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Abstract: The Identification State (IS) of Radio Frequency Identification (RFID) robot systems changes
continuously with the environment, so improving the identification efficiency of RFID robot systems
requires adaptive control of system parameters through real-time evaluation of the IS. This paper
first expounds on the important roles of the real-time evaluation of the IS and adaptive control
of parameters in the RFID robot systems. Secondly, a method for real-time evaluation of the IS
of UHF passive RFID robot systems in dynamic scenarios based on principal component analysis
(PCA)-K-Nearest Neighbor (KNN) is proposed and establishes an experimental scene to complete
algorithm verification. The results show that the accuracy of the real-time evaluation method of
IS based on PCA-KNN is 92.4%, and the running time of a single data is 0.258 ms, compared with
other algorithms. The proposed evaluation method has higher accuracy and shorter running time.
Finally, this paper proposes a Q-learning-based adaptive control algorithm for RFID robot systems.
This method dynamically controls the reader’s transmission power and the robot’s moving speed
according to the IS fed back by the system; compared with the default parameters, the adaptive
control algorithm effectively improves the identification rate of the system, the power consumption
under the adaptive parameters is reduced by 36.4%, and the time spent decreases by 29.7%.

Keywords: RFID robots; dynamic scenarios; identification state; adaptive control; Q-learning

MSC: 68T05

1. Introduction

UHF passive RFID technology has been widely used in various industries due to its
advantages of low cost, long-distance, and rapid batch identification [1–3]. In large-scale
application scenarios such as unmanned warehouses, clothing retail, and file management,
the model of fixed parameters and the traditional statically deployed RFID systems no
longer meet the performance requirements. In recent years, industrial applications have
applied RFID technology to mobile robots, drones, or conveyor belts, and the identification
scenarios have changed from static to dynamic [4–6]. The development of intelligent
mobile identification requires the continuous integration of RFID technology with new
technologies such as automatic control, 5G technology, intelligent computing, and deep
learning. It is a new trend in RFID technology for dynamic application scenarios.

The combination of mobile robots and RFID technology has become an important
way of mobile identification. AdvanRobots is an autonomously moving UHF passive
RFID robot that is equipped with six RFID antennas on each side, which can automatically
count goods inventory in a given space, which is more accurate than RFID handheld
devices to count inventory [7]. Equipped with a reader and multiple antennas, the UHF
RFID robot can move within the target scene to detect multiple tags and locate the tags
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through a synthetic array method [8]. Robots combine RFID technology to achieve path
navigation, query, and positioning of target objects [9–11]. Ref. [12] presents a cloth-
dressing robot system, which uses RFID as key elements for data management to command
an adaptive cloth-dressing robot control with a fuzzy-PID controller, which is used to
adjust the robot’s posture. [13] proposes a UHF-RFID mobile robot platform, which uses
eight parallel channels for multiple-input multiple-output localization and uses three-
dimensional product maps for inventory counting but does not consider the identification
efficiency and time. In addition, more RFID robots are used for positioning, rather than for
object identification in dynamic scenarios [14–16].

The identification efficiency of RFID systems will be affected by the constant changes of
the identification environment and the quantity and medium of tags in dynamic scenarios.
In order to ensure high efficiency and stability of the identification efficiency, the RFID
systems must dynamically adjust parameters according to the real-time IS. There have
been many studies on the rate of identification (RoI) of RFID systems deployed in static
scenarios or when only tags are moving [17], but less studies on the IS and adaptive control
of RFID systems in dynamic scenarios.

Aiming at the above problems, this paper first expounds on the effect of real-time
evaluation of the IS and adaptive control in the RFID robot systems and divides the IS
according to real-time RoI and the difference between theoretical value and actual value
of speed of identification (SoI). Secondly, a real-time evaluation method of the IS for UHF
passive RFID robot systems in dynamic scenarios is proposed. Finally, this paper proposes
a Q-learning-based adaptive control algorithm for RFID robot systems.

The remainder of this paper is organized as follows. Section 2 introduces the RFID
systems in dynamic scenarios, Section 3 proposes the real-time evaluation model and
theoretical algorithm of the IS, and Section 4 presents the dynamic scene test and the
calculation and analysis of the real-time evaluation of the IS for the RFID robots. A Q-
learning-based adaptive control algorithm for RFID robot systems is proposed in Section 5,
and the paper is concluded in Section 6.

2. The IS of RFID Systems in Dynamic Scenarios
2.1. RFID Identification in Dynamic Scenarios

Typical RFID applications are usually static identification, such as fixed bayonet,
channel, or using handheld devices to identify tags. The air interface parameter Q of
the static RFID systems dynamically adjusts the frame length according to the collision
of tags within the identification range of the reader to improve the system throughput.
The RFID applications in dynamic scenarios are no longer limited to a fixed pattern, as
readers are being mounted on mobile robots, drones, AGVs, and other mobile devices. It is
foreseeable that RFID robots will replace static identification in warehousing, logistics, and
other application scenarios to complete mobile intelligent inventory.

In dynamic identification scenarios, the reader and tags are always relatively moving.
The low identification efficiency of RFID systems is caused by problems such as random
post-identification and missed reading of tags. The complexity of RFID dynamic identi-
fication application scenarios limits the performance improvement of the traditional Q
algorithm, and the improvement of system identification efficiency is limited. A new direc-
tion for RFID technology is to apply machine learning or reinforcement learning methods
to cluster, evaluate, and predict the IS and environment of RFID systems in real-time, and
realize adaptive control of parameters.

2.2. Real-Time Evaluation of the IS in RFID Robot Systems

The UHF RFID robot systems with automatic control capability, local computing,
and cloud-based remote communication was designed and implemented in a previous
study [18].

In this paper, the existing RFID robot hardware is redesigned and implemented. The
hardware is divided into five modules: the MT7620-based main control, the algorithm



Mathematics 2022, 10, 3574 3 of 17

module, the robot chassis, the M6 four-channel RFID Reader, and the two-degree-of-
freedom steering group. The structure uses the robot chassis to load the RFID antenna
array, where each antenna is mounted on two-degree-of-freedom steering. In terms of
function, it first has the basic function of an RFID application system, which can read and
write tags. Additionally, antennas can be adjusted in attitude in response to steering tilt and
heading adjustments. Furthermore, the robot chassis will allow automatic path planning
and adaptive movement control in indoor environments. Figure 1 is the hardware topology
of the RFID robot systems, and Figure 2 is the physical picture of the RFID robot.
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In this paper, the software architecture of the RFID robot systems is optimized, and
an independent algorithm module and computing unit are deployed on the Raspberry
Pi 4b based on the ARM architecture, which is mainly used for real-time analysis and
perception of system state and running the adaptive algorithm of the RFID robot systems.
The algorithm module is divided into a real-time state sensing module and an intelligent
control module. The former is used for sensing the IS and operation state of the robot
systems, which communicates with the intelligent control module through an interface
call. The computational process required for the intelligent control module is sent to the
computing module via the serial port.

The software architecture of the RFID robot systems is shown in Figure 3. The specific
adaptive control flow is as follows: When the RFID robot is performing mobile inventory,
the system parameters and tags information are fed back to the algorithm module in
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real-time through the main control module and middleware of the local platform, and the
real-time state perception unit in the algorithm module is used according to the received
information. The real-time state evaluation model evaluates the IS, and then the evaluation
results are fed back to the intelligent control unit, which uses the adaptive algorithm to
calculate the adaptive strategy and sends the results to the middleware, and the main
control board receives information of the middleware to realize the adaptive control of
RFID robot systems.
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2.3. Real-Time Evaluation of the IS

Static RFID systems use fixed-position and fixed-parameter readers, and the IS can
only be evaluated by RoI. In dynamic scenarios, the identification range and environment
of RFID readers are constantly changing, so it is inaccurate to use RoI alone to evaluate
the IS. In this paper, the RoI of the system is calculated based on the total number of tags
identified by the RFID systems in real-time, and the theoretical value of the current SoI is
calculated. The IS is evaluated in real-time using the difference between the theoretical and
actual value of the SoI and the real-time RoI.

2.3.1. Real-Time RoI

Since the RFID robot performs mobile identification, the identification range of the
reader is constantly changing, and the change of the identification range is shown in
Figure 4. The identification probability of tags directly in front of the reader is high, while
the RoI of tags on both sides is low. As a result, the reader’s identification range is defined
as the rectangular area formed by the two dashed lines of the same color in Figure 5,
ignoring the tags on both sides [19].
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The dynamic identification scenario can be assumed as follows: mtotal tags are evenly
distributed on a bookshelf of length l, so the number of tags per unit length is l

mtotal
; the

robot chassis moves at a constant speed of v m/s, so the number of tags entering the
reader’s identification range per second is l

mtotal
· v, which represents the number of tags

that should be successfully identified theoretically; then the number of tags that should be
successfully identified mt in the t second is:

mt =
l

mtotal
· v · t (1)

The actual number of tags that have successfully identified can be obtained by RFID
systems is msuccess, so the RoI at the t second is:

RoI =
msuccess

mt
=

msuccess ·mtotal
l · v · t (2)

2.3.2. Real-Time Theoretical Value of the SoI

In the ISO/IEC 18000-6C protocol, the reader sends query/queryAdjust/queryRepeat
commands to identify tags. In the process of mobile identification, the total number m of
these commands in a second can be obtained, and each command has Li(i = 1, 2, 3 . . . m)
slots. Since the tags are evenly distributed, at the second t, the number of tags entering
the reader’s identification range is the same as the number of tags leaving the reader’s
identification range, so the number of tags per second within the reader’s range is constant
n. It is known that the system throughput is highest when the number of slots in a frame is
the same as the number of tags. So, assuming the number of slots per command Li = L = n,
when there are n tags in L slots, r tags in the same slot obey the binomial distribution [20],
that is:

B(r) = Cr
n

(
1
L

)r(
1− 1

L

)n−r
(3)
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Then, the expectation of successful slots in a frame is:

S = L ∗ B(1) = L ∗ C1
n

(
1
L

)1(
1− 1

L

)n−1
= n ∗

(
1− 1

L

)n−1
(4)

The number of successful slots in each frame is n ∗
(

1− 1
n

)n−1
, so the theoretical value

of the speed of identification (TSoI) is equal to the number of successful slots per unit time,
that is:

TSoI = m ∗ n ∗
(

1− 1
n

)n−1
(5)

2.3.3. Classification of the IS

The purpose of mobile identification is to identify tags as quickly as possible while
avoiding the missed reading of tags and maintaining a high RoI. Therefore, the RoI rep-
resents the pros and cons of the IS of RFID systems. The SoI measures the number of
successfully identified tags per unit time. The more tags that are identified, the better the
current IS. To determine the IS of RFID systems, the SoI and the difference between TSoI
and SoI are key parameters. In this paper, the IS is divided into three classes, as shown in
Figure 6.
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3. Real-Time Evaluation Model and Theoretical Algorithm of the IS
3.1. Evaluation Model

The real-time evaluation model of the IS proposed in this paper is shown in Figure 7.
In the mobile scenarios, sample data is normalized to eliminate the influence of different
dimensions. The PCA reduces the complexity of the data by selecting the important
influence parameters of RFID systems. Using a 3-Class KNN model and cross-validation to
optimize parameters, an evaluation model of the IS of RFID systems for dynamic scenarios
is constructed.
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3.2. Theory of Parameter Selection Based on PCA

PCA is an unsupervised learning method, which uses orthogonal transformation to
convert the observation data represented by linearly related into a few data represented
by linearly independent variables. The linearly independent variables are called principal
components [21–23].

The data obtained from the RFID systems in the dynamic scenarios, due to the pa-
rameters of the RFID systems being in different dimensions, directly seeking the principal
components will produce unreasonable results, so the parameters need to be normalized
(mean value 0 and variance 1). The steps to obtain the important influence parameters of
the RFID systems by using the eigenvalue decomposition covariance matrix are as follows:

1. Normalize the m× n dimensional random variables representing the influence param-
eters of the IS of RFID systems to obtain a normalized data matrix X, and calculate
the sample correlation matrix R.

R =
1

n− 1
XXT (6)

2. Calculate the k principal components according to the k eigenvalues of the sample matrix
R and the corresponding unit eigenvectors αi = (α1i, α2i, · · ·, αmi)

T, i = 1, 2, · · ·, k.

yi = aT
i x, i = 1, 2, · · ·, k (7)

3. Calculate the correlation coefficient ρ
(
xi, yj

)
of the k principal components yj and the

original variable xi, and the contribution rate vi of the k principal components to the
original variable xi.

4. Substitute the normalized data into (7) to obtain k principal component values of n sam-

ples. The i-th principal component value of the j-th variable xj =
(

x1j, x2j, · · ·, xmj
)T is:

yij = (a1i, a2i, · · ·, ami)
(
x1j, x2j, · · ·, xmj

)T
=

m

∑
l=1

alixl j (8)

This is according to the correlation between each principal component and the influ-
ence parameters of the IS of RFID systems to obtain the important influence parameters.
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3.3. The Classification of IS Based on KNN

KNN is a data mining classification algorithm, which belongs to supervised learning
methods. The distance between the unknown data and the data points in the training set of
the known category is calculated through all the features of the data, and the calculated
distance represents the similarity between the features of the unknown data and the features
of each data in the training set. The smaller the distance, the greater the similarity, and the
greater the probability that the unknown data will become the corresponding category of
the data [24–26]. After the calculation, the top K data with the smallest distance are selected.
Among the K data, the number of occurrences of each data is recorded, and the category
corresponding to the data with the most occurrences is the category of the unknown data.

There are three elements of the KNN: distance metric, K, and classification decision
rule. The commonly used distance metric is Euclidean distance, the K value is deter-
mined according to cross-validation, and the classification decision adopts majority voting.
When the training set and the above parameters are determined, the classification result is
uniquely determined. The steps of the KNN algorithm are as follows:

The input to the KNN algorithm:
The training set T = {(x1, y1), (x2, y2), · · ·, (xN , yN)}; Among them, xi ∈ χ ⊆ Rn is

the important influence parameters of the RFID systems, and yi ∈ γ = {c1, c2, · · ·, cK} is
the classification of the IS of the RFID systems, i = 1, 2, · · ·, N.

1. Calculate the distance between two sample points xi and xj according to the dis-
tance metric.

L2(xi, xj) =

(
n

∑
l=1

∣∣∣x(l)i − x(l)j

∣∣∣2) 1
2

(9)

2. Find the k points closest to x in the training set T, and the neighborhood of x covering
these k points is denoted as Nk(x).

3. Determine the category y of x according to the classification decision rule in Nk(x):

y = argmax
cj

∑
xi∈Nk(x)

I
(
yi = cj

)
, i = 1, 2, · · ·, N; j = 1, 2, · · ·, K (10)

4. I is an indicator function, that is, I is 1 when yi = cj, otherwise I is 0.

The output to KNN: The class y to which x belongs.

4. Calculation and Analysis of Real-Time Evaluation of the IS of RFID Robots
4.1. Experimental Scene and Method

The experimental scene was selected in an open room, and 100 file boxes with UHF
passive RFID tags are evenly placed on the bookshelf with a length of 2.5 m and a height of
1.8 m. Figure 8 shows the experimental scene, and Table 1 shows the experimental devices.

Table 1. Experimental devices.

Device Parameter

RFID tags 900 MHz UHF Passive tags
Reader ThingMagic-Mercury6

Antenna 9 dBi circular polarization
robot Water robot
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Figure 8. Experimental scene.

The experimental process is as follows: the robot equipped with the reader moves
at a constant speed and performs tag identification through the bookshelf. During the
moving process, the orthogonal combination test is carried out using the parameters of
RFID systems in Table 2, and the average value is obtained after each group of parameters
is tested 50 times.

Table 2. The parameters of RFID systems.

Names of Parameters Value Unit of Parameters

Reader Power 5–30 dBm
Robot Speed 0.3–1.0 m/s

BLF 250, 640 KHz
Tari 6.25, 12.5, 25 µs µs
Q 5, 10, 15, Dynamic Q /

Encoding of Tags FM0, M2, M4, M8 /

4.2. The Selection of Important Influence Parameters Based on PCA

The parameters of RFID systems were tested by the orthogonal combination, and
8320 groups of data were obtained after eliminating abnormal data. Each group is com-
posed of the influence parameters and the IS. In order to prevent information overlap
and redundancy between parameters, this paper uses PCA to eliminate redundancy for
the influence parameters [27]. Figure 9 shows the cumulative variance of the principal
components, which shows that the first four principal components can represent more
than 90% of the variance of the entire data, that is, the first four principal components can
represent most of the information in the data. Figure 10 shows the cumulative sum of the
correlations between all the influence parameters and the first four principal components.
Due to the low correlation between the Tari, the encoding of tags, and principal components,
these two parameters have little effect on the IS, so they are ignored in the subsequent
data processing.
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4.3. Real-Time Evaluation of IS based on PCA-KNN

The schematic diagram of real-time evaluation modeling is shown in Figure 11.
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The specific steps of real-time evaluation modeling are as follows:

1. Data preprocessing

The set of influence parameters obtained by PCA:
{Reader Power, Robot Speed, Q, BLF}
The 8320 × 4 groups of experimental data composed as the input data of the KNN

algorithm model, and the input data is divided into training set and test set.

2. Model training

Model training and parameter optimization use Python (Guido van Rossum, 1990,
Amsterdam, Netherlands) with software version 3.10.1 and use the KNN classification
algorithm in the sklearn.neighbors package. The basic steps of the algorithm are as follows:

Step 1 Enter the experimental data;
Step 2 Obtain the classifier using the function KNeighborsClassifier() in the package

sklearn.neighbors;
Step 3 Use the function cross_val_score() to perform 10-fold cross-validation on the

training set and test set [28];
Step 4 Obtain the evaluation accuracy of the KNN model.

3. Model parameter optimization

In the KNN algorithm, K represents the tradeoff between approximation error and
estimation error [29], and distance weight must also be chosen carefully when building the
model. In this paper, the cross-validation method is used to optimize the parameters of
the KNN model. The value range of K is [1,14]; the distance weight can choose uniform
and distance, uniform means that the distance weight is not considered, and distance means
that the weight and distance are inversely relationship. Bring these two parameters into
the above algorithm to obtain the optimal parameter combination. Figure 12 shows the
cross-validation parameter optimization diagram of the KNN algorithm. The optimal
parameter combination is K = 11, regardless of the distance weight, and classification
accuracy rate of the training set is 92.2%. Figure 12 shows the optimization diagram of the
cross-validation parameters of the KNN algorithm.
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4.4. Classification Result and Analysis

In Section 4.3, we obtain the optimal parameter combination of the KNN algorithm
as K = 11, regardless of the distance weight. Using the optimal parameter combination
to classify the test set, the final classification accuracy is shown in Table 3. The overall
accuracy of the test set classification is 92.4%. The classification accuracy of class I and class
III is higher, and the classification accuracy of class II is lower. The sample data of class
II in the test set is less, and in the middle of the class I and class III when the algorithm
is classified according to the distance. It may be closer to the other two classes, resulting
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in classification errors. Figure 13 shows the actual distribution of the IS, in which the red
marks are the misclassification samples. It can be seen from the figure that classification
accuracy of class II is low. The overall classification accuracy of the algorithm is higher than
class II and class III.

Table 3. The classification accuracy of test set.

Classification of IS Accuracy of Test Set

Class I 93.6%
Class II 84.7%
Class III 89.1%
overall 92.4%
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4.5. Compare with Other Algorithms

The random forest, support vector machine, and decision tree are selected to compare
with the evaluation algorithm of the IS for RFID systems based on PCA-KNN proposed
in this paper. If the classification accuracy is higher, the algorithm running time is shorter,
which proves that the model performance is better. The above algorithms use Python3.10.1
to optimize the parameters, the random forest takes n_estimators = 150, the support vector
machine is set to C = 2.643, g = 0.167, the decision tree uses the CART algorithm, and the
Gini coefficient is used as the feature selection criterion.

Using the same data trained in the above algorithm models, 1000 groups of test data
were used for classification. Table 4 shows the classification accuracy results. The algorithm
processing of a single data was performed on a Raspberry Pi with a main frequency of
1.5G Hz, a 4-core CPU, and a memory of 2 GB. The comparison result of the running time
is shown in Table 5. The result shows that the evaluation method of IS based on PCA-KNN
proposed in this paper has a shorter running time and a higher classification accuracy.

Table 4. Comparison of classification accuracy of different algorithms.

Algorithm Number of Correct
Classifications

Number of
Error Classifications Accuracy

Random Forest 917 83 91.7%
Support Vector

Machine 904 96 90.4%

Decision Tree 871 129 87.1%
PCA-KNN 938 62 92.4%
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Table 5. Comparison of running time of different algorithms.

Algorithm Running Time (ms)

Random Forest 1.225
Support Vector Machine 0.376

Decision Tree 0.482
PCA-KNN 0.258

5. Adaptive Control for RFID Robot Systems Based on Q-Learning

Section 4 proposes a real-time evaluation method for the IS of RFID robot systems
in dynamic scenarios. In the PCA-based analysis of important influence parameters, the
reader power (P) and the robot speed (S) have the highest correlation with the IS. Therefore,
this section combines the Q-learning to adjust the P and S in the RFID robot systems
according to the real-time evaluation result of the IS, so as to improve the identification
efficiency of the RFID robot systems.

5.1. The Model of Adaptive Control

Q-learning is a kind of reinforcement learning, which emphasizes exploring actions
and learning based on the environment in order to maximize the expected benefit Q [30].
The model of adaptive control of parameters for RFID robot systems based on Q-learning
is shown in Figure 14, where different parts represent different structures in Q-learning.
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The actions Q-learning that can be taken are represented in action space δ, which
contains six actions and are shown in Table 6. The states of Q-learning are shown by state
space ζ: [I, II, III], which represent three classes of the IS.
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Table 6. Action space δ.

Action Explanation Range

P + 1 P increased by 1 dBm
Prange = [1,30]P + 2 P increased by 2 dBm

P − 1 P decreased by 1 dBm

S − 0.1 S decreased by 0.1 m/s
Srange = [0,1.0]S − 0.2 S decreased by 0.2 m/s

S + 0.1 S increased by 0.1 m/s

The rewards obtained by taking different actions in different states are different. When
the IS is poor, it is necessary to increase P or decrease S to ensure the reliability of the
identification. When the IS is good, the P can be decreased, and the S can be increased
to improve the identification efficiency. The reward matrix is R, where the rows and
columns represent actions and states, respectively. R represents the reward value that can
be obtained when an action is taken in a certain state.

R =

 1 2 −1 1 2
1 2 −1 1 2
−1 −2 1 −1 −2

−1
−1
1

 (11)

Q table is used to record the estimated Q value of different actions in different states.
Q(s, a) is the expectation that taking action a(a ∈ δ) can obtain reward under s(s ∈ ζ).
When the agent explores the environment, it will use the Ballman equation to iteratively
update Q(s, a) until it converges or reaches the set number of iterations. The updated
formula of Q-learning is as follows:

NewQ(s, a) = Q(s, a) + α
[
R(s, a) + γmaxQ′

(
s′, a′

)
−Q(s, a)

]
(12)

α represents learning efficiency, R(s, a) represents real-time reward, γ represents the
decay of future reward, and γmaxQ′(s′, a′) represents future long-term reward.

The adaptive control algorithm of parameters for RFID robot systems proposed in this
paper based on Q-learning is shown in Algorithm 1.

Algorithm 1 The adaptive control algorithm of parameters for RFID robot systems

Input: Real-Time IS, P, S, R, ζ, δ

Initialize α = 0.5, γ = 0.9
repeat
Initialize s, Q(s, a) = 0
repeat
Choose a from δ

If a∈Prange or Srange then
Take action a, observe R(s, a), s′

Q(s, a)← Q(s, a) + α[R(s, a) + γmaxQ′(s′, a′)−Q(s, a)]
s← s′

End if
until s is terminal
Output: Q table, strategy π(s) = argmaxa∈δQ(s, a)

5.2. Results and Analysis

The final Q table is obtained by simulating the algorithm, and the parameters can be
adaptively adjusted according to the Q table to improve the efficiency of the RFID robot
systems in dynamic scenarios.
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Q table =

8.18 10.00 0 8.18 10.00
8.20 10.00 0 8.20 10.00

0 0 8.99 0 0

0
0

8.99

 (13)

In order to verify the effectiveness of the proposed adaptive control algorithm of
parameters, the experimental verification is carried out under the same experimental scene
as in Section 4. The default parameters are set to P = 23, S = 0.5. Comparing the RoI with
the default parameters and the adaptive control parameters under different tag densities,
the results are shown in Figure 15. As the tag density increases, the RoI decreases, but the
adaptive control algorithm is always better than the default parameters.
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A comparison of the power consumption and the reading time for all tags identified
under the default parameters and adaptive parameters is presented in Figure 16. The
power consumption under the adaptive parameters is reduced by 36.4%, and the time
spent decreases by 29.7%. So, the proposed algorithm can improve the efficiency of the
RFID robot systems in dynamic scenarios.
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6. Conclusions

This paper firstly presents the important roles of the real-time evaluation of the IS and
adaptive control of parameters in the RFID robot systems and proposes the main division
method of the IS. Secondly, a real-time evaluation method of the IS of UHF passive RFID
robot systems in dynamic scenarios based on PCA-KNN is proposed. PCA is used to select
the important influence parameters of the IS, and a 3-Class KNN evaluation model of the
IS is established based on the selected parameter set. Compared with other algorithms,
the result shows that the accuracy of the evaluation method of the IS proposed in this
paper is 92.4%, and the running time of a single data is 0.258 ms, which is better than other
algorithms. Finally, this paper proposes a Q-learning-based adaptive control algorithm
for RFID robot systems. This algorithm can dynamically control the reader’s transmission
power and the robot’s moving speed. The results show that, compared with the default
parameters in RFID robot systems, the algorithm effectively improves the identification
rate of the system, the power consumption under the adaptive parameters is reduced by
36.4%, and the time spent decreases by 29.7%. Therefore, the adaptive control algorithm
can be applied to RFID robot systems in dynamic scenarios to improve system efficiency.
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