road’s surface. The positions of the pixels representing objects
that tower above plane Π have shifted. There are options for estimating and accounting for
the height of cars and other objects so that their images look realistic in the bottom image.
However, this is the subject of a separate article.

It is worth paying attention to the axes of the bottom figure (they show meters). In
comparison with the original (top image of Figure 6), there are noticeable perspective
distortion changes in the perception of distance. The width and length of the area are
in good agreement with the measurements made by the rangefinder and estimates from
online maps. The horizontal lines in the image are almost parallel which indicates the good
quality of fu and fv. In this way, we cross-checked the camera parameters obtained earlier.
Obviously, all vehicles are in contact with the road surface.

Figure 6. The Qπ set visualization in plane Π, by the colors of the pixels from Q̂im. Given the
geometry of the sample, yπ is the horizontal axis, xπ the vertical.

We do not need to remove distortions (radial and perspective) from all video frames to
estimate traffic statistics. The object detection or instance segmentation works with original
video frames in Qim. We use the distortions compensation for traffic measurements to
obtain distances in meters for selected pixels. We calculate the needed maps once for the
camera parameters and Q and use them as needed for measurements. Let us demonstrate
this on a specific trajectory.

The detected trajectory of the vehicle consists of 252 contours, 180 of which are in
Qim. A total of 200 contours in the image look messy, so we draw every 20th (Figure 7).
We deliberately did not choose rectangles to demonstrate a more general case. Vertex
coordinates describe the contour. It is enough to select one point on or inside each contour
to evaluate the speed or acceleration of an object. The point should not move around the
object; we want the point source closer to the road’s surface. The left bottom corner of a
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contour is well suited for this camera. However, what does it mean for a polygon? For a
contour {(ui, vi)}i we can build the pixel coordinates

(umin, vmax) = (min
i

ui, max
i

(vi)).

Figure 7. Every twentieth contour of a vehicle’s trajectory in the original image Φ.

We call the left bottom corner of a contour the vertex (uj, vj) for that

j = arg min
i
|(ui, vi)− (umin, vmax)|,

considering the axes direction of the Fim. Another option is to search the point nearest to
(umin, vmax) on the edges of the contour with the help of (19).

We map all contour vertexes on the Qπ to obtain Figure 8. However, we need to map
only these “corners” for measurements.

Figure 8. Every twentieth contour in the vehicle’s trajectory mapped on the Qπ with the se-
lected points.

The “corners” of the selected contours have the following yπ coordinates after
the mapping:

{−1.05, 10.13, 23.72, 35.66, 48.63, 61.80, 74.20, 86.15, 99.6}.

We can use a variety of formulas to estimate speed, acceleration, and variation. The
simplest estimation of the vehicle speed is (the camera frame rate is 25 frames/second, we
use 1/20 of the frames):

= (25/20) ∗ (99.6 + 1.05)/8 = 15.72656 m/s

or 56.6 km/h.
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5.2. Example 2. More Radial Distortion and Vegetation, More Calibration Points

Figure 9 illustrates a frame image from another public camera of the same operator.
This camera has zero horizon tilt and more substantial radial distortion. We have calibrated
the camera and calculated the maps in the season of rich vegetation. Tree foliage complicates
the selection and estimation of coordinates of points. The two-way road is visible to the
camera. This is a FullHD camera (N = 1920, M = 1080, cu = N/2, cv = M/2). The zero
horizon tilt is visible on the line u = cu near Pv

5 (see Table 4). We select the point P0 as
the origin of Fenu (see Table 4). We assess global coordinates of the point O (the camera
position), point G (the source of the principal point C, Figure 1, Figure 9), and points
Pu

1 , Pv
2 , Pu

3 , Pv
4 , and Pv

5 on the lines v = cv (index u) or u = cu (index v). Next, we convert
the global coordinates to Fenu and append them to Table 4.

We obtained estimations f 1
u = 1161.93, f 2

v = 1382.45, f 3
u = 1168.78, f 4

v = 1354.82, and
f 5
v = 1349.67 using Formulas (15) and (16) and Table 4 data. There are a few points, but one

can assume a pattern fv > fu. Perhaps the camera’s sensor pixel has a rectangular shape
(see (4)). Consider the two hypotheses:

fu = ( f 1
u + f 3

u)/2 = 1165.355, fv = ( f 2
v + f 4

v + f 5
v )/3 = 1362.313; (50)

fu = fv = ( f 1
u + f 3

u + f 2
v + f 4

v + f 5
v )/5 = 1283.53. (51)

The second variant means the square pixel.

Figure 9. Field of view of the public street camera in Vladivostok. Example 2, image Φ.

Table 4. The points used for the calibration. Latitude and longitude are in degrees, altitudes and
ENU coordinates are in meters, and coordinates of pixels are in Fim units (u is the column index, v is
the row).

Name Lat Long Height u v xenu yenu zenu

P0 43.168143◦ 131.916257◦ 14 0 0 0
G 43.168356◦ 131.916733◦ 25 960 540 38.7 23.66 11
O 43.167616◦ 131.916245◦ 56 −0.97 −58.54 42
Pu

1 43.168775◦ 131.916107◦ 18 306 540 −12.2 70.2 4
Pv

2 43.168361◦ 131.916740◦ 15 960 671 39.27 24.22 0.7
Pu

3 43.168330◦ 131.917431◦ 14 1559 540 116.61 25.89 0
Pv

4 43.168200◦ 131.916631◦ 13.5 960 815 30.41 6.33 0
Pv

5 43.169134◦ 131.917249◦ 43 960 199 80.67 110.1 27
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Let us try variant (50). With fu and fv we obtained the intrinsic parameters matrix
A (1). We estimate radial distortion coefficients k1 and k2, put k1 = −0.17 and k2 = 0.01 to
compute the mapping Θ (17), and apply it to eliminate radial distortion from the (Φ). We
obtained the undistorted image Φ̂ (see Figure 10). We showed a cropped and interpolated
version of Φ in Example 1 (Figure 4). Let us demonstrate the result of mapping Θ without
postprocessing. The image’s resolution Φ̂ is 2935× 1651, but it contains only 1920× 1080
pixels colored by the camera. So, the black grid is the unfilled pixels of the large rectangular.

Figure 10. The image Φ after compensation of radial distortion; Example 2, image Φ̂ = Θ(Φ)

without postprocessing.

Let us return to the illustration that is more pleasing to the eye by cutting off part of Φ̂
and filling the void with interpolation (see Figure 11).

Figure 11. Cropped and interpolated part of image Φ̂.

We noted that in the field of view of the camera, there is a section of the wall of the
building (near Pu

5 ), allowing you to put γ = 0 (see Figure 9). We are ready to compute the
orientation matrix R (20)–(26), so we can convert Fenu coordinates to Fc (27). We select the
points to approximate the road surface (see Table 5).
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Table 5. The points used to approximate road plane Π (global and Fc coordinates, Fc and altitudes
given in meters).

Num Lat Long Height xc yc zc

1 43.168145◦ 131.916262◦ 13.5 0 0 −0.1
2 43.168192◦ 131.916673◦ 13.5 33.82 5.44 −0.1
3 43.168275◦ 131.917036◦ 14 63.34 14.67 −0.1
4 43.168367◦ 131.917515◦ 14.3 102.29 24.89 −0
6 43.168519◦ 131.918425◦ 15 176.29 41.77 0.1
7 43.167925◦ 131.916348◦ 14 7.4 −24.22 −0.1
8 43.168005◦ 131.916540◦ 14 23.01 −15.33 −0.1
9 43.168011◦ 131.916699◦ 14 35.94 −14.66 −0.1
10 43.168110◦ 131.917060◦ 14 65.3 −3.67 −0.1
11 43.168210◦ 131.917540◦ 14.5 104.33 7.44 −0.1

We calculate road plane Π with (29) and (32):

p = (0.00006008, 2.93113699, 130.65768737). (52)

We choose four corners of g1, g2, g3, and g4 of Q̂im in the image Φ̂ (see Table 6 and
Figure 12). Let us try the nonrectangular area Q̂im.

Table 6. Domain Q̂im corners coordinates in Φ̂, Example 2.

Corner Name u v

top left g1 509 962
bottom left g2 993 1078
top right g3 1630 498
bottom right g4 1858 558

We calculate the lines that bound domain Q̂im with (41) and detect the set of pixel
coordinates that belongs to Q̂im. We compute the Qc as ξ(Q̂im) with (48) and (35)–(39).
Next, we convert the pixel coordinates from Qc to Fπ with (43)–(47) and (49) and save
the result.

Figure 12. The Qπ set visualization in plane Π for case (50).

The distances in Q correspond to estimates obtained online and a simple rangefinder
(accuracy up to a meter). We plan more accurate assessments using the geodetic tools.
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We repeat the needed steps for hypothesis (51) and compare the results (see
Figures 12 and 13).

Figure 13. The Qπ set visualization in plane Π for case (51).

We observed a change in the geometry of Qπ for the hypothesis (51). For example,
the pedestrian crossing changed its inclination; the road began to expand to the right. In
this example, it is not easy to obtain several long parallel lines due to vegetation, and it is
an argument for examining the cameras in a suitable season.

6. Conclusions

This work is an extension of the technology of road traffic data collection described
in [4] to allow accurate car density and speed measurements using physical units with
compensation for perspective and radial distortion.

Although we processed video frames in the article, all the mappings obtained for
measurements (Θ, ξ, [R|t], Rc2π) transform only coordinates. We used the pixel content
of the images only for demonstrations. In the context of measurements, object detection
(or instance segmentation) and object tracking algorithms work with pixel colors. The
mappings work with the pixel coordinates of the results of these algorithms. We can
calculate the discrete maps once and use them until the camera parameters or the Q
area change. In this sense, the computational complexity of mapping generation is not
particularly important. We plan to refine estimates of camera parameters as new data on
the actual geometry of the ROI area will be available, and the accuracy of the maps will
increase. Evaluating or refining the camera parameters in a suitable season might be better.
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