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Abstract

:

This paper contains two main parts, Part I and Part II, which discuss the local and global minimization problems, respectively. In Part I, a fresh conjugate gradient (CG) technique is suggested and then combined with a line-search technique to obtain a globally convergent algorithm. The finite difference approximations approach is used to compute the approximate values of the first derivative of the function f. The convergence analysis of the suggested method is established. The comparisons between the performance of the new CG method and the performance of four other CG methods demonstrate that the proposed CG method is promising and competitive for finding a local optimum point. In Part II, three formulas are designed by which a group of solutions are generated. This set of random formulas is hybridized with the globally convergent CG algorithm to obtain a hybrid stochastic conjugate gradient algorithm denoted by HSSZH. The HSSZH algorithm finds the approximate value of the global solution of a global optimization problem. Five combined stochastic conjugate gradient algorithms are constructed. The performance profiles are used to assess and compare the rendition of the family of hybrid stochastic conjugate gradient algorithms. The comparison results between our proposed HSSZH algorithm and four other hybrid stochastic conjugate gradient techniques demonstrate that the suggested HSSZH method is competitive with, and in all cases superior to, the four algorithms in terms of the efficiency, reliability and effectiveness to find the approximate solution of the global optimization problem that contains a non-convex function.
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1. Introduction


The major goal of this paper is to find the local and global minima of a convex and non-convex function. The local and global minimization problems are defined as follows.



Definition 1.

A local minimum    x lo  ∈ S   of the function f,   f : S → R   is an input element with   f  (  x lo  )  ≤ f  ( x )    for all  x  neighboring   x lo  . If   S ⊆  R n   , it is formulated by


   ∀  x lo   ∃ ε > 0 : f  (  x lo  )  ≤ f  ( x )   ∀ x ∈ S ,  ∥ x −  x lo  ∥  ≤ ε .   



(1)









Definition 2.

The point    x gl  ∈ S   is called the global minimizer of the function f;   f : S → R   such that   f  (  x gl  )  ≤ f  ( x )      ∀ x ∈ S  . When   S ⊆  R n   , then the problem can be formulated by


    min  x ∈ S   f  ( x )  : S → R ,   



(2)









In both problems (formulae)   S ⊆  R n    is the range in which we find the global minimizer of   f ( x )  .   f ( x )   is continuously differentiable.



Global optimization (GO) attempts to find the approximate solution of the objective function are shown in Problem (2).



However, this task can be difficult since the knowledge about f is usually only local. On the other hand, the fastest algorithms (LO) prefer to find a local point since these algorithms are not capable of finding the global solution at each run.



The bottom line is that the core difference between the GO methods and the LO algorithms is as follows: the GO methods focus on solving Problem (2) over the given set, while the task of the LO methods is to solve (1). Consequently, solving Problem (1) is relatively simple by using deterministic (classical) local optimization methods. On the contrary, finding the global optimum of Problem (2) is an NP-hard problem.



Challenging problems arise in different application fields, for example, technical sciences, industrial engineering, economics, networks, chemical engineering, etc. See [1,2,3,4,5,6,7,8,9,10,11].



Recently, many optimization algorithms have been proposed to deal with these problems. The thoughts of those suggested methods rely on the standard of meta-heuristic strategies (random search).



There are different classifications for meta-heuristic methods [12].



Mohamed et al. [7] presented a brief description of these classifications.



In random algorithms, the minimization technique relies partly on probability.



In contrast, in the deterministic algorithms, a guessing scale is not utilized. Hence, deterministic techniques need an exhaustive examination over the research domain of function f to find the approximate solution to Problem (2) at each run. Otherwise, they fail in this task.



Therefore, finding the approximate solution to Problem (2) by using random techniques can be proved by the asymptotic convergence probability. See [13,14,15].



There are many deterministic methods that have been proposed for dealing with the local optimization problems. See, for example, Refs. [16,17,18,19,20].



The most popular deterministic method is the CG method [18]. CG methods are exceedingly utilized to find the local minimizer of Problem (1) [21].



However, the  CG algorithms have a numerical weakness, so their subsequent actions might be low if a little step is created away from the local point. Hence, for solving this issue, a line-search technique is combined with the CG technique to create a globally convergent algorithm [22,23].



Therefore, many conjugant gradient line-search methods are suggested; see, for example, refs. [18,24,25,26,27,28].



The CG method is an efficient and inexpensive technique to deal with Problem (1).



The CG method is an iterative algorithm. Therefore, the candidate solutions are generated by the following recursive formula.


   x  k + 1   =  x   k   +  α   k    d   k   ,  



(3)




where the step size    α   k   > 0  , and the directions   d   k    are created by the following formula:


   d  k + 1   = −  g    k + 1    +  β   k    d   k   ,  d   0   = −  g   0   .  



(4)




where   g   k    denotes the gradient vector of the function f at the point   x   k   .



Several versions of the CG methods are suggested. The core difference between those CG algorithms relies on choosing the parameter   β   k    [18,27,28,29]. The main features of the CG method are as follows: it has low memory requirements, it is strongly local, and it has global convergence properties [30].



Many authors presented several studies to analyze the CG method; see, for example, Refs. [31,32].



In 1964, the authors of [33] applied the CG methods to nonlinear problems, and they proposed the following parameter.


   β   k   F R   =    ∥   g  k + 1     ∥  2     ∥   g   k     ∥  2    .  



(5)







The authors of [34,35] established the global convergence of the scheme defined in (5); they used an exact line search and an inexact line search respectively.



However, the author of [36] showed that there are some cases that have some strays; these jamming occurrences happen when the search directions   d   k    are almost orthogonal to the gradient vector   g   k    [18].



The authors of [37,38] presented a modification of the parameter   β   k   F R    for treating the noise event denoted in [36]. Hence, they proposed the following parameter.


   β   k   P R P   =    y   k  T   g  k + 1      | |   g   k     | |  2    ,  



(6)




where    y   k   =  g  k + 1   −  g   k    . When a noise occurs    g  k + 1   ≈  g   k    ,    β   k   P R P   ≈ 0  , and    d  k + 1   ≈ −  g  k + 1    , i.e., when jamming happens, the search direction   d   k    is no longer perpendicular to the gradient vector   g   k   , but it is aligned with the vector   −  g   k    . This built-in restart advantage of the   β   k   P R P    parameter usually has better quick convergence when compared to the parameter   β   k   F R    [18].



The authors of [39] proposed an approach closely related to   β   k   P R P   , and it is defined as follows.


   β   k   H S   =    y   k  T   g  k + 1      d   k  T   y   k     .  



(7)




in the case that step-size   α   k    is found by an exact line search algorithm. Hence, by (4) and the orthogonality situation    g  k + 1  T   y   k   = 0  , the following can be obtained:


   d k T   y   k   =   (  g  k + 1   −  g   k   )  T   d   k   = −  d   k  T   g   k   =  | |   g   k     | |  2  .  



(8)







Therefore,    β   k   H S   =  β   k   P R P     when the step size   α   k    is calculated by an exact line search method. Other fundamentals formulas of the parameter   β   k    which contain one term are listed as follows.


   β   k   L S   =    g  k + 1  T   y   k     −  d   k  T   g   k     .  



(9)







Formula (9) was proposed by [40].


   β   k   D Y   =    ∥   g  k + 1     | |  2     y   k  T   d   k     .  



(10)







Formula (10) was proposed by Dai and Yuan [41]. It is noteworthy that when the f is quadratic and step size   α   k    is selected to reduce f along   d   k   , the options of the parameter   β   k    mentioned above are alike for the generic nonlinear function.



Different alternatives have fully different convergence possessions [18].



Many version of the parameter   β   k    have been proposed in two- and three terms; see, for example, Refs. [32,42,43,44,45,46,47,48,49,50].



For example, in the following two approaches, we present some modifications to obtain a new CG method. See Section 2.


   β   k   H Z   =    (  y   k  T   g   k   )   (  d  k − 1  T   y   k   )  −  2 | |   y   k     | |  2   (  d  k − 1  T   g   k   )     (  d  k − 1  T   y   k   )  2   .  



(11)







Formula (11) was proposed by [30].


   β   k   M H Z   =    (  y   k  T   g   k   )   (  d  k − 1  T   y   k   )  −  2 | |   y   k     | |  2   (  d  k − 1  T   g   k   )    max { σ | |  y   k   |  | 2  | |  d   k   |  | 2  ,   (  d  k − 1  T   y   k   )  2  }   ,  



(12)




where   σ > 0.5   is a constant. Formula (12) was proposed by [49]. The denominator    (  d  k − 1  T   y   k   )  2   in the   β   k   H Z    is modified to   max { σ ∥  y   k    ∥ 2  ∥  d   k    ∥ 2  ,   (  d  k − 1  T   y   k   )  2  }   in the   β   k   M H Z   . This procedure may help the   d   k    stay in a trusted area automatically beneath each iteration [49]. Furthermore, in a situation    σ | |   y   k     | |  2   | |   d   k     | |  2  <   (  d  k − 1  T   y   k   )  2   ,   β   k   M H Z    decreases to   β   k   H Z    with   α   k    calculated to satisfy the inexact line search. Moreover,    β   k   H Z    decreases to   β   k   H S    under the exact line search.



Consequently, by using a line search method, the CG method can satisfy the following descent condition:


   g   k  T   d   k   ≤ − C   ∥  g   k   ∥  2  ,  



(13)




where   C > 0   is a constant.



The sufficient descent condition (13) has a core task in the convergence analysis of the algorithms. See [17,30,31,32,35,41,49,51,52].



However, the CG method has a numerical obstacle; its sub-sequential phases might be low if a little step is created away from the intended point [49].



Recently, the authors of [48,49] proved that the CG algorithm includes powerful convergence features if it satisfies the trust-region feature that is determined by


   | |   d   k    | | <   C   v    | |   g   k    | |  ,  



(14)




where    C   v   > 0   is a constant. It is shown, therefore, that the trust-region property can enable the search direction   d   k    to be bounded in the trust radius [49]. Numerous researchers proposed many CG algorithms that give perfect results and powerful convergence properties. See [30,48,49,51].



The selection of the right step size   α   k    can help the CG algorithms to achieve global convergence.



The exact line search is defined as follows:


  f  (  x   k   +  α   k    d   k   )  =  min  α ≥ 0   θ  ( α )  = f  (  x   k   + α  d   k   )  .  



(15)







It is clear that in big-scale problems, the exact line search cannot be used.



Therefore, there are many techniques to achieve this task. Formula (15), for example, the weak Wolfe–Powell algorithm (WWP), is a popular technique, and it is exceedingly utilized. The WWP technique is designed to find the step size   α   k    to satisfy the following inequalities:


  f  (  x   k   +  α   k    d   k   )  ≤ f  (  x   k   )  + δ  α   k    g   k  T   d   k   ,  



(16)




and


  g   (  x   k   +  α   k    d   k   )  T   d   k   ≥ σ  g   k  T   d   k   ,  



(17)




where   δ ∈ ( 0 , 0.5 )   and   σ ∈ ( δ , 1 )   are constants.



Inequality (16) is named the Armijo condition, and the WWP line search decreases to strong Wolfe–Powell (SWP) by substituting Inequality (17) with the following inequality:


   | g    (  x   k   +  α   k    d   k   )  T   d   k    | ≤ − σ   g   k  T   d   k   ,  



(18)







Generally, under the WWP line search, it is assumed that the gradient   g ( x )   is Lipschitz continuous in the convergence analysis. Therefore, the following inequality is satisfied:


  | | g ( x ) − g ( y ) | | ≤ L | | x − y | | ,  



(19)




with L is a constant   ∀  x , y ∈  R n   .



In fact, the CG technique with the line search methods has proven notability in solving the local optimization problem [18,27,28]. However, in trying to solve Problem (2), the CG method fails to achieve this task per run because it is trapped to a local point. To prevent sticking in a local point, random parameters are used [53].



We can summarize the essence of the above discussions as follows.



Recently, there have been many and many proposed approaches presented to improve the performance of deterministic methods, such as CG methods, gradient descent methods, Newton methods, etc. Those new approaches are designed to deal with the local optimization problems. See, for example, Refs. [16,17,18,19,20].



On the other hand, a plentiful number of stochastic approaches are suggested to deal with the global optimization problems. See, for example, Refs. [1,2,4,5,7,54].



Therefore, to gain the features of both deterministic and stochastic methods, many studies presented several ideas and suggestions to combine deterministic and stochastic techniques to obtain a new technique that is efficient and effective in solving Problem (2). Numerical outcomes demonstrated that the interbreed between classical and stochastic techniques has been hugely successful. See [55,56,57,58,59].



This work focuses on solving the local and global minimization problems. So, the first part of this study trades with Problem (1) by suggesting a new modified CG method, while the second part of this paper presents a new random approach that includes three formulae by which the candidate solutions are generated randomly.



Therefore, the new proposed stochastic approach is combined with the new modified CG method that is proposed in the first part of this paper to obtain a new hybrid stochastic conjugate gradient algorithm that solves Problem (2). The new hybrid stochastic conjugate gradient algorithm has four formulae by which the candidate solutions are created. One of the four formulae is a purely deterministic formula, the second one is a mixture of deterministic and stochastic parameters, and the other two formulas contain parameters generated randomly. The bottom line is that we can claim that the main merit that makes the new hybrid algorithm capable of finding the approximate solution to the global minimum of a non-convex function comes from the hybridization of random and non-random parameters.



Consequently, the contribution of this paper is divided into two parts.



Part I presents the following contributions.



	
A new modified CG technique is proposed and added with a line search for obtaining a globally convergent algorithm that solves Problem (1). It is abbreviated by SHZ.



	
The convergence analysis of the SHZ algorithm is designed.



	
The gradient vector is estimated by using a numerical approximation approach (DFF); step-size h (interval) is randomly.



	
The convergence analysis of the DFF method is designed.



	
The four FR, SH, HZ and MZH methods are designed like the SHZ algorithm to solve Problem (1).



	
Numerical experiments of the five SHZ FR, SH, HZ and MZH algorithms are analyzed by using the performance profiles.






Part II presents the following contributions.



	⋄

	
Stochastic parameters are designed (SP).




	⋄

	
The five SHZ, FR, SH, HZ and MZH algorithms are hybridized with the SP technique to obtain five hybrid algorithms; HSSHZ, HSFR, HSSH, HSHZ and HSMZH. These five algorithms solve Problem (2).




	⋄

	
Numerical experiments of the five HSSHZ, HSFR, HSSH, HSHZ and HSMZH algorithms are analyzed by using the performance profiles.







Consequently, the remainder of the study is arranged as follows.



Part I contains the following sections: Section 2 presents a new modified CG- SHZ technique with its convergence analysis.



In Section 3, the approximate value of the gradient vector is calculated by using the numerical differentiation. Section 4 presents the numerical investigations of the local minimization problem. Part II contains the following sections: Section 5 presents a random approach for unconstrained global optimization. Section 6 presents the hybridization of the conjugate gradient method with stochastic parameters. The numerical experiments of Problem (2) are presented in Section 7. Some concluding remarks are given in Section 8.



Part I: Local Minimization Problem


In this part, a new modified CG technique is presented, the convergence analysis of this technique is designed, the numerical differentiation approach is utilized to calculate the approximate values of the first derivative, the five algorithms are designed to solve Problem (1), and their numerical experiments are analyzed by using the performance profiles.





2. Suggested CG Method


Recently, the authors of [49] suggested a new MHZ-CG method, relying on the study which was proposed by the authors of [30]. The  MHZ method contains the sufficient descent and the trust-region features independent of a line search technique. The parameter of the MHZ is defined by (12).



Therefore, the story in this section begins with the authors of [30] who proposed a new CG-HZ method, where the parameter of the HZ method is defined by (11). The parameter   β   k   H Z    can ensure that   d   k    satisfies the following inequality:


   d   k  T   g   k   ≤ −  7 8   | |   g   k     | |  2  ,  



(20)




where (20) is proved by [30]. If the step size   α   k    is calculated by the true line search, then   β   k   H Z    decreases to the   β   k   H S    that was proposed by [39] because    d   k  T   g   k   = 0   is true [49].



Hence, for obtaining the global convergence for a general function, Hager and Zhang [30] dynamically adjusted the down limitation of   β   k   H Z    by


   d   k   = −  g   k   +  β   k   H  Z +     d  k − 1   ,  d   0   = −  g   0   ,  



(21)




   β   k   H  Z +    = max  {  β  H Z   ,  r   k   }   ,    r   k   =   − 1    | |   d  k − 1    | | min { r , | |   g    k − 1     | | }     , where   r > 0   is a constant.



Many researchers have suggested several modifications and refinements to improve the performance of the CG-HZ algorithm. The latest version of the CG-HZ method was offered by [49]. Yuan et al. [49] presented some modifications to the HZ-CG method, and the result was obtaining the new CG-MHZ algorithm.



The CG-MHZ algorithm contains a sufficient condition and the trust-region feature.



The research direction of the MHZ-CG technique is designed as follows:


   d   k   = −  g   k   +  β   k   M H Z    d  k − 1   ,  d   0   = −  g   0   ,  



(22)




where the   β  M H Z    is defined by (12).



In this paper, the MHZ method is extended and modified to obtain a new proposed method called the SHZ method such that the SHZ method has a sufficient condition and the trust-region feature. This method is defined as follows:


   d   k   = −  g   k   +  β   k   S H Z    d  k − 1   ,  d   0   = −  g   0   ,  



(23)






   β   k   S H Z   =    (  y   k  T   g   k   )   (  d  k − 1  T   y   k   )  −  2 | |   y   k     | |  2   (  d  k − 1  T   g   k   )    max { ϑ ∥  y   k    ∥ 2  ∥  d   k    ∥ 2  ,   (  d  k − 1  T   y   k   )  2  }   ,  



(24)




where the   ϑ = max { ρ ,  R   k   }  , the  ρ  and   R   k    are defined as follows. The parameter  ρ  is changed randomly at each iteration and its values are taken from the range   [ 0.8 , 2 )   and    R   k   = ▵ f ▵ x  . The values of   ▵ f   and   ▵ x   are calculated by


   ▵ f = |   f   0   −  f    I t r     | ,   



(25)




where Itr is the number of iterations, and after the Itr number of iterations,   f    I t r     and   ▵ f   are computed. Then, we set    f   0   =  f    I t r     , while   ▵ x   is defined by


   ▵ x = ∥   x    k + 1    −  x   k    ∥ , for  k = 0 , 1 , … , I t r .   



(26)







Hence, when   ϑ = σ  ,    β   k   S H Z    inevitably reduces to one of the following methods   {  β   k   M H Z   ,  β   k   H Z   ,  β   k   H S   }   as follows.



If   ϑ = σ   and    δ ∥   y   k     ∥  2    ∥  d   k   ∥  2  >   (  d  k − 1  T   y   k   )  2   , the   β   k   S H Z    reduces to the   β   k   M H Z   . Otherwise,   β   k   S H Z    reduces to   β   k   H Z    or to   β   k   H S    under the exact line search [49]. This procedure gives the advantages of the MHZ, HZ and HS methods to the proposed SHZ method. In other words, the SHZ algorithm gains the characteristics of the three MHZ, HZ and HS algorithms. This is why the SHZ algorithm is superior to the four other MHZ, HZ, HS and FR methods.



Note: The authors of [49] imposed that the   σ > 0.5   is a constant, while the parameter  ϑ  is modified dynamically at each iteration.



Convergence Analysis of Algorithm 1


In this section, we present the features of Algorithm 1. We also present the convergence analysis of this algorithm, and we show that the search direction   d   k    that is defined by Formula (23) satisfies the sufficient descent condition and the trust-region merit, which are defined by Formulae (13) and (14), respectively.






	Algorithm 1 A conjugate gradient method (CG-SHZ).



	
	Input:  

	
  f :  R n  → R  ,   f ∈  C 1   ,   γ ∈ ( 0 , 1 )  ,   k = 0  , a starting point    x   k   ∈  R n    and   ε > 0  .




	Output:  

	
   x *  =  x   loc     the local minimizer of f,   f (  x *  )  , the value of f at   x *  




	1:

	
Set    d   0   = −  g   0     and   k : = 0  .




	2:

	
while   ∥   g   k    ∥ > ε   . do




	3:

	
    compute   α   k    to satisfy (16) and (17).




	4:

	
    Calculate a new point    x    k + 1    =  x   k   +  α   k    d   k    .




	5:

	
    compute    f   k   = f  (  x    k + 1    )   ,    g   k   = g  (  x    k + 1    )   




	6:

	
    Set   k = k + 1  .




	7:

	
    calculate the search direction   d   k    by (23).




	8:

	
end while




	9:

	
return  x ac   the local minimizer and its function value   f  a c   














Two sensible hypotheses are assumed as follows.



Hypothesis 1.

We suppose that Problems (1) and (2) contain an objective function   f ( x )   with the following characteristics: continuity and differentiability properties.





Hypothesis 2.

In some neighborhood ℵ of the level set


   ℓ = { x ∈  R n  : f  ( x )  ≤ f  (  x   0   )  } ,   








the gradient vector   g ( x )   is Lipschitz continuous. This means that there is a fixed real number   L < ∞   such that


   ∥ g ( x ) − g ( y ) ∥ ≤ L ∥ x − y ∥ ,   








for all   x , y ∈ ℵ  .





Lemma 1.

Suppose that the sequence   {  x   k   }   is obtained by Algorithm 1. If    d   k  T   y   k   ≠ 0  , then


    g   k  T   d   k   ≤ − c   ∥  g   k   ∥  2  ,   



(27)




and


    | |   d   k    | |  ≤  r   v    ∥  g   k   ∥  ,   



(28)




where   c = 1 −  7  9 ϑ   > 0  ,   ϑ = max { ρ ,  R   k   }  , ρ is taken randomly from   ∈ [  8 10  , 2 )   at each iteration of Algorithm 1,   0 ≤  R   k   < ∞  , and    r   v   =  ( 1 +  3 ϑ  )    is the trust-region radius.





Proof. 

If   k = 0  ,    d   0   = −  g   0    , then    g   0  T   d   0   = −  | |   g   0     | |  2    and    | |   d   0    | | = ∥   g   0    ∥   , which indicates (27) and (28) by picking   c ∈ ( 0 , 1 ]   and    r   v   ∈  [ 1 , ∞ )   .



Merging (23) with (24), the result is obtaining the following:


   g   k  T   d   k   =    (  y   k  T   g   k   )   (  d  k − 1  T   y   k   )   (  g   k  T   d  k − 1   )  −  2 | |   y   k     | |  2    (  g   k  T   d  k − 1   )  2    max { ϑ ∥  y   k    ∥ 2  ∥  d  k − 1    ∥ 2  ,   (  d  k − 1  T   y   k   )  2  }   −   ∥  g   k   ∥  2  .  



(29)







The following inequality    u T  v ≤  1 2    ( | | u | |  2  +   ∥ v ∥  2   )    is applied to the first term of the numerator of Inequality (29), where   u =  d  k − 1    g k T   y   k    ,   v =  y   k    g   k  T   d  k − 1    , and it is clear that    u T  v ≤  7 9    ( | | u | |  2  +   ∥ v ∥  2   )    is right.



Therefore, the following inequality obtains


   g   k  T   d   k   =    (  y   k  T   g   k   )   (  d  k − 1  T   y   k   )   (  g   k  T   d  k − 1   )  −  2 | |   y   k     | |  2    (  g   k  T   d  k − 1   )  2    max { ϑ ∥  y   k    ∥ 2  ∥  d  k − 1    ∥ 2  ,   (  d  k − 1  T   y   k   )  2  }   −   ∥  g   k   ∥  2  ≤  










   − ∥   g   k     ∥  2  +    7 9   | |   y   k     | |  2   ∥   g   k     ∥  2   | |   d  k − 1     | |  2  +  7 9   | |   y   k     | |  2    (  g   k  T   d  k − 1   )  2  −  2 | |   y   k     | |  2    (  g   k  T   d  k − 1   )  2    max { ϑ ∥  y   k    ∥ 2  ∥  d  k − 1    ∥ 2  ,   (  d  k − 1  T   y   k   )  2  }   =  










   − ∥   g   k     ∥  2  +    7 9   | |   y   k     | |  2   ∥   g   k     ∥  2   | |   d  k − 1     | |  2  −  11 9   | |   y   k     | |  2    (  g   k  T   d  k − 1   )  2    max { ϑ ∥  y   k    ∥ 2  ∥  d  k − 1    ∥ 2  ,   (  d  k − 1  T   y   k   )  2  }   ≤  










   − ∥   g   k     ∥  2  +    7 9   | |   y   k     | |  2   ∥   g   k     ∥  2   | |   d  k − 1     | |  2    max { ϑ ∥  y   k    ∥ 2  ∥  d  k − 1    ∥ 2  ,   (  d  k − 1  T   y   k   )  2  }   ≤  (  7  9 ϑ   − 1 )    ∥  g   k   ∥  2  ,  








such that


  max   ϑ ∥   y   k     ∥  2    ∥  d  k − 1   ∥  2  ,   (  d  k − 1  T   y   k   )  2    ≥ ϑ ∥   y   k     ∥  2    ∥  d  k − 1   ∥  2  ,  



(30)




where   ϑ = max { ρ ,  R   k   }  . Since   ϑ ≥  8 10    and   c = 1 −  7  9 ϑ   > 0  , (27) is true.



By using (30), it is obvious that


      ∥  d   k   ∥  =   ∥  −  g   k   +    (  y   k  T   g   k   )   (  d  k − 1  T   y   k   )  −  2 | |   y   k     | |  2   (  d  k − 1  T   g   k   )    max { ϑ ∥  y   k    ∥ 2  ∥  d   k    ∥ 2  ,   (  d  k − 1  T   y   k   )  2  }    d  k − 1   ∥  ≤      ∥ −   g   k    ∥   +       | |   y   k     | |  2   ∥   g   k    ∥ ∥   d  k − 1     ∥  2   + 2 ∥   y   k     ∥  2   ∥   g   k    ∥ ∥   d  k − 1     ∥  2     ϑ ∥   y   k     ∥  2    ∥  d  k − 1   ∥  2    =  1 +  3 ϑ    ∥  g   k   ∥      











Consequently, (28) is met, where    r   v   ∈  [ 1 +  3 ϑ  , ∞ )   . The proof is complete.    □





Corollary 1.

According to Formula (28) of Lemma 1, the following formula is met.


     ∑  k = 0  ∞     ∥   g   k     ∥  4     ∥   d   k     ∥  2    = ∞ .    



(31)









Proof. 

Since    ∥   d   k    ∥ ≤   r   v     ∥  g   k   ∥  2   , where   1 <  r   v   < ∞  , then    ∥   d   k     ∥  2  ≤  r    v   2    ∥  g   k   ∥  4   , therefore,      ∥   d   k     ∥  2     ∥   g   k     ∥  4    ≤  r    v   2   , hence      ∥   g   k     ∥  4     ∥   d   k     ∥  2    ≥  1  r    v   2    . Now, the final expression is summed as   k → ∞  . The result is obtaining the following inequality:     ∑  k = 0  ∞     ∥   g   k     ∥  4     ∥   d   k     ∥  2    ≥  ∑  k = 0  ∞   1  r    v   2   =  1  r    v   2    ∑  k = 0  ∞  1 = ∞   . Therefore, (31) is met.    □





Under the assumptions, we give a helpful lemma that was basically proved by Zoutendijk [60] and Wolfe [61], Wolfe [62].



Lemma 2.

Assume that the   x   0    is the initial point by which Assumption 1 is satisfied. Regarding any algorithm of Formula (23),   d   k    is a descent direction, and   α   k    satisfies the standard Wolfe conditions (16) and (17). Hence, the following inequality is met:


     ∑  k = 0  ∞     (  g   k  T   d   k   )  2    ∥   d   k     ∥  2    < ∞    



(32)









Proof. 

It tracks Formula (17), such that


   d   k  T   y   k   =  d   k  T   (  g    k + 1    −  g   k   )  ≥  ( σ − 1 )   g   k  T   d   k   .  



(33)







On the other hand, the Lipschitz condition (19) implies


    (  g    k + 1    −  g   k   )  T   d   k   ≤  α   k   L   ∥  d   k   ∥  2  .  



(34)







The above two inequalities give


   α   k   ≥   σ − 1  L  .    g   k  T   d   k      ∥   d   k     ∥  2    ,  



(35)




which with (16) implies that


   f   k   −  f    k + 1    ≥ c    (  g   k  T   d   k   )  2    ∥   d   k     ∥  2    ,  



(36)




where   c =   δ ( 1 − σ )  L   . By summing (36) and with the observation that f is limited below, we see that (32) holds, which concludes the proof.    □





Theorem 1.

Suppose that Hypotheses 1 and 2 hold, and by utilizing the outcome of Corollary 1, the sequence   {  g   k   }   that is generated by Algorithm 1 satisfies the following:


    lim  k → ∞   inf  ∥  g   k   ∥  = 0 ,   



(37)









Proof. 

By contradiction, suppose that (37) is not true; then, for some   ϵ > 0  , the following inequality is true:


   ∥   g   k    ∥ ≥ ϵ .   



(38)







Hence, with inequality (38) and (27), we obtain


    g k  T   d   k   ≤ − c   ∥  g   k   ∥  2  ≤ −  ϵ 2  .  



(39)







Then, we have


      g k  T   d   k      ∥   d   k    ∥    ≤   −  ϵ 2     ∥   d   k    ∥    ;  










      g k  T   d   k      ∥   d   k    ∥    ≥   ϵ 4    ∥   d   k     ∥  2    ,  








and by summing the final expression, we obtain


    ∑  k = 0  ∞     (   g k  T   d   k   )  2    ∥   d   k     ∥  2    ≥  ∑  k = 0  ∞    ϵ 4    ∥   d   k     ∥  2    = ∞ .   



(40)







Therefore, the above leads to a contradiction with (32). So, (37) is met.    □





Note 1: The search direction   d   k    that is defined by Formula (23) satisfies the sufficient descent condition which is defined by Formula (13).



Note 2: Lemma 1 guarantees that Algorithm 1 has a sufficient descent property and the trust-region feature automatically.



Note 3: Theorem 1 confirms that the series   {  g   k   }   that is obtained by Algorithm 1 approaches to 0 as long as   k → ∞  .



In the next section, the numerical differentiation approach is discussed by which the first derivative is estimated and the step size   α k   is computed.





3. Numerical Differentiation


We now turn our attention to the numerical approximation to compute the approximate value of the gradient vector. In precept, it can be possible to find an analytic form for the first derivative for any continuous and differentiable function. However, in some cases, the analytic form is very complicated. The numerical approximation of the derivative may be sufficient for some purposes.



In this paper, the values of the   α   k   ,   g   k    and the direction   d   k    are computed by using the numerical differentiation method. Moreover, we have another step size and research directions that are generated randomly.



Several suggested methods have given fair outcomes for computing the gradient vector values numerically. See [63,64,65,66,67].



The common approaches by which the first derivative is computed are the finite difference approximation methods. Therefore, the first derivative    f ′   ( x )    can be estimated by the following numerical differentiation formula:


   D   f   f  (  x   i   )  =   f  (  x    i + 1    )  − f  (  x   i   )     x    i + 1    −  x   i     =   f  (  x   i   + h )  − f  (  x   i   )   h  ,  



(41)




where h is limited and little, but it is not necessarily infinitesimally small.



Reasonably, if the value of the h is small, the approximated value of the first derivative may improve. The forward difference and the central difference are the familiar and common methods used in many studies; see for example, [68,69,70,71,72].



The Taylor series can be used to derive these formulas. Thus, 3, 4 and 5 points can be utilized to derive these formulas, but it will be more costly than utilizing 2 points. The central difference method is known to include aspects of both accuracy and precision [73] but it needs   2 n   function evaluations against the forward-difference approximation approach, which needs n function evaluations for each iteration. So, in this study, the forward-difference approximation approach is used, because it is a cheap method and it has sensible precision [66,68].



The advantage of the finite difference approximation approaches relies on choosing the fit values of the h.



Error approximation of the first derivative is discussed in the next section.



Therefore, the discussion of the error analysis guides us to define an appropriate finite-difference interval for the forward-difference approximation that balances the truncation error that grows from the error in the Taylor formula, and the magnitude error that is obtained from noise during computing the function values [66].



3.1. Error Analysis


Formula (41) contains the forward-difference approximation form that is used to estimate the first derivative of the function f. Its errors are proportional to some power of the values of h. Therefore, it appears that the errors go on to reduce if h is reduced. However, it is a part of the problem since it is assumed only the truncation error yielded by truncating the high-order terms in the Taylor series expansion and does not take into account the round-off error induced by quantization. The round-off error is beside the truncation error; all of them are discussed in this section as follows.



Regarding this goal, suppose that the function values   f ( x )  ,   f ( x + h )  , are quantized to    θ   1   = f  ( x + h )  +  ϵ   1    ,    θ   0   = f  ( x )  +  ϵ   0    , with the sizes of the round-off errors   ϵ   1    and   ϵ   0    all being smaller than some positive number  ε , that is    |   ϵ   j    | ≤ ε   ; with   j = 0 , 1  .



Hence, the total error of the forward difference approximation defined by (41) is derived by


   D   f   f  ( x )  =    θ   1   −  θ   0    h  =   f  ( x + h )  +  ϵ   1   − f  ( x )  −  ϵ   0    h  =  f ′   ( x )  +    ϵ   1   −  ϵ   0    h  +   T   f   2  h .  



(42)







Hence,


  |  D   f   f  ( x )  −  f ′   ( x )  | ≤ |    ϵ   1   −  ϵ   0    h  | + |   T   f   2  | h ≤   2 ε  h  +    |   T   f    |   2  h ,  



(43)




with    T   f   = f ″  ( x )   . Therefore, the upper bound of the error is illustrated by the right-hand side of Formula (43). The maximum limited of error contains two expressions; the first comes from the rounding error and in inverse proportion to step-size h, whilst the second comes from the truncation error and in direct proportion to h. These two parts can be formulated as a function   ϕ ( h )   with respect to h as follows   ϕ  ( h )  =   2 ε  h  +    |   T   f    |   2  h  . Now, if we find the minimizer   h *   of the function   ϕ ( h )  , then the value   ϕ (  h *  )   is the upper bound of the total error. Hence     d ϕ ( h )   d h   =   − 2 ε   h 2   +    |   T   f    |   2  = 0  , then


   h *  = 2   ε   |   T   f    |     = 2   ε   |  f ″   ( x )  |     .  



(44)







Therefore, it can be concluded that as we create small values of h, the round-off error might grow, whilst the truncation error reduces. It is called the “step-size dilemma”.



Consequently, there have to be some optimal values of the   h *   for the forward difference approximation formula, as derived analytically in (44). However, Formula (44) is only of theoretical value and cannot be used practically to determine   h *   because we do not have any information about the second derivative and, therefore, we cannot estimate the values of   T   f   .



Therefore, there are many approaches which have been presented to deal with the step-size dilemma.



Recently, Shi et al. [66] proposed a bisection search for finding a finite-difference interval for a finite-difference method. Their approach was presented to balance the truncation error that grows from the error in the Taylor formula and the measurement error obtained from noise in the function evaluation. According to their numerical experience, the finite-difference interval   h *   are bounded between the following ranges   [ 2 ×  10  − 4   , 6.32 ×  10  − 1   ]  ,   [ 2.72 ×  10  − 4   , 8.26 ×  10 0  ]   and   [ 8.44 ×  10  − 3   , 3.94 ×  10 0  ]   by using the forward and central differences to estimate the values of the first derivative of the f.



Additionally, the authors of [68] gave a study of the theoretical and practical comparison of the approximate values of the gradient vector in derivative-free optimization. These authors analyzed some approaches for approximating gradients of noisy functions utilizing only function values; those techniques include a finite difference.



The values of the finite difference interval are as follows    10  − 8   ≤  h *  ≤ 1  .



According to the earlier investigations, the core of the difference between all approaches is to determine the step size h. Hence, the value of the step size is ranged between this range    h *  ∈  [ 1 , 12 ×  10  − 10   ]   .



In this paper, the  h is designed in a way that makes its values generated randomly. Additionally, the values of the h are connected to the function values per iteration to cover this domain, thus the feature here is that the value of h is modified per iteration randomly.



Therefore, a fresh approach to define the   h *   is presented in the following section.




3.2. Selecting a Step-Size h


The forward difference approach is a cheap method compared to the different techniques.



The forward difference approach has shown promising results for minimizing noisy black-box functions [66].



Depending on the hypotheses which are listed in Section 2, let   x   0    be any starting point, thus function f satisfies the following    f   0   ≥  f   1   ≥ … ≥  f   k    , for   k = 0 , 1 , 2 , …  . The numerical outcomes that are given in the past papers denote that the values of step-size h belong to the following range   [  10  − 10   , ≤ 1 ]  .



Therefore, the next Algorithm 2 is created to generate the values of the   h *   randomly from the intervals   [ 0.1 ,   10  − 8   ]  .






	Algorithm 2 Algorithm for calculating the values of   h *  .



	
Step 1: At each iteration k, we generate a set random values between   10  − 2   , and    10  − 7   , and this set of random values is denoted by    L   ϵ   =  {  l    ϵ   1     ,  l    ϵ   2     , … ,  l    ϵ   10     }   .



Step 2: The minimum and maximum of the set   L   ϵ    are extracted, respectively, as follows    M   ϵ   = min  {  l     ϵ   i    : i = 1 , 2 , … , 10   }   ,    N   ϵ   = max  {  l     ϵ   i    : i = 1 , 2 , … , 10   }    and set    M   f   =  M    ϵ    − 1    .



Step 3: The function value f is calculated at each k;    f   k   = f  (  x   k   )   .










Now we determine two cases according to the function values of the    |   f   k    |    as follows.



Case 1: If    |   f   k    |   ∈   [  10  − 1   , ∞ )   , the value of the h is determined by


   h   k   =        N   ϵ    M   f        if    |   f   k    | >   M   f    ,          M   ϵ     |   f   f    |        otherwise .       



(45)







Case 2: If    |   f   k    |   ∈   [ 0 ,  10  − 1   )   , the value of the h is determined by a random way from the range   [  10  − 4   ,  10  − 8   ]  .



Example: In this example, we show how the above algorithm is run.



Let us suppose that the point   x   0    has four different values as starting points with four different values of f, for example,    f   0   = f  (  x   0   )  =  {  10 10  ,  10 6  ,  10 3  ,  10  − 1   }    and suppose we generate the set   L   ϵ    as random values between   10  − 1   , and    10  − 7    such that    L   ϵ   =  { 1.50 ×  10  − 4   ,  5.10 ×  10  − 6   ,  1.01 ×  10  − 6   ,  1.40 ×  10  − 2   ,  1.78 ×  10  − 7   ,  1.92 ×  10  − 5   ,  1.09 ×  10  − 3   ,  2.77 ×  10  − 4   ,  2.99 ×  10  − 04   ,  5.15 ×  10  − 4   }   ,    M   ϵ   = 1.78 ×  10  − 7    ; hence,    M   f   = 5.618 ×  10 6   , since    f   0   =  10 10  >  M   f   = 5.618 ×  10 6   , then we set    F   0   =  M   f   = 5.618 ×  10 6    and    h   1   = 2    M   ϵ    M   f     = 2    1.78 ×  10  − 7     5.618 ×  10 6     = 3.56 ×  10  − 7    . If    f   0   =  10 6   ,    f   0   =  10 6  <  M   f   = 5.618 ×  10 6   , and  then    h   1   = 2    M   ϵ    F   0     = 2    5.618 ×  10 6    10 6    = 8.438 ×  10  − 7    , and    f   0    = {   10 3  <  M   f   5.618 ×  10 6   , we set    F   0   =  10 3   , then    h   1   = 2    M   ϵ    F   0     = 2    5.618 ×  10 6    10 3    = 2.6683 ×  10  − 5    .



Finally, if     f   0   =  10  − 1    , then    h   1   = 2    5.618 ×  10 6    10  − 1     = 2.67 ×  10  − 3    .



The above example shows how Case 1 is implemented by using Formula (45).



Regarding Case 2 when    0   ≤   |   f   k    |   <   0.1   , the value of the   h   k    is taken randomly from the range   [  10  − 4   ,  10  − 8   ]  .




3.3. Estimating Gradient Vector


The forward finite difference (DFF) is utilized to compute the approximate value of the gradient vector of function f at   x ∈  R n    by


    [ DFF ]    i   =   f  ( x +  he   i   )  − f  ( x )   h  , for   i = 1 , 2 , … , n  .  



(46)




where   h > 0   is the finite difference interval defined in Section 3.2, and    e   i   ∈  R n    is the   i  t h    column of the identity matrix.



Therefore,   g ( x ) ≈ DFF ( x )  , is the approximate value of the gradient vector of function f at point  x .



Therefore, the step size   φ   k    is defined in the following.



The function   f ( x )   is estimated by utilizing Taylor’s expansion up to the linear term around the point   x   k   , for each iteration k. Then we have





   f  (  x   k   + p )  ≈ f  (  x   k   )  + g   (  x   k   )  T  p .   











We define the quadratic model of   f ( x )   at   x   k    as


   m k   ( p )  =  1 2    f  (  x   k   )  + g   (  x   k   )  T  p  2  =  1 2  f   (  x   k   )  2  + f  (  x   k   )  g   (  x   k   )  T  p +  1 2   p T  g  (  x   k   )  g   (  x   k   )  T  p .  











Set   p = − φ g (  x   k   )   where  φ  is the step size along the −  g (  x   k   )  . The optimal value of the  φ  is picked by solving the following subproblem:    min  φ ∈ R    m k   ( φ )  =  1 2  f   (  x   k   )  2  − φ f  (  x   k   )  g   (  x   i   )  T  g  (  x   k   )  +  1 2   φ 2    ( g   (  x   k   )  T  g  (  x   k   )  )  2   . This gives


   φ k  =   f (  x   k   )    ∥ g   (  x   k   )    ∥  2    .  



(47)







Therefore,


   ∥ g   (  x   k   )    ∥  2  =   f (  x   k   )   φ   k    ,  φ   k   ≠ 0 ,  



(48)




where   g  (  x   k   )  ≈ DFF  (  x   k   )   .




3.4. Convergence Analysis of DFF


The condition which is usually utilized in the convergence analysis of first-order methods with inexact gradient (DFF) vectors is defined by


  | | DFF ( x ) − g ( x ) | | ≤ C | | g ( x ) | | ,  



(49)




for some   0 ≤ C < 1  . This condition is introduced by [74,75] and it is called a norm condition. This condition denotes that the   g ( x ) ≈ D F F ( x )   is a descent direction for the function f [68].



However, condition (49) cannot be applied, unless we know   ∥ g ( x ) ∥  ; therefore, this condition might be hard or impossible to verify.



There are many authors who have attempted to deal with this issue; see, for example, Refs. [68,76,77,78,79]. Byrd et al. [76] suggested a practical approach to estimate   ∥ g (  x   k   ) ∥  , and they utilized it to guarantee some approximation of (49). Cartis and Scheinberg [77] and Paquette and Scheinberg [79] replaced condition (49) by


   ∥ D F F  ( x )  − g  ( x )  ∥  ≤ k  α   k    | | g  ( x )  | | ,   



(50)




where   k > 0  , and convergence rate analysis were derived for a line search method that has access to deterministic function values in [77] and stochastic function values (with additional assumptions) in [79]. Berahas et al. [68] established conditions under which (49) holds. For the forward finite differences method (DFF), they set    h *  = 2    M   ε   L    .



Therefore, we present the following



Theorem 2.

Under Assumptions 1 and 2 of Section 2, let   DFF ( x )   denote the forward finite difference approximation to the gradient   g ( x )  . Then, for all   x ∈  R n   , the following inequality is true:


    | ∥ D F F  (  x   k   )    ∥    ∞   −     ∥ g  (  x   k   )  ∥    ∞   |  ≤ | f   (  x   k   )   h   i    − f  (  x   k   )  | +   f (  x   k   )   φ   k    ,  φ   k   ≠ 0 ,   



(51)




where the value of the   φ   k    is estimated by (47). We know that    ∥ X ∥    ∞    and   ∥ X ∥   are the norm infinity and the 2-norm, respectively, and they are defined by


     ∥ X ∥    ∞   =  max  1 ≤ i ≤ n    |  x   i   |  ,   



(52)






    ∥ X ∥  =     ∑   i    x   i  2     ,   



(53)




and then


     ∥ X ∥    ∞   =  max  1 ≤ i ≤ n    |  x   i   |  ≤     ∑   i    x   i  2     .   



(54)









According to (46) which defines the gradient approximation by forward differences, the vector of    [ DFF  (  x   k   )  ]    i    is described by     [ DFF  (  x   k   )  ]    i   =  1 h    [ f  (  x   k   +  e   i   h )  − f  (  x   k   )  ]    i    , wherer   i = 1 , 2 , … , n  , then


   ∥ DFF   (  x   k   )    ∥    ∞   =  max  1 ≤ i ≤ n   |     f  (  x   k   +  e   i   h )  − f  (  x   k   )   h     i   | =  1 h   max  1 ≤ i ≤ n    |   [ f  (  x   k   +  e   i   h )  − f  (  x   k   )  ]    i   |  ,  








and therefore, the next inequality is true


   ∥ D F F   (  x   k   )    ∥    ∞   =  1 h   max  1 ≤ i ≤ n    |    [ f  (  x   k   +  e   i   h )  − f  (  x   k   )  ]    i    | ≤ | f    (  x   k   )   h   i    − f  (  x   k   )   | .   



(55)







By using (48), (51), (54) and (55), we obtain    | ∥ DFF   (  x   k   )    ∥    ∞    − ∥ g   (  x   k   )    ∥    ∞    | ≤ ∥ DFF   (  x   k   )    ∥    ∞    + ∥ g   (  x   k   )    ∥    ∞    ≤ | f    (  x   k   )   h   i    − f  (  x   k   )   | + ∥ g   (  x   k   )    ∥  2  =  | f   (  x   k   )   h   i    − f  (  x   k   )  |  +   f (  x   k   )   φ   k    ,  φ   k   ≠ 0  .



Therefore, the theorem holds.





4. Numerical Experiments of Part I


All experiments were run on a PC with Intel(R) Core(TM) i5-3230M CPU@2.60GHz 2.60 GHz with RAM 4.00 GB of memory on a Windows 10 operating system. The five methods were coded by utilizing MATLAB version 8.5.0.197613 (R2015a) and the machine epsilon was about   10  − 16   .



The model optimization test problems are categorized into two types. The first type is the test problems that contain a convex function, while the second type include a non-convex function. Both kinds of test problems are listed in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 such that the second type of the test problem is referred to by *. Columns 1–4 of Table 1 give the data of the test problems as follows: the abbreviation of the function f is given on Column 1, the number of variables n is listed on Column 2, the exact function value   f (  x *  )   at the global point   x *   is presented on Column 3, and the exact value of the norm of the gradient   ∥ g (  x *  ) ∥   vector is given by Column 4, where the mark “−” denotes that the value of the norm of the gradient   ∥ g (  x *  ) ∥   for the convex function satisfies the stopping criterion    ∥ g   (  x *  )   ∥ <   10  − 6    . Columns 5–8 are as Columns 1–4.



The data in Table 1 are taken from [56].



The numerical results for the local minimizers of all test problems are listed in Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8. Columns 1–2 and 8–9 contain the abbreviation of the function f and the number of the variables n, respectively. Columns 3–7 contain the abbreviation of each algorithm of the five algorithm SHZ, MHZ, HZ, HS and FR, which present the number of worst iterations, number of worst function evaluations, number of best iterations, number of best function evaluations, average of time (CPU), average of the number of iterations and average of the number of function evaluations, respectively. Columns 10–14 are similar to Columns 3–7.



Note 1: It is worth noting that the full name for each test function is mentioned in Appendix A according to the reference in which the test problem is.



Note 2: F denotes that the algorithm has failed to find the local minimizer of the function f according to the stopping criteria of Algorithm 1 which are listed in Section 4.1 below.



The stopping criteria of Algorithm 1 are as follows.



4.1. Stopping Criteria of Algorithm 1


Since this section focuses in finding a local minimizer of all test problems, the stopping criteria of Algorithm 1 can be defined as follows.



According to the discussions of the convergence analysis which are mentioned in the previous sections, the stopping criterion of Algorithm 1 is, if     ∥ g   (  x   k   )   ∥ ≤   ε   1     is satisfied, Algorithm 1 stops, where    ε   1   ∈  [  10  − 6   ,  10  − 8   ]   . However,  the exact value of the gradient vector is unknown since the value of the gradient vector is estimated by Formula (46); therefore, this condition is replaced by    ∥   DFF   k    ∥ ≤   ε   2     or   FEs = n  10 4   , i.e., if one of them is met, Algorithm 1 stops, where    ε   2   ∈  [  10  − 7   ,  10  − 9   ]   , FEs denotes the maximum function evaluations and n is the number variables of the f.



In the following section, the performance profile is presented as an easy tool to compare the performance of our proposed method versus other methods in finding local minimizers of convex or non-convex functions regarding the worst and best numbers of iterations and function evaluations, the average of CPU time and the average of iterations and function evaluations, respectively.




4.2. Performance Profiles


The performance profile is the best tool for testing the performance of the proposed algorithms [80,81,82,83,84].



In this paper, the five algorithms’ performance evaluation standards are as follows: the worst and best numbers of iterations and function emulations, and the average of the CPU time, iterations and function emulations. They are abbreviated as itr.w, itr.be, FEs.w, FEs.be, time.a, itr.a and EFs.a, respectively. In the remainder of the paper, the set Fit will be used to denote the seven criteria;   Fit = {  itr.w  ,  itr.be  ,  FEs.w  ,  FEs.be  ,  time.a  ,  itr.a  ,  EFs.a  }  .



Therefore, the numerical outcomes are presented in the form of performance profiles, as depicted in [82]. The most important characteristic of the performance profiles is that they can be shown in one figure by plotting for the different solvers a cumulative distribution function    ρ   s    ( τ )   .



The performance ratio is defined by first setting    r  p , s   =   t  p , s    min {  t  p , s   : s ∈ S }    , where   p ∈ P  , P is a set of test problems, S is the set of solvers, and   t  p , s    is the value obtained by solver s on test problem p.



Then, define    ρ   s    ( τ )  =  1  | P |   size  { p ∈ P :  r  p , s   ≤ τ }   , where   | P |   is the number of test problems.



The value of    ρ   s    ( 1 )    is the probability that the solver will win over the remaining ones, i.e., it will yield a value lower than the values of the remaining ones.



In the following, the performance profiles are utilized to evaluate the performance of the five methods: SHZ, MHZ, HZ, SH and FR.



Therefore, in this paper, the term   t  p , s    indicates one element of the set Fit,   | P | = 46   is the number of test problems. We have 46 unconstrained test problems, 14 of which include non-convex functions. The group of solvers   S = { S H Z , M H Z , H Z , S H , F R }   finds the local minimizers of the 46 test problems; therefore, the values of the   F i t   are taken from the results of the 46 test problems as follows.



Each solver s of the set S is run 51 times for each of the 46 problems; at each run, every element of the set Fit has owned its value. So, they are analyzed in the following.


   r  p , s   =       fit  p , s    min {  fit  p , s   : s ∈ S }      if  the  s  pass  to  solve  the   p ,       ∞    otherwise ,       



(56)




where   fit  p , s    is an element of the Fit for the test problem p by using the solver s.



Note: Formula (56) means that if the final result, obtained by a solver   s ∈ S  , satisfies Inequality (57), then the first branch of (56) is computed. Otherwise, we set    r  p , s   = ∞  .


   ∥ D F   F   k    ∥ ≤   ε   2   ,  



(57)




where    ε   2   ∈  [  10  − 5   ,  10  − 9   ]   .



Therefore, the performance profile of solver s is defined as follows:


  δ  (  r  p , s   , τ )  =     1    if    r  p , s   ≤ τ  ,      0    otherwise ,       



(58)







Therefore, the performance profile for solver s is then given by the following function:


    ρ   s    ( τ )  =  1  | P |     ∑  p ∈ P   δ  (  r  p , s   , τ )   ,  τ ≥ 1 .   



(59)







As we mentioned above,   | P | = 46   and   τ ∈ [ 1 , 60 ]  .



By definition of   Fit  p , s   ,    ρ   s    ( 1 )    denotes the fraction of test problems for which solver s performs the best. In general,    ρ   s    ( τ )    can be explained as the probability for solver   s ∈ S   that the performance ratio   r  p , s    is within a factor  τ  of the best possible ratio. Additionally, the essential characteristic of performance profiles is that they present data on the proportional performance of numerous solvers [82,83].



The numerical outcomes of the five methods are analyzed by using the performance profiles as follows. Figure 1, Figure 2, Figure 3 and Figure 4 show the performance profiles of the set solvers S, for each element of the set Fit, respectively.



The performance profile depicted on the left of Figure 1 (in the term itr.w) compares the five techniques for a set of the 46 test problems.



The SHZ method has the best performance for the 46 test problems; this means that our suggested approach is capable of finding a local minimizer to the 46 test problems as fast as, or faster than, the other four approaches.



For instance, if    τ = 1  , the  SHZ technique is capable of finding the local minimizer for   65 %   of problems versus the   33 %  ,   20 %  ,   20 %   and   13 %   of a set of test problems solved by the MHZ, HS, FR and HZ methods, respectively.



In general, the  term itr.w,   τ = 60   displays that all test problems are solved by SHZ against   96 %   of test problems solved by the MHZ, HZ and FR methods respectively, while   93 %   of test problems are solved by the HS method. At   τ ≥ 400  , all test problems are solved by the MHZ, HZ and FR methods respectively, while   98 %   of test problems are solved by the HS.



The right graph of Figure 1 shows that the method SHZ is capable of finding the local minimum of all test problems regarding term FEs.w.



The rest of Figure 2, Figure 3 and Figure 4 show that the SHZ algorithm is superior to the four algorithms regarding the rest of the terms of the set Fit.



Therefore, the SHZ technique includes the characteristics of efficiency, reliability and effectiveness in solving Problem (1) compared to the other four methods.



Note: The power of the SHZ technique comes from the fact that the SHZ method gains the features of the four methods MHZ, HZ and HS, as we mentioned in Section 2.



Part II: Global Minimization Problem


It is worth mentioning that the final results of Part I for the second set of test problems contain some global minimizers at some runs for some non-convex functions. This means that the pure CG technique could not find the global minimizer of the second type of test problems for each run because it is a local method.



Therefore, to make this method capable of solving Problem (2) per run, the random technique is proposed and it is added to the CG approach to gain a new PS-CG hybrid technique that solves Problem (2). In many studies, the numerical outcomes indicated that the interbreed between a classical method and a random technique is very successful in overcoming the weakness of these methods. See [55,56,57,58,59].



Consequently, this part of the paper seeks to solve Problem (2).



Therefore, each method of the five CG methods mentioned in Part I is hybridized with the stochastic technique to obtain five algorithms to try to solve Problem (2).



In the next section, a stochastic technique is presented.






5. Random Technique


In this section, a new random parameter “SP” is presented. This stochastic technique contains three different formulas by which three different points are generated. This set of formulas is combined with the CG method to obtain a new algorithm that solves Problem (2).



Random Parameters (SP Technique)


Step 1: The first point is computed as follows, generate    V   k   ∼   [ − 1 , 1 ]  n    is as a random vector, set    γ   k   =  10  ψ   k     ,    ψ   k   ∈  [ 0.01 , 1 )   , where the interval   [ 0.01 , 1 )   is divided into Itr of fractions and at every iteration k, the parameter   ψ   k    takes one value of the Itr and then computes    λ   k   =    ( 1 +  γ   k   )    |   V   i    |     γ   k    S  V   i     as a research direction with the step lengths, where   i = 1 , 2 , … , n  , n is the of number variables, Itr is the number of iterations, and   S  V   i     denotes the signs of the  V  and is defined by


  S  V   i   =      − 1     if    V   i   < 0  ,          1     otherwise .       



(60)







Thus, a  point is calculated as follows:


   x   1   =  x ac  +  λ   k   ,  



(61)




where   x ac   is the best point obtained yet, and then we compute    f   1   = f  (  x   1   )   .



Step 2: The second point is defined by


   x   2   =  x   ac   +  η   k    B   k   ,  



(62)




where    B   k   =  φ   k    d   k    ,   φ   k    is defined by (47),    η   k   ∈  ( 0 , 2 )    is a random number, and the   d   k    is defined by (23). Then, we compute    f   2   = f  (  x   2   )   .



Step 3: This point is defined by


   x   3   =  X   w   +  1 2  Dx ,  



(63)




where   Dx =     ( 1 +  μ   k   )    |   V   i    |    − 1    μ   k   + 0.1   S  V   i    ,    μ   k   =   |  f  a c   |  2   ,   f  a c    is the function value at the point   x  a c    that has been accepted, and   X   w    is a stochastic variable picked from the feasible range of the objective function. This means that for    X   w   ∼   [ a , b ]  n   , a and b are the lower and upper bounds of the feasible range, respectively, and the random vector  V  with its signs   S  V   i     is defined by the first step.



Therefore, we calculate    f   3   = f  (  x   3   )   .



For finding the global minimizer of a non-convex function, the above stochastic technique is used since Algorithm 1 is not capable of finding the global solution at each run. In other words, in some runs, Algorithm 1 fails to find the global solution to this function due to it sticking to a local point.



In the following example, we show how the SP algorithm is run.



Example: This example shows how the three steps of the SP algorithm are implemented.



We use the first test problem of the list of the test problems that are listed in Appendix A.    R   2    ( x )  = 100   (  x    1   2  −  x   2   )  2  +   (  x   1   − 1 )  2   , to facilitate an explanation of the mechanism of using the Sp algorithm (Formulas (61)–(63)), we use the following easy information about the function    R   2    ( x )   ,   n = 2   is the number of the variables,    x  a c   =  [ 2 ; − 1 ]   , or    x  a c   =  [ 2 ; 1 ]   , where   x  a c    represents the best solution has been accepted so far or the starting point; hence, the function values at the two points are    R   2    (  x  a c   )  = 100   (  2 2  + 1 )  2  +   ( 2 − 1 )  2  = 2500 + 1 = 2501   and    R   2    (  x  a c   )  = 100   (  2 2  − 1 )  2  +   ( 2 − 1 )  2  = 900 + 1 = 901  .



Supposing   I t r = 5   is the number of iterations, the interval   [ 0.01 ; 1 )   is divided into five fractions with step size     1 − 0.01  5  = 0.198  , and thus the set of this fractions is   A = { 0.01 ,  0.208 ,  0.406 ,  0.604 ,  0.802 }  , let k be 3 which means the algorithm is at the third iteration. Then,    ψ   3   = 0.406  ,    γ   3   =  10  ψ   3    =  10  0.406   = 2.5468  . Let   V   3    be   [ − 0.5 ; 1 ]  , then    λ   3   =     ( 1 + 2.5468 )   | − 0 . 5 |    2.5468   × − 1 ;     ( 1 + 2.5468 )   | 1 |    2.5468   × 1  =  −   1.8833   2.5468   ;    3.5468   2.5468    =  − 0.73948 ; 1.3926   .  



Therefore, the new solution is computed by Formula (61) as follows.



   x   1   =  x  a c   +  λ   3   =  [ 2 ; − 1 ]  +  [ − 0.73948 ;  1.3926 ]  =  [ 1.2605 ;  0.3926 ]    or    x   1   =  x  a c   +  λ   3   =  [ 2 ; 1 ]  +  [ − 0.73948 ; 1.3926 ]  =  [ 1.2605 ;  2.3926 ]   .



The function values at both points are as follows.



   R   2    (  x   1   )  = 100   ( 1 .  2605 2  − 0.3926 )  2  +   ( 1.2605 − 1 )  2  = 143.1 + 0.06786 = 143.17   or    R   2    (  x   1   )  = 100   ( 1 .  2605 2  − 2.3926 )  2  +   ( 1.2605 − 1 )  2  = 64.6 + 0.06786 = 64.668  .



Therefore,    R   2    (  x   1   )  <  R   2    (  x  a c   )   ; this means the solution that is generated by Formula (61) reduces the function value.



In the following, we explain how the candidate solution is generated by Formula (62).



Let    M   ϵ   = 1.2 ×  10  − 6    . By using Formula (45), we obtain    h   3   = 4.381 ×  10  − 5     as the step size h (a random interval) to the difference approximations method, and then we have    x     h     1    =  [  x  a c    ( 1 )  +  h   3   ;   x  a c    ( 2 )  ]  =  [ 2 + 4.381 ×  10  − 5   ; − 1 ]   ,    x     h     2    =  [  x  a c    ( 1 )  ;   x  a c    ( 2 )  +  h   3   ]  =  [ 2 ;  − 1 + 4.381 ×  10  − 5   ]   .



Therefore, the values of the function at the three points   x  a c   ,   x     h     1     and   x     h     2     are listed in the following.



   R   2    (  x  a c   )  = 2501  ,    R   2    (  x     h     1    )  = 2501.175   and    R   2    (  x     h     2    )  = 2500.956  .



We compute the approximate value of the gradient vector by Formula (46) as follows:


  D F F  (  x  a c   )  =    2501.175 − 2501   4.381 ×  10  − 5     ;    2500.956 − 2501   4.381 ×  10  − 5      =  3994.522 ;  − 1004.34  ,  








   φ   3   =  2501   ∥ DFF ∥  2   = 0.0002  , where   φ   3    is defined by (47).



We consider    d   3   = − g  (  x  a c   )  ≈  − 3994.522 ;  1004.34    because we do not have information about the value of the   d   2    in this illustration example.



Now, we apply Formula (62), as follows    B   3   =  φ   3    d   2   =  [ − 0.799 ;  0.201 ]   , we take    η   3   = 0.971   as a random number from the range   ( 0 ,  2 )  , then    x   2   =  [ 2 ; − 1 ]  + 0.971 ×  [ − 0.799 ;  0.201 ]  =  [ 1.2242 ;  − 0.80483 ]   , the function value at the point   x   2    is    R   2    (  x   2   )  = 530.66  .



We note that the    R   2    (  x   2   )  = 530.66 <  R   2    (  x  a c   )  = 2501  , i.e., the function value is reduced by the point   x   2   .



In the following, we explain how the candidate solution is generated by Formula (63).



   μ   3   =   |  f  a c   |  2  =  2501 2  =  6 , 255 , 001   ,   Dx =      ( 1 + 6 , 255 , 001 )   | − 0.5 |   − 1   6 , 255 , 001 + 0.1   × − 1 ;     ( 1 + 6 , 255 , 001 )   | 1 |   − 1   6 , 255 , 001 + 0.1   × 1  =  −   2501 − 1   6 , 255 , 001.1   ;   6 , 255 , 002 − 1   6 , 255 , 001.1    =  − 0.0004 ;  0.999  .     X   w   =  [ − 3.095 ;  8.701 ]    is as a random vector picked from the range    [ − 5 , 10 ]  2  , and then    x   3   =  [ − 3.095 ;  8.701 ]  +  1 2   [ − 0.0004 ;  0.999 ]  =  [ − 3.095 ;  8.701 ]  +  [ − 0.0002 ;  0.4995 ]  =  [ − 3.0952 ;  9.2005 ]   .



We compute the function value at the point   x   3   ;    R   2    (  x   3   )  = 100   (   ( − 3.0952 )  2  − 9.2005 )  2  +   ( − 3.0952 − 1 )  2  = 14.422 + 16.771 = 31.193  .



We note that the    R   2    (  x   3   )  = 31.193 <  R   2    (  x  a c   )  = 2501  . Therefore, the point   x   3    minimizes the function value.



According to the above example that illustrates the mechanism of Formulas (61)–(63), we deduce the following results.



Remark 1.

Formulas (3), (61) and (62) are the main formulas which are used in the new hybrid proposed algorithm that is described in Section 6. However, Formula (63) is used when   Δ f = 0   that is defined by Formula (25); in this case, Algorithm 3 reaches a critical point, thus if this point is the approximate value of the global minimizer point of the f, then Algorithm 3 stops according to the condition in Line 4 or Line 1 of Algorithm 3. Otherwise, the candidate solution is generated by Formula (63); see Section 6. Consequently, in this example, at iteration   k = 3  , the result which is obtained by Formula (63) cannot be taken into account due to the   Δ f ≠ 0  .





Remark 2.

All Formulas (61)–(63) minimize the function value from any starting point.







6. Hybridization of the CG Method with Stochastic Parameters


When a stochastic method as a global optimization algorithm is combined with a globally convergent method (deterministic method), the result is a global optimization algorithm [55,56].



Therefore, the SP technique is hybridized with each of the five conjugate gradient methods SHZ, MHZ, HZ, HS and FR to obtain five techniques.



Our proposed algorithm is called a hybrid stochastic CG method abbreviated by HSSHZ that solves Problem (2). However, Algorithm 3 represents five alternative algorithms when the SHZ method is hybridized with the PS technique, then we obtain a new algorithm abbreviated by HSSHZ. When we combine any method of MHZ, HZ, HS or FR, we obtain four other abbreviations of algorithms as follows: HSMHZ, HSHZ, HSHS and HSFR, respectively.



In general, the outputs of this paper are five algorithms that solve Problem (2), where the best one is the HSSHZ algorithm as illustrated by the numerical experiments section of Part II.



In the following, Algorithm 1 is combined with SP technique to obtain Algorithm 3.



The SP method permits conducting an exhaustive wipe of the search range to guarantee that the global minimizer point is visited at least once per run.






	Algorithm 3 Hybrid stochastic CG method.



	
	Input:  

	
  f :  R n  → R  ,   f ∈  C 1   ,    f  a c   =  f    c g      gained by Algorithm 1 and   ε > 0  .




	Output:  

	
   x   gl   =  x   ac     the global minimizer of f,   f (  x   gl   )  , the value of f at   x   gl   .




	1:

	
while   |   f    a c    −  f *   | > ε    or FEs  < n  10 4    do




	2:

	
      f  c g    is a function value f gained by Algorithm 1.




	3:

	
       f  a c   = min  {  f  c g   ,  f   1   ,  f   2   }    and   x  a c    the best point gives the   f  a c   .




	4:

	
    if    |   f    a c    −  f *   | ≤ ε    then




	5:

	
        Stop.




	6:

	
    end if




	7:

	
    if   ▵ f = = 0   then




	8:

	
        calculate the   x   3    and the    f   3   = f  (  x   3   )    by Formula (63).




	9:

	
        if    f   3   <  f  a c     then




	10:

	
           the   x   3    is accepted, compute the    x ac  →  x   3    ,    f  a c   →  f   3    , and go to Line 1.




	11:

	
        else




	12:

	
           generate another point   x   3    by Formula (63).




	13:

	
        end if




	14:

	
    else




	15:

	
        go to Line 1.




	16:

	
    end if




	17:

	
end while




	18:

	
return  x ac   the best point and its function value   f  a c   














A Mechanism Running Algorithm 3


As we mentioned above, Algorithm 3 is a combination of two methods; the first is a CG method of the five techniques CG   = { S H Z , M H Z , H Z , S H , F R }   that are discussed in Part I, and the second is a random method is depicted by Section 5. The point   x   cg    is obtained by Algorithm 1 and it will be an input to Algorithm 3.



Algorithm 3 begins with Line 1 that is the stopping standard of the algorithm. Therefore, Algorithm 3 ends if one of the following standards is satisfied: The first standard is    |   f    a c    −  f *  | ≤ ε  , and the second standard is FEs   ≥ n  10 4   , where   f    a c     the best value of the function f is gained, the   f *   is the true solution,   ε =  10  − 6    , FEs is the number of function evaluations, and FEs   = n  10 4    is a stopping standard indicated by [85,86].



In Line 3, the best value of f is selected from the three values of the function   f  c g   ,   f   1    and   f   2   , and indicated by   f  a c   , the three values of the function f are calculated by Algorithms (1), (61) and (62), respectively, and   x ac   indicates this.



In Line 4, if    |   f    a c    −  f *  | ≤ ε   is fulfilled, the algorithm ends. The standard that is listed in Line 7 gives the algorithm an opportunity to flee from the local points. Consequently, if   ▵ f = 0  , then the algorithm has reached a crucial point. Therefore, if the norm of the gradient vector is 0 or ≈0, this point is either a local point or the global point. According to the above actions, the hybrid algorithm has been granted sequential opportunities to escape out of a snare (a local point). Thus, the procedures in Lines 8–12 are eligible for helping the algorithm to flee this snare, especially since the second stopping standard guarantees that most of the research domain is scanned.



The numerical outcomes of the five methods are given in the next section.





7. Numerical Experiments of Part II


The numerical results for the second test problems (non-convex functions) are presented, and these results are obtained by Algorithm 3.



The performance profiles tool that is described in Part I is used here for assessing the achievement of Algorithm 3 that contains five alternatives of algorithms as we mentioned above in Section 6.



The numerical results of the second type of the test problems are listed in Table 9, Table 10, Table 11, Table 12, Table 13, Table 14 and Table 15. Columns 1–2 and 8–9 contain the abbreviation of the function f and the number of the unknowns n, respectively. Columns 3–7 contain the abbreviation of each algorithm of the five algorithm HSSHZ, HSMHZ, HSHZ, HSHS and HSFR, which present the number of worst iterations, number of worst function evaluations, number of best iterations, number of best function evaluations, average of time (CPU), average of number of iterations and average of number of function evaluations, respectively. Columns 10–14 are similar to Columns 3–7.



Note: F denotes that the algorithm has failed to find the local minimizer of the function f according to the stopping criteria of Algorithm 3 which are listed in Section 6.



The performance profiles for the five algorithms are analyzed as follows.



Figure 5, Figure 6, Figure 7 and Figure 8 show the performance profiles of the five set solvers S regarding the set standard Fit that is mentioned in Section 4.2.



The performance profiles which are drawn on the left of Figure 5 (in the term itr.w) compares 5 methods for the 14 test problems.



The HSSHZ technique has a good achievement (for the term itr.w) for all test problems, which indicates that the HSSHZ technique is capable of solving Problem (2) as fast as or faster than the four techniques.



For instance, if   τ = 1  , the HSSHZ algorithm solves   71 %   of the 14 test problems against   14 %  ,   14 %  ,   7 %   and   0 %  , of the 14 test problems solved by the HSMHZ, HSHZ, HSFR and HSHS algorithms, respectively.



In general, for the term itr.w,   τ ≥ 60   exhibits that the second type of the test problems are solved by HSSHZ, while   64 %  ,   71 %  ,   43 %   and   50 %   of test problems are solved by the HSMHZ, HSHZ, HSHS and HSFR algorithms respectively.



Figure 5, Figure 6, Figure 7 and Figure 8 demonstrate that the performance of the HSSHZ technique is better than the performance of the four techniques regarding the seven standards listed in the set Fit, respectively.



Therefore, the HSSHZ technique includes the characteristics of efficiency, reliability and effectiveness in finding the global minimizer of the non-convex function f compared to the other four methods.



It is worth observing that the power of the HSSHZ algorithm comes from the fact that the SHZ method gains the features of the four methods, MHZ, HZ, HS and FR, as mentioned in Section 2.



Note 1: In Algorithm 3, a run is considered successful if Inequality (64) is met.


   |   f    a c    −  f *  | ≤  10  − 5   ,  



(64)




where   f *   is the exact global solution that is listed in Columns 3 and 7 of Table 1, respectively, and the   f    a c     is the final result obtained by Algorithm 3.



Note 2: Formula (56) means if the final result   f    a c    , obtained by Algorithm 3 satisfies Inequality (64), then the first branch of (56) is computed; otherwise, we set    r  p , s   = ∞  .




8. Conclusions and Future Work


A new modified CG algorithm is suggested, named SHZ. The SHZ finds the local minimizers of unconstrained optimization problems. The modernized formulae of the SHZ algorithm are more complicated than previous approaches; nevertheless, the numerical experiments of the SHZ are very strong. The convergence analysis of the SHZ algorithm is designed. We also analyzed the gradient approximation   g ( x ) ≈   DFF constructed by finite differences (the forward differences method). This method includes a new approach for selecting the fit value of the h according to the value of the objective function and it is updated dynamically at each iteration. The numerical results demonstrate that the performance of the SHZ method is positively competitive with the other four conjugate gradient methods based on performance profiles.



Comparing the final results of the gradient vector that were obtained by the method DFF to the exact values of the gradient vector demonstrates that the fresh technique succeeded in picking the right value of h. The proposed random approach recreates a critical role to make the SHZ method capable of finding the global minimizers of unconstrained optimization test problems, especially when the objective function is non-convex.



It can be worth observing that the power of the HSSHZ algorithm comes from the fact that the SHZ method gains the characteristics of the four methods, MHZ, HZ, HS and FR.



The suggested approach can be improved and modified to deal with constrained, multi-objective optimization problems, and it will be used for image restorations.
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Appendix A. List of Test Problems


	1   R n  :

	
Rosenbrock functions [57,87,88]


   min x    ∑  i = 1   n − 1    100   (  x i 2  −  x  i + 1   )  2  +   (  x i  − 1 )  2    .  











Range of starting points   − 5 <  x i  < 10 , i = 1 , 2 , . . . , n .  



Global minima:   f (  x *  ) = 0   at    x *  =   (1, 1, …, 1).




	2   Z n  :

	
Zakharov functions [57,80,87,88]


   min x    ∑  i = 1  n   x i 2  +    ∑  i = 1  n  0.5 i  x i   2  +   ∑ 0.5 i  x i   4   .  











Range of starting points   − 5 <  x i  < 10  ,   i = 1 , 2 , . . . , n .  



Global minima:   f (  x *  ) = 0   at    x *  =   (0, 0, …, 0).




	3 PW:

	
Powell function [80]



   min x     ∑  i = 1   n 4       (  x  4 i − 3   + 10  x  4 i − 2   )  2  + 5   (  x  4 i − 1   −  x  4 i   )  2  +   (  x  4 i − 2   − 2  x  4 i − 1   )  4  + 10   (  x  4 i − 3   −  x  4 i   )  4    .   Range of starting points   − 600 <  x i  < 600  ,   i = 1 , 2 , . . . , n .  



Global minima:   f (  x *  ) = 0   at    x *  =   (0, 0, …, 0).




	4 SP:

	
Sphere function [89]


   min x    ∑  i = 1  n   x  i  2   .  











Range of starting points   − 10 ≤  x i  ≤ 10  ,   i = 1 , 2 , . . . , n .  



Global minima:   f (  x *  ) = 0   at    x *  =   (0, 0, …, 0).




	5 Tr:

	
Trid function [80]


  min  ∑  i = 1  n    (  x i  − 1 )  2  −  ∑  i = 2  n   x i   x    i − 1    .  











Range of starting points   −  n 2  <  x i  <  n 2   ,   i = 1 , 2 , . . . , n .  



Global minima:   f  (  x *  )  =   n ( n + 4 ) ( n − 1 )  6   . at    x *  = i  ( n + 1 − i )   




	6:

	
Sum Squares function [90]


   min x    ∑  i = 1  n  i  x  i  2   .  











Range of starting points   − 100 <  x i  < 100  ,   i = 1 , 2 , . . . , n .  



Global minima:   f (  x *  ) = 0   at    x *  =   (0, 0, …, 0).




	7 CV:

	
Colville function [57,80,91]





       min x  { 100    x 1 2  −  x 2   2  +    x 1  − 1  2  +    x 3  − 1  2  + 90    x 3 2  −  x 4   2      + 10.1     x 2  − 1  2  +    x 4  − 1  2   + 19.8   x 2  − 1     x 4  − 1  2  } .      











Range of starting points   − 10 <  x i  < 10 , i = 1 , 2 , . . . , n .  



Global minima:   f (  x *  ) = 0   at    x *  =  ( 1 , 1 , 1 , 1 )   .




	8 BR:

	
Branin function [57,92,93]



    min x     (  x 2  −   5.1   4  π 2     x 1 2  +  5 π   x 1  − 6 )  2  + 10  ( 1 −  1  8 π   c o s  (  x 1  )  )  + 10  .   



Range of starting points   − 5 <  x i  < 15 , i = 1 , 2 .  



Only one global minima:   f (  x *  ) = 0.397887 .   at    x *  =  {  ( − π , 12.275 )  ,  ( 9.42478 , 2.475 )  ,  ( π , 2.275 )  }   .




	9 DJ:

	
De Joung function [57,87,88]


   min x    x 1 2  +  x 2 2  +  x 3 2   .  











Range of starting points   − 5 <  x i  < 15  ,   i = 1 , 2 , 3 .  



Number of local minima: no local minima.



Global minima:   f (  x *  ) = 0   at    x *  =  ( 0 , 0 , 0 )   .




	10 BO:

	
Booth function [89]


   min x     (  x 1  + 2  x 2  − 7 )  2  +   ( 2  x 1  +  x 2  − 5 )  2   .  











Range of starting points   − 10 <  x i  < 10  ,   i = 1 , 2 , . . . , n .  



Global minima:   f (  x *  ) = 0   at    x *  =   (1, 3).




	11 Ma:

	
Matyas function [90]


   min x   0.26   x    1   2  +  x    2   2   − 0.48  x   1    x   2    .  











Range of starting points   − 10 <  x i  < 10  ,   i = 1 , 2 , . . . , n .  



Global minima:   f (  x *  ) = 0   at    x *  =   (0, 0 ).




	12 Sm   *  :

	
Shekel functions [57,80,87,88,92,93,94]


   min x   −  ∑  j = 1  m     ∑  i = 1  4     x i  −  A  i j    2  +  c j    − 1    .  








where   c = 0.1 [ 1 , 2 , 2 , 4 , 4 , 6 , 3 , 7 , 5 , 5 ]  ,



   A =      4.0     1.0     8.0     6.0     3.0     2.0     5.0     8.0     6.0     7.0       4.0     1.0     8.0     6.0     7.0     9.0     3.0     1.0     2.0     3.0       4.0     1.0     8.0     6.0     3.0     2.0     5.0     8.0     6.0     7.0       4.0     1.0     8.0     6.0     7.0     9.0     3.0     1.0     2.0     3.0        



Range of starting points   0 <  x i  < 10 , i = 1 , . . . , n .  



Number of local minima: m local minima.



Global minima:


  f   (  x *  )   n , m   =      − 10.1532  ,     when m = 5 ,       − 10.4029  ,     when m = 7 ,       − 10.5364  ,     when m = 10 .       











Global minima for three functions at    x *  =  4 , 4 , 4 , 4   .




	13 GP   *  :

	
Goldstein and Price function [57,80,87,88,92,94]



   u  ( x )  = 1 +   (  x 1  +  x 2  + 1 )  2   ( 19 − 14  x 1  + 3  x 1 2  − 14  x 2  + 6  x 1   x 2  + 3  x 2 2  )    



  v  ( x )  = 30 +   ( 2  x 1  − 3  x 2  )  2   ( 18 − 32  x 1  + 12  x 1 2  + 48  x 2  − 36  x 1   x 2  + 27  x 2 2  )   .


   min x   v ( x ) u ( x )  .  











Range of starting points   − 2 <  x i  < 2  ,   i = 1 , 2 .  



Number of local minima: 4 local minima.



Global minima:   f (  x *  ) = 3   at    x *  =  ( 0 , − 1 )  .  




	14 Ras   *  :

	
Rastrigin function [93]


   min x    x 1 2  +  x 2 2  − c o s  ( 18  x 1  )  − c o s  ( 18  x 2  )   .  











Range of starting points   − 1 <  x i  < 1  ,   i = 1 , 2 .  



Number of local minima: many local minima.



Global minima:   f (  x *  ) = − 2   at    x *  =  ( 0 , 0 )   .




	15 Bh1   *  :

	
Bohachevsky function [80]


   min x    x 1 2  + 2  x 2 2  − 0.3 c o s  ( 3 π  x 1  )  − 0.4 c o s  ( 4 π  x 2  )  + 0.7  .  











Range of starting points   − 100 <  x i  < 100  ,   i = 1 , 2  .



Number of local minima: many local minima.



Global minima:   f (  x *  ) = 0   at    x *  =   (0, 0).




	16 SH   *  :

	
Shubert function in [57,80,87,88,92]


   min x     ∑  i = 1  5  i c o s   ( i + 1 )   x 1  + i     ∑  i = 1  5  i c o s   ( i + 1 )   x 2  + i    .  











Range of starting points   − 5.12 <  x i  < 5.12  ,   i = 1 , 2 .  



Number of local minima: 760 local minima.



Global minima:   f (  x *  ) = − 186.7309   at 18 point different of   x *  .




	17 P8   *  

	
Ref. [92]


   min x    π n    k 1  s i n   ( π  y 1  )  2  +  ∑  i = 1   n − 1      y i  −  k 2   2   1 +  k 1  s i n   ( π  y    i + 1    )  2   +   (  y n  −  k 2  )  2    ,  








with    y i  = 1 +  1 4    x i  + 1   ,    k 1  = 10   and    k 2  = 1  .



Range of starting points   − 10 ≤  x i  ≤ 10  ,   i = 1 , 2 , 3 .  



Number of local minima:   5 3   local minima.



Global minima:   f (  x *  ) = 0   at    x *  =  ( − 1 , − 1 , − 1 )  .  




	18 P16   *  

	
Ref. [92]


   min x   k 3   s i  n 2   ( π  k 4   x 1  )  +  ∑  i = 1   n − 1      x i  −  k 5   2   1 +  k 6  s i  n 2   ( π  k 4   x  i + 1   )   +   (  x n  −  k 5  )  2   1 +  k 6  s i  n 2   ( π  k 7   x n  )    ,  








where    k 3  = 0.1  ,   k 4  = 3  ,    k 5  = 1  ,    k 6  = 1  ,   k 7  = 2  .



Range of starting points   − 5 ≤  x i  ≤ 5  ,   i = 1 , . . , n .  



Number of local minima:   15 5   local minima.



Global minima:   f (  x *  ) = 0   at    x *  =  ( 1 , 1 , 1 , 1 , 1 )  .  




	19 CB   *  :

	
Camel back in [80] and camel function in [93]


   min x   4  x 1 2  − 2.1  x 1 4  +  1 3   x 1 6  +  x 1   x 2  − 4  x 2 2  + 4  x 2 4   .  











Range of starting points   − 5 <  x i  < 5  ,   i = 1 , 2 .  



Number of local minima: many local minima.



Global minima:   f (  x *  ) = − 1.0316285   at    x *  =  {  ( 0.089842 , − 0.71266 )  ,  ( − 0.089842 , 0.71266 )  }   .




	20 H3   *  :

	
Hartmann function [57,80,87,88,92,93,94]


   min x   −  ∑  i = 1  4   c i  e x p  −  ∑  j = 1  3   a  i j      x j  −  p  i j    2    .  











Range of starting points   − 1 <  x j  < 1  ,   j = 1 , 2 , 3 .  



Number of local minima: 4 local minima.



Global minima:   f (  x *  ) = − 3.86278   at    x *  =  0.114614 , 0.555649 , 0.852547   .




	21 H6   *  :

	
Hartmann function [57,80,87,88,92,93,94]


   min x   −  ∑  i = 1  4   c i  e x p  −  ∑  j = 1  6   a  i j      x j  −  p  i j    2    .  











Range of starting points   − 1 <  x j  < 1  ,   j = 1 , 2 , . . . , n .  



Number of local minima: 4 local minima.



Global minima:   f (  x *  ) = − 3.32237   at    x *  =   (0.201690, 0.150011, 0.476874,



0.275332, 0.311652, 0.657300).




	22 HM   *  :

	
hump Function [57]


   min x   1.0316285 + 4  x 1 2  − 2.1  x 1 4  +  1 3   x 1 6  +  x 1   x 2  − 4  x 2 2  + 4  x 2 4   .  











Range of starting points   − 5 <  x i  < 5 , i = 1 , 2 .  



Number of local minima: 3 local minima.



Global minima:   f (  x *  ) = 0   at    x *  =  {  ( 0.0898 , − 0.7126 )  ,  ( − 0.0898 , 0.7126 )  }   .




	23 Le   *  :

	
Levy function [95]


   min x   s i  n 2   ( π  w 1  )  +  ∑  i = 1   n − 1     (  w i  − 1 )  2   1 + 10 s i  n 2   ( π  w i  + 1 )   +   (  w n  − 1 )  2   1 + s i  n 2   ( 2 π  w n  )    ,  








where    w i  = 1 +    x i  − 1  4   , for   i = 1 , . . . , n .  



Range of starting points   − 10 <  x i  < 10  ,   i = 1 , 2 , . . . , n .  



Number of local minima: many local minima.



Global minima:   f (  x *  ) = 0   at    x *  =   (1, 1, …, 1).
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Figure 1. Plotting the results of the terms itr.w and FEs.w for 5 algorithms. 
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Figure 2. Plotting the results of the terms itr.be and FEs.be for 5 algorithms. 
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Figure 3. Plotting the results of the term time.a “CPU” for 5 algorithms. 






Figure 3. Plotting the results of the term time.a “CPU” for 5 algorithms.



[image: Mathematics 10 03595 g003]







[image: Mathematics 10 03595 g004 550] 





Figure 4. Plotting the results of the terms itr.a and FEs.a for 5 algorithms. 
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Figure 5. Plotting the results of the terms itr.w and FEs.w for 5 algorithms. 
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Figure 6. Plotting the results of the terms itr.be and FEs.be for 5 algorithms. 
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Figure 7. Plotting the results of the term time.a “CPU” for 5 algorithms. 
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Figure 8. Plotting the results of the terms itr.a and FEs.a for 5 algorithms. 
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Table 1. List of both kinds of test problems.
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	f
	n
	    f (  x *  )    
	    ∥ g (  x *  ) ∥    
	f
	n
	    f (  x *  )    
	    ∥ g (  x *  ) ∥    





	   R n   
	10, 30, 50, 80, 100
	0
	-
	   Z n   
	10, 30, 50, 80, 100
	0
	-



	   P W   
	8, 32, 84, 120
	0
	-
	   S P   
	10, 30, 80, 100
	0
	-



	   T r   
	10, 30, 60, 80
	    − n ( n + 4 ) ( n − 1 )  6   
	-
	   S u   
	10, 30, 50, 80, 100
	0
	-



	   C V   
	4
	0
	-
	   B R   
	2
	0.397887
	-



	   D J   
	3
	0
	-
	   B O   
	2
	0
	-



	   M a   
	2
	0
	-
	   S  5 *    
	4
	−10.1532
	3.2 × 10    − 5   



	   S  7 *    
	4
	−10.4029
	-
	   S  10 *    
	4
	−10.5364
	3 × 10    − 5   



	   G  P *    
	2
	3
	2 × 10    − 6   
	   R a  s *    
	2
	−2
	2.5 × 10    − 6   



	   B h  1 *    
	2
	0
	2.4 × 10    − 5   
	   S  H *    
	2
	−186.7309
	2 × 10    − 6   



	   P  8 *    
	3
	0
	-
	   P  16 *    
	5
	0
	1.2 × 10    − 6   



	   C  B *    
	2
	−1.0316285
	2 × 10    − 5   
	   H  3 *    
	3
	−3.86278
	2 × 10    − 5   



	   H  6 *    
	6
	−3.32237
	6 × 10    − 5   
	   H  M *    
	2
	0
	1.1 × 10    − 8   



	   L  e *    
	10
	0
	2.1 × 10    − 6   
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Table 2. The number of worst iterations.
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	f
	n
	SHZ
	MHZ
	HZ
	HS
	FR
	f
	n
	SHZ
	MHZ
	HZ
	HS
	FR





	   R n   
	10
	2915
	3740
	5705
	5080
	5185
	   R n   
	30
	2270
	3555
	5170
	5140
	5050



	   R n   
	50
	2605
	3805
	5705
	5290
	5145
	   R n   
	80
	2750
	4010
	5795
	5150
	5890



	   R n   
	100
	2820
	2950
	5050
	5930
	5840
	   Z n   
	10
	145
	170
	225
	210
	195



	   Z n   
	30
	1075
	995
	1825
	1575
	1425
	   Z n   
	50
	2295
	2600
	4180
	3645
	3515



	   Z n   
	80
	5335
	4900
	9255
	8610
	7345
	   Z n   
	100
	9095
	7490
	9905
	9905
	9905



	   P W   
	8
	1470
	2230
	7120
	3980
	970
	   P W   
	32
	2135
	4515
	9700
	9700
	2075



	   P W   
	84
	3345
	6575
	9885
	9885
	2145
	   P W   
	120
	4385
	7750
	9920
	9920
	4495



	   S P   
	10
	15
	25
	25
	30
	25
	   S P   
	30
	15
	25
	30
	30
	30



	   S P   
	80
	15
	30
	25
	35
	25
	   S P   
	100
	15
	30
	30
	35
	30



	   T r   
	10
	575
	160
	135
	355
	155
	   T r   
	30
	2830
	1765
	2055
	9680
	2280



	   T r   
	60
	9840
	9840
	9840
	9840
	9840
	   T r   
	100
	9880
	9905
	9905
	9905
	9905



	   S u   
	100
	155
	155
	190
	200
	185
	   S u   
	80
	140
	135
	175
	190
	185



	   S u   
	50
	115
	95
	130
	130
	130
	   S u   
	30
	75
	80
	90
	95
	80



	   S u   
	10
	45
	40
	45
	40
	40
	   B R   
	2
	75
	75
	70
	65
	200



	   C V   
	4
	2070
	1745
	1760
	2455
	5705
	   D J   
	3
	15
	15
	35
	40
	30



	   B O   
	2
	35
	35
	40
	40
	35
	   M a   
	2
	80
	105
	65
	F
	140



	   S  5 *    
	4
	115
	445
	150
	750
	155
	   S  7 *    
	4
	200
	275
	220
	1500
	215



	   S  10 *    
	4
	100
	250
	205
	620
	120
	   G  P *    
	2
	6670
	6670
	6670
	6670
	6670



	   R a  s *    
	2
	30
	175
	1665
	280
	220
	   B h  1 *    
	2
	35
	50
	400
	70
	75



	   S  H *    
	2
	6670
	6670
	6670
	6670
	6670
	   P  8 *    
	4
	20
	8000
	8000
	1880
	4730



	   P  16 *    
	5
	20
	8000
	8000
	1880
	4730
	   C  B *    
	2
	25
	25
	115
	25
	150



	   H  3 *    
	3
	415
	655
	1300
	365
	7500
	   H  6 *    
	6
	445
	1425
	2190
	8575
	565



	   H  M *    
	2
	25
	30
	25
	25
	25
	   L  e *    
	10
	1105
	1575
	1815
	1025
	1200
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Table 3. The number of worst function evaluations.
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	f
	n
	SHZ
	MHZ
	HZ
	HS
	FR
	f
	n
	SHZ
	MHZ
	HZ
	HS
	FR





	   R n   
	10
	32,065
	41,140
	290,955
	55,880
	57,035
	   R n   
	30
	70,370
	110,205
	160,270
	159,340
	156,550



	   R n   
	50
	132,855
	194,055
	290,955
	269,790
	262,395
	   R n   
	80
	222,750
	324,810
	469,395
	417,150
	477,090



	   R n   
	100
	284,820
	297,950
	510,050
	598,930
	589,840
	   Z n   
	10
	1595
	1870
	2475
	2310
	2145



	   Z n   
	30
	33,325
	30,845
	56,575
	48,825
	44,175
	   Z n   
	50
	117,045
	132,600
	213,180
	185,895
	179,265



	   Z n   
	80
	432,135
	396,900
	749,655
	697,410
	594,945
	   Z n   
	100
	918,595
	756,490
	1,000,405
	1,000,405
	1,000,405



	   P W   
	8
	13,230
	20,070
	64,080
	35,820
	8730
	   P W   
	32
	70,455
	148,995
	320,100
	320,100
	68,475



	   P W   
	84
	284,325
	558,875
	840,225
	840,225
	182,325
	   P W   
	120
	530,585
	937,750
	1,200,320
	1,200,320
	543,895



	   S P   
	10
	165
	275
	275
	330
	275
	   S P   
	30
	465
	775
	930
	930
	930



	   S P   
	80
	1215
	2430
	2025
	2835
	2025
	   S P   
	100
	1515
	3030
	3030
	3535
	3030



	   T r   
	10
	6325
	1760
	1485
	3905
	1705
	   T r   
	30
	87,730
	54,715
	63,705
	300,080
	70,680



	   T r   
	60
	600,240
	600,240
	600,240
	600,240
	600,240
	   T r   
	100
	800,280
	1,000,405
	1,000,405
	1,000,405
	1,000,405



	   S u   
	100
	15,655
	15,655
	19,190
	20,200
	18,685
	   S u   
	80
	11,340
	10,935
	14,175
	15,390
	14,985



	   S u   
	50
	5865
	4845
	6630
	6630
	6630
	   S u   
	30
	2325
	2480
	2790
	2945
	2480



	   S u   
	10
	495
	440
	495
	440
	440
	   B R   
	2
	225
	225
	210
	195
	600



	   C V   
	4
	10,350
	8725
	8800
	12,275
	28,525
	   D J   
	3
	60
	60
	140
	160
	120



	   B O   
	2
	105
	105
	160
	120
	105
	   M a   
	2
	240
	315
	195
	F
	420



	   S  5 *    
	4
	575
	2225
	750
	3750
	775
	   S  7 *    
	4
	1000
	1375
	1100
	7500
	1075



	   S  10 *    
	4
	500
	1250
	1025
	3100
	600
	   G  P *    
	2
	20,010
	20,010
	20,010
	20,010
	20,010



	   R a  s *    
	2
	90
	525
	4995
	840
	660
	   B h  1 *    
	2
	105
	150
	1200
	210
	225



	   S  H *    
	2
	20,010
	20,010
	20,010
	20,010
	20,010
	   P  8 *    
	4
	100
	40,000
	40,000
	9400
	23,650



	   P  16 *    
	5
	100
	40,000
	40,000
	9400
	23,650
	   C  B *    
	2
	75
	75
	345
	75
	450



	   H  3 *    
	3
	1660
	2620
	5200
	1460
	30,000
	   H  6 *    
	6
	3115
	9975
	15,330
	60,025
	3955



	   H  M *    
	2
	75
	90
	75
	75
	75
	   L  e *    
	10
	12,155
	17,325
	19,965
	11,275
	13,200
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Table 4. The number of best iterations.
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	f
	n
	SHZ
	MHZ
	HZ
	HS
	FR
	f
	n
	SHZ
	MHZ
	HZ
	HS
	FR





	   R n   
	10
	360
	460
	490
	520
	510
	   R n   
	30
	230
	485
	190
	590
	420



	   R n   
	50
	705
	375
	490
	650
	440
	   R n   
	80
	230
	400
	920
	125
	460



	   R n   
	100
	240
	275
	885
	670
	705
	   Z n   
	10
	60
	60
	115
	80
	75



	   Z n   
	30
	245
	330
	875
	875
	810
	   Z n   
	50
	570
	905
	2235
	1765
	1885



	   Z n   
	80
	935
	1565
	4080
	4365
	3495
	   Z n   
	100
	1670
	2545
	6345
	6045
	5095



	   P W   
	8
	180
	175
	2080
	375
	225
	   P W   
	32
	280
	2610
	1250
	390
	280



	   P W   
	84
	510
	3525
	4115
	520
	410
	   P W   
	120
	535
	2745
	2765
	395
	435



	   S P   
	10
	5
	10
	10
	20
	10
	   S P   
	30
	10
	10
	10
	20
	10



	   S P   
	80
	10
	10
	10
	20
	15
	   S P   
	100
	10
	10
	10
	20
	15



	   T r   
	10
	85
	85
	65
	80
	55
	   T r   
	30
	735
	1370
	230
	350
	220



	   T r   
	60
	9840
	9840
	9840
	9840
	430
	   T r   
	100
	9880
	9905
	9905
	9905
	9905



	   S u   
	100
	70
	80
	95
	95
	75
	   S u   
	80
	65
	55
	75
	100
	70



	   S u   
	50
	50
	55
	60
	70
	50
	   S u   
	30
	40
	40
	40
	45
	40



	   S u   
	10
	20
	25
	20
	25
	20
	   B R   
	2
	15
	15
	15
	15
	10



	   C V   
	4
	275
	275
	690
	370
	600
	   D J   
	3
	10
	10
	10
	20
	10



	   B O   
	2
	15
	15
	20
	20
	20
	   M a   
	2
	30
	20
	20
	F
	15



	   S  5 *    
	4
	15
	20
	20
	25
	125
	   S  7 *    
	4
	15
	15
	15
	30
	100



	   S  10 *    
	4
	15
	15
	20
	15
	100
	   G  P *    
	2
	25
	180
	170
	60
	165



	   R a  s *    
	2
	10
	20
	95
	15
	45
	   B h  1 *    
	2
	20
	20
	30
	25
	75



	   S  H *    
	2
	390
	255
	840
	155
	20010
	   P  8 *    
	4
	10
	15
	5
	15
	125



	   P  16 *    
	5
	10
	15
	5
	15
	125
	   C  B *    
	2
	15
	15
	20
	15
	45



	   H  3 *    
	3
	5
	5
	5
	5
	15
	   H  6 *    
	6
	50
	50
	50
	50
	175



	   H  M *    
	2
	10
	15
	15
	15
	30
	   L  e *    
	10
	65
	40
	105
	70
	550
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Table 5. The number of best function evaluations.






Table 5. The number of best function evaluations.





	f
	n
	SHZ
	MHZ
	HZ
	HS
	FR
	f
	n
	SHZ
	MHZ
	HZ
	HS
	FR





	   R n   
	10
	3960
	5060
	24,990
	5720
	5610
	   R n   
	30
	7130
	15,035
	5890
	18,290
	13,020



	   R n   
	50
	35,955
	19,125
	24,990
	33,150
	22,440
	   R n   
	80
	18,630
	32,400
	74,520
	10,125
	37,260



	   R n   
	100
	24,240
	27,775
	89,385
	67,670
	71,205
	   Z n   
	10
	660
	660
	1265
	880
	825



	   Z n   
	30
	7595
	10,230
	27,125
	27,125
	25,110
	   Z n   
	50
	29,070
	46,155
	113,985
	90,015
	96,135



	   Z n   
	80
	75,735
	126,765
	330,480
	353,565
	283,095
	   Z n   
	100
	168,670
	257,045
	640,845
	610,545
	514,595



	   P W   
	8
	1620
	1575
	18,720
	3375
	2025
	   P W   
	32
	9240
	86,130
	41,250
	12,870
	9240



	   P W   
	84
	43,350
	299,625
	349,775
	44,200
	34,850
	   P W   
	120
	64,735
	332,145
	334,565
	47,795
	52,635



	   S P   
	10
	55
	110
	110
	220
	110
	   S P   
	30
	310
	310
	310
	620
	310



	   S P   
	80
	810
	810
	810
	1620
	1215
	   S P   
	100
	1010
	1010
	1010
	2020
	1515



	   T r   
	10
	935
	935
	715
	880
	605
	   T r   
	30
	22,785
	42,470
	7130
	10,850
	6820



	   T r   
	60
	600,240
	600,240
	600,240
	600,240
	26,230
	   T r   
	100
	800,280
	1,000,405
	1,000,405
	1,000,405
	1,000,405



	   S u   
	100
	7070
	8080
	9595
	9595
	7575
	   S u   
	80
	5265
	4455
	6075
	8100
	5670



	   S u   
	50
	2550
	2805
	3060
	3570
	2550
	   S u   
	30
	1240
	1240
	1240
	1395
	1240



	   S u   
	10
	220
	275
	220
	275
	220
	   B R   
	2
	45
	45
	45
	45
	30



	   C V   
	4
	1375
	1375
	3450
	1850
	3000
	   D J   
	3
	40
	40
	40
	80
	40



	   B O   
	2
	45
	45
	80
	60
	60
	   M a   
	2
	90
	60
	60
	F
	45



	   S  5 *    
	4
	75
	100
	100
	125
	125
	   S  7 *    
	4
	75
	75
	75
	150
	100



	   S  10 *    
	4
	75
	75
	100
	75
	100
	   G  P *    
	2
	75
	540
	510
	180
	165



	   R a  s *    
	2
	30
	60
	285
	45
	45
	   B h  1 *    
	2
	60
	60
	90
	75
	75



	   S  H *    
	2
	1170
	765
	2520
	465
	20,010
	   P  8 *    
	4
	50
	75
	25
	75
	125



	   P  16 *    
	5
	50
	75
	25
	75
	125
	   C  B *    
	2
	45
	45
	60
	45
	45



	   H  3 *    
	3
	15
	15
	15
	15
	15
	   H  6 *    
	6
	300
	300
	300
	300
	175



	   H  M *    
	2
	30
	45
	45
	45
	30
	   L  e *    
	10
	715
	440
	1155
	770
	550
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Table 6. The average of time.






Table 6. The average of time.





	f
	n
	SHZ
	MHZ
	HZ
	HS
	FR
	f
	n
	SHZ
	MHZ
	HZ
	HS
	FR





	   R n   
	10
	1.463
	1.441
	3.316
	2.436
	3.215
	   R n   
	30
	2.771
	3.702
	6.831
	6.934
	6.816



	   R n   
	50
	5.571
	6.123
	13.288
	12.286
	13.258
	   R n   
	80
	10.149
	11.273
	19.529
	21.934
	22.283



	   R n   
	100
	14.761
	15.973
	29.596
	29.495
	32.934
	   Z n   
	10
	0.083
	0.091
	0.139
	0.137
	0.115



	   Z n   
	30
	1.336
	1.365
	2.477
	3.220
	2.290
	   Z n   
	50
	5.445
	5.297
	11.689
	11.293
	10.938



	   Z n   
	80
	24.818
	27.532
	58.547
	55.403
	50.910
	   Z n   
	100
	53.552
	51.210
	107.859
	104.313
	109.531



	   P W   
	8
	0.493
	1.231
	4.760
	0.985
	0.309
	   P W   
	32
	1.783
	6.812
	21.873
	6.496
	1.085



	   P W   
	84
	8.779
	38.644
	76.499
	16.061
	4.562
	   P W   
	120
	16.955
	72.473
	113.171
	29.623
	7.631



	   S P   
	10
	0.011
	0.016
	0.020
	0.026
	0.017
	   S P   
	30
	0.021
	0.032
	0.033
	0.042
	0.036



	   S P   
	80
	0.060
	0.099
	0.096
	0.165
	0.096
	   S P   
	100
	0.075
	0.137
	0.125
	0.191
	0.148



	   T r   
	10
	0.183
	0.084
	0.068
	0.144
	0.069
	   T r   
	30
	2.948
	2.891
	1.982
	24.737
	1.256



	   T r   
	60
	63.990
	73.812
	80.235
	58.588
	70.106
	   T r   
	100
	90.259
	130.122
	134.463
	145.078
	135.992



	   S u   
	100
	4.542
	4.706
	4.736
	5.194
	5.127
	   S u   
	80
	2.288
	2.753
	2.839
	2.948
	2.716



	   S u   
	50
	0.780
	0.799
	0.842
	0.921
	0.889
	   S u   
	30
	0.294
	0.265
	0.298
	0.296
	0.247



	   S u   
	10
	0.051
	0.043
	0.038
	0.041
	0.036
	   B R   
	2
	0.022
	0.024
	0.022
	0.019
	0.045



	   C V   
	4
	0.568
	0.505
	0.762
	0.774
	6.317
	   D J   
	3
	0.008
	0.009
	0.013
	0.020
	0.013



	   B O   
	2
	0.014
	0.014
	0.016
	0.016
	0.016
	   M a   
	2
	0.026
	0.026
	0.017
	F
	0.019



	   S  5 *    
	4
	0.107
	0.321
	0.166
	0.297
	0.162
	   S  7 *    
	4
	0.231
	0.204
	0.180
	0.554
	0.273



	   S  10 *    
	4
	0.124
	0.180
	0.208
	0.432
	0.194
	   G  P *    
	2
	6.068
	7.927
	5.410
	11.203
	3.164



	   R a  s *    
	2
	0.021
	0.091
	1.355
	0.109
	0.120
	   B h  1 *    
	2
	0.019
	0.030
	0.184
	0.039
	0.043



	   S  H *    
	2
	13.341
	11.597
	13.226
	12.487
	17.294
	   P  8 *    
	4
	0.011
	0.307
	0.234
	0.247
	0.155



	   P  16 *    
	5
	0.128
	0.276
	3.452
	0.129
	3.886
	   C  B *    
	2
	0.014
	0.015
	0.060
	0.015
	0.058



	   H  3 *    
	3
	0.103
	0.411
	0.203
	0.114
	0.400
	   H  6 *    
	6
	0.224
	0.902
	0.205
	1.064
	0.164



	   H  M *    
	2
	0.016
	0.021
	0.015
	0.015
	0.016
	   L  e *    
	10
	0.501
	0.513
	0.836
	0.553
	0.612
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Table 7. The average of number of iterations.






Table 7. The average of number of iterations.





	f
	n
	SHZ
	MHZ
	HZ
	HS
	FR
	f
	n
	SHZ
	MHZ
	HZ
	HS
	FR





	   R n   
	10
	1469.3
	1479.3
	3114.8
	2517.2
	2952.5
	   R n   
	30
	1273.4
	1523.8
	2877.9
	2867.5
	2721.5



	   R n   
	50
	1375
	1530.6
	3114.8
	2746.4
	2851.1
	   R n   
	80
	1379.2
	1535.2
	2524.7
	2885.5
	2593.2



	   R n   
	100
	1403.9
	1421.2
	2821
	2839
	2809.7
	   Z n   
	10
	104.61
	108.92
	168.04
	155.2
	142.16



	   Z n   
	30
	654.02
	674.22
	1229.3
	1187.3
	1078.8
	   Z n   
	50
	1491.3
	1479.2
	2947.1
	2914.6
	2817



	   Z n   
	80
	3378.6
	3298.6
	6529
	6519.2
	6185.1
	   Z n   
	100
	5125.6
	4818.4
	9066.1
	8703.7
	9048.1



	   P W   
	8
	697.16
	1731.6
	5774.2
	1339.6
	441.47
	   P W   
	32
	1042.5
	3675
	8852.9
	2993.3
	660.1



	   P W   
	84
	1665.2
	5767.7
	9547.3
	2632.5
	817.55
	   P W   
	120
	1774.8
	6851.4
	9424
	2964.5
	897.55



	   S P   
	10
	10.294
	16.765
	16.471
	23.824
	18.529
	   S P   
	30
	10.784
	17.941
	18.627
	25.294
	21.176



	   S P   
	80
	11.176
	19.118
	19.216
	26.471
	19.412
	   S P   
	100
	10.588
	19.314
	18.725
	26.765
	20.98



	   T r   
	10
	283.24
	125.88
	100.59
	182.06
	96.961
	   T r   
	30
	1713.5
	1610.5
	1053
	7268.8
	649.41



	   T r   
	60
	9840
	9840
	9840
	9840
	9117.5
	   T r   
	100
	9880
	9905
	9905
	9905
	9905



	   S u   
	100
	116.08
	112.35
	152.06
	147.94
	141.86
	   S u   
	80
	96.373
	99.02
	134.9
	137.25
	117.35



	   S u   
	50
	76.667
	72.353
	95.98
	95.686
	89.51
	   S u   
	30
	58.725
	54.314
	70.392
	69.608
	57.255



	   S u   
	10
	32.451
	29.706
	31.961
	33.627
	29.706
	   B R   
	2
	36.961
	32.255
	35.686
	31.667
	49.902



	   C V   
	4
	704.41
	634.9
	1114.1
	1015.2
	3365.8
	   D J   
	3
	11.078
	11.373
	21.176
	31.275
	18.824



	   B O   
	2
	24.608
	23.824
	29.02
	28.235
	27.451
	   M a   
	2
	58.824
	60.882
	39.902
	F
	40.882



	   S  5 *    
	4
	52
	106.5
	76.75
	255.25
	66.75
	   S  7 *    
	4
	73.25
	73
	61.25
	387.75
	76.5



	   S  10 *    
	4
	40.25
	49.75
	57.75
	172.75
	51.75
	   G  P *    
	2
	2053.8
	3273.3
	2340.3
	4125
	1381



	   R a  s *    
	2
	21.5
	68.25
	802.25
	86.25
	88.25
	   B h  1 *    
	2
	28.5
	33.25
	119.5
	38
	42.5



	   S  H *    
	2
	5927.5
	5855
	6184.5
	6344.3
	6670
	   P  8 *    
	4
	13.25
	771.5
	575.25
	603.75
	367.5



	   P  16 *    
	5
	13.25
	771.5
	575.25
	603.75
	367.5
	   C  B *    
	2
	19.75
	19
	50.75
	19.75
	47.5



	   H  3 *    
	3
	92.25
	201.25
	225.5
	104.75
	450
	   H  6 *    
	6
	108.25
	250
	130.25
	580.5
	103.75



	   H  M *    
	2
	19.75
	20.25
	19
	19.25
	19
	   L  e *    
	10
	303.5
	323.25
	550.75
	375
	379
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Table 8. The average of number of function evaluations.






Table 8. The average of number of function evaluations.





	f
	n
	SHZ
	MHZ
	HZ
	HS
	FR
	f
	n
	SHZ
	MHZ
	HZ
	HS
	FR





	   R n   
	10
	16,163
	16,273
	158,855
	27,689
	32,477
	   R n   
	30
	39,476
	47,239
	89,216
	88,894
	84,366



	   R n   
	50
	70,125
	78,060
	158,855
	140,065
	145,405
	   R n   
	80
	111,717
	124,351
	204,501
	233,725
	210,052



	   R n   
	100
	141,796
	143,539
	284,919
	286,741
	283,780
	   Z n   
	10
	1151
	1198
	1848
	1707
	1564



	   Z n   
	30
	20,275
	20,901
	38,109
	36,805
	33,444
	   Z n   
	50
	76,055
	75,440
	150,300
	148,645
	143,665



	   Z n   
	80
	273,669
	267,189
	528,851
	528,057
	500,993
	   Z n   
	100
	517,684
	486,662
	915,674
	879,076
	913,862



	   P W   
	8
	6274
	15,584
	51,968
	12,057
	3973
	   P W   
	32
	34,404
	121,275
	292,147
	98,780
	21,783



	   P W   
	84
	141,542
	490,258
	811,517
	223,758
	69,492
	   P W   
	120
	214,751
	829,016
	1,140,306
	358,706
	108,603



	   S P   
	10
	113
	184
	181
	262
	204
	   S P   
	30
	334
	556
	578
	784
	657



	   S P   
	80
	905
	1549
	1557
	2144
	1572
	   S P   
	100
	1069
	1951
	1891
	2703
	2119



	   T r   
	10
	3116
	1385
	1107
	2003
	1067
	   T r   
	30
	53,119
	49,925
	32,644
	225,333
	20,132



	   T r   
	60
	600,240
	600,240
	600,240
	600,240
	556,165
	   T r   
	100
	800,280
	1,000,405
	1,000,405
	1,000,405
	1,000,405



	   S u   
	100
	11,724
	11,348
	15,358
	14,942
	14,328
	   S u   
	80
	7806
	8021
	10,927
	11,118
	9506



	   S u   
	50
	3910
	3690
	4895
	4880
	4565
	   S u   
	30
	1821
	1684
	2182
	2158
	1775



	   S u   
	10
	357
	327
	352
	370
	327
	   B R   
	2
	111
	97
	107
	95
	150



	   C V   
	4
	3522
	3175
	5571
	5076
	16,829
	   D J   
	3
	44
	46
	85
	125
	75



	   B O   
	2
	74
	72
	116
	85
	82
	   M a   
	2
	177
	183
	120
	F
	123



	   S  5 *    
	4
	260
	533
	384
	1276
	334
	   S  7 *    
	4
	366
	365
	306
	1939
	383



	   S  10 *    
	4
	201
	249
	289
	864
	259
	   G  P *    
	2
	6161
	9820
	7021
	12,375
	4143



	   R a  s *    
	2
	65
	205
	2407
	259
	265
	   B h  1 *    
	2
	86
	100
	359
	114
	128



	   S  H *    
	2
	17,783
	17565
	18,554
	19,033
	20,010
	   P  8 *    
	4
	66
	3858
	2876
	3019
	1838



	   P  16 *    
	5
	66
	3858
	2876
	3019
	1838
	   C  B *    
	2
	59
	57
	152
	59
	143



	   H  3 *    
	3
	369
	805
	902
	419
	1800
	   H  6 *    
	6
	758
	1750
	912
	4064
	671



	   H  M *    
	2
	59
	61
	57
	58
	57
	   L  e *    
	10
	3339
	3556
	6058
	4125
	4169
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Table 9. The number of worst iterations.






Table 9. The number of worst iterations.





	f
	n
	HSSHZ
	HSMHZ
	HSHZ
	HSHS
	HSFR
	f
	n
	HSSHZ
	HSMHZ
	HSHZ
	HSHS
	HSFR





	   S  5 *    
	4
	3150
	55
	85
	F
	F
	   S  7 *    
	4
	10,000
	F
	10,000
	F
	F



	   S  10 *    
	4
	710
	F
	3020
	F
	F
	   H  M *    
	2
	40
	100
	95
	75
	180



	   H *   
	3
	300
	590
	1155
	465
	1270
	   H *   
	6
	50
	500
	300
	9550
	F



	   C  B *    
	2
	55
	145
	15
	200
	90
	   P  8 *    
	4
	20
	15
	15
	550
	10



	   P  16 *    
	5
	755
	835
	3280
	F
	7300
	   S  H *    
	2
	100
	115
	200
	250
	190



	   B h  1 *    
	2
	205
	F
	F
	F
	F
	   R a  s *    
	2
	1310
	F
	F
	F
	F



	   G  P *    
	2
	20
	F
	F
	300
	F
	   L  e *    
	10
	2470
	1430
	F
	F
	3100
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Table 10. The number of worst function evaluations.






Table 10. The number of worst function evaluations.





	f
	n
	HSSHZ
	HSMHZ
	HSHZ
	HSHS
	HSFR
	f
	n
	HSSHZ
	HSMHZ
	HSHZ
	HSHS
	HSFR





	   S  5 *    
	4
	12,600
	220
	340
	F
	F
	   S  7 *    
	4
	40,000
	F
	40,000
	F
	F



	   S  10 *    
	4
	2840
	F
	12,080
	F
	F
	   H  M *    
	2
	120
	200
	190
	150
	360



	   H *   
	3
	900
	1770
	3465
	1395
	3810
	   H *   
	6
	300
	3000
	1800
	57,300
	F



	   C  B *    
	2
	110
	290
	30
	400
	180
	   P  8 *    
	4
	80
	60
	60
	2200
	40



	   P  16 *    
	5
	3775
	4175
	16,400
	F
	36,500
	   S  H *    
	2
	200
	230
	400
	500
	380



	   B h  1 *    
	2
	410
	F
	F
	F
	F
	   R a  s *    
	2
	2620
	F
	F
	F
	F



	   G  P *    
	2
	40
	F
	F
	600
	F
	   L  e *    
	10
	24,700
	14,300
	F
	F
	31,000
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Table 11. The number of best iterations.






Table 11. The number of best iterations.





	f
	n
	HSSHZ
	HSMHZ
	HSHZ
	HSHS
	HSFR
	f
	n
	HSSHZ
	HSMHZ
	HSHZ
	HSHS
	HSFR





	   S  5 *    
	4
	50
	35
	55
	F
	F
	   S  7 *    
	4
	750
	F
	520
	F
	F



	   S  10 *    
	4
	20
	F
	70
	F
	F
	   H  M *    
	2
	15
	10
	10
	10
	5



	   H *   
	3
	50
	60
	85
	20
	130
	   H *   
	6
	50
	100
	100
	50
	F



	   C  B *    
	2
	15
	10
	10
	50
	10
	   P  8 *    
	4
	5
	5
	5
	50
	5



	   P  16 *    
	5
	150
	35
	80
	F
	40
	   S  H *    
	2
	10
	10
	10
	50
	10



	   B h  1 *    
	2
	20
	F
	F
	F
	F
	   R a  s *    
	2
	10
	F
	F
	F
	F



	   G  P *    
	2
	15
	F
	F
	50
	F
	   L  e *    
	10
	400
	120
	F
	F
	395
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Table 12. The number of best function evaluations.






Table 12. The number of best function evaluations.





	f
	n
	HSSHZ
	HSMHZ
	HSHZ
	HSHS
	HSFR
	f
	n
	HSSHZ
	HSMHZ
	HSHZ
	HSHS
	HSFR





	   S  5 *    
	4
	200
	140
	220
	F
	F
	   S  7 *    
	4
	3000
	F
	2080
	F
	F



	   S  10 *    
	4
	80
	F
	280
	F
	F
	   H  M *    
	2
	45
	20
	20
	20
	10



	   H *   
	3
	150
	180
	255
	60
	390
	   H *   
	6
	300
	600
	600
	300
	F



	   C  B *    
	2
	30
	20
	20
	100
	20
	   P  8 *    
	4
	20
	20
	20
	200
	20



	   P  16 *    
	5
	725
	175
	400
	F
	200
	   S  H *    
	2
	20
	20
	20
	100
	20



	   B h  1 *    
	2
	40
	F
	F
	F
	F
	   R a  s *    
	2
	20
	F
	F
	F
	F



	   G  P *    
	2
	30
	F
	F
	100
	F
	   L  e *    
	10
	4000
	1200
	F
	F
	3950
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Table 13. The average of time.






Table 13. The average of time.





	f
	n
	HSSHZ
	HSMHZ
	HSHZ
	HSHS
	HSFR
	f
	n
	HSSHZ
	HSMHZ
	HSHZ
	HSHS
	HSFR





	   S  5 *    
	4
	0.720
	0.050
	0.046
	F
	F
	   S  7 *    
	4
	7.368
	F
	13.249
	F
	F



	   S  10 *    
	4
	0.151
	F
	0.885
	F
	F
	   H  M *    
	2
	0.017
	0.031
	0.028
	0.021
	0.053



	   H *   
	3
	0.186
	0.353
	0.409
	0.271
	0.361
	   H *   
	6
	0.057
	0.194
	0.143
	4.712
	F



	   C  B *    
	2
	0.018
	0.025
	0.010
	0.049
	0.030
	   P  8 *    
	4
	0.014
	0.015
	0.009
	0.116
	0.007



	   P  16 *    
	5
	0.319
	0.135
	0.683
	F
	1.606
	   S  H *    
	2
	0.028
	0.037
	0.050
	0.084
	0.039



	   B h  1 *    
	2
	0.039
	F
	F
	F
	F
	   R a  s *    
	2
	0.261
	F
	F
	F
	F



	   G  P *    
	2
	0.015
	F
	F
	0.078
	F
	   L  e *    
	10
	1.221
	0.627
	F
	F
	2.087
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Table 14. The average of number of iterations.






Table 14. The average of number of iterations.





	f
	n
	HSSHZ
	HSMHZ
	HSHZ
	HSHS
	HSFR
	f
	n
	HSSHZ
	HSMHZ
	HSHZ
	HSHS
	HSFR





	   S  5 *    
	4
	416.7
	47
	67
	F
	F
	   S  7 *    
	4
	5928.7
	F
	8648
	F
	F



	   S  10 *    
	4
	131.3
	F
	589
	F
	F
	   H  M *    
	2
	24.3
	29
	34.8
	25.8
	50.8



	   H *   
	3
	213.3
	268.8
	373.3
	247
	333.8
	   H *   
	6
	50
	205
	177.5
	2382.5
	F



	   C  B *    
	2
	26
	23.3
	12.8
	57.5
	36.8
	   P  8 *    
	4
	12
	11
	10.5
	267.5
	6.3



	   P  16 *    
	5
	376
	171.25
	878.8
	F
	2208.5
	   S  H *    
	2
	30.3
	39
	48.5
	65
	41.5



	   B h  1 *    
	2
	74.3
	F
	F
	F
	F
	   R a  s *    
	2
	346.7
	F
	F
	F
	F



	   G  P *    
	2
	18
	F
	F
	62.5
	F
	   L  e *    
	10
	1012.7
	506
	F
	F
	1380.3
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Table 15. The average of number of function evaluations.






Table 15. The average of number of function evaluations.





	f
	n
	HSSHZ
	HSMHZ
	HSHZ
	HSHS
	HSFR
	f
	n
	HSSHZ
	HSMHZ
	HSHZ
	HSHS
	HSFR





	   S  5 *    
	4
	1666.7
	188
	268
	F
	F
	   S  7 *    
	4
	23,714.7
	F
	34,592
	F
	F



	   S  10 *    
	4
	525.3
	F
	2356
	F
	F
	   H  M *    
	2
	73
	58
	69.5
	51.5
	101.5



	   H *   
	3
	640
	806.3
	1119.8
	741
	1001.3
	   H *   
	6
	300
	1230
	1065
	14,295
	F



	   C  B *    
	2
	52
	46.5
	25.5
	115
	73.5
	   P  8 *    
	4
	48
	44
	42
	1070
	25



	   P  16 *    
	5
	1880
	856.3
	4393.8
	F
	11,042.5
	   S  H *    
	2
	60.7
	78
	97
	130
	83



	   B h  1 *    
	2
	148.7
	F
	F
	F
	F
	   R a  s *    
	2
	693.3
	F
	F
	F
	F



	   G  P *    
	2
	36
	F
	F
	125
	F
	   L  e *    
	10
	10,126.7
	5060
	F
	F
	13,802.5
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