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Abstract: This study proposes a coordinated control strategy to solve the coupling problem between
the multi-axle steering system and the active suspension system of emergency rescue vehicles. Firstly,
an eleven-degree-of-freedom coupling model of an emergency rescue vehicle is established. Secondly,
a dual sliding mode (DSM) controller is designed for the multi-axle steering system and a dual
linear quadratic regulator (DLQR) controller is designed for the active suspension system. Finally,
the coordinated control strategy is designed, and the weight values are selected using the fuzzy
algorithm. Results show that compared with the individual control, the root mean square (RMS)
value of the body roll angle, roll angle acceleration, and yaw angle acceleration with coordinated
control are reduced by 16.89%, 29.08%, and 27.75%, respectively. The proposed coordinated control
strategy effectively improves the handling stability and ride comfort of the vehicle.

Keywords: emergency rescue vehicle; high mobility; multi-axis steering; active suspension; coordi-
nated control

MSC: 93-05

1. Introduction

Emergency rescue vehicles have a large load capacity and a high mass center, and
the driving condition is complex. Furthermore, high mobility is required in rescue scenar-
ios. A multi-axis steering system can reduce the turning diameter and improve vehicle
mobility [1–4], and an active suspension system can adjust the output force of each sus-
pension according to the road conditions and body status [5–8]. The two systems jointly
determine the driving comfort and handling stability of the vehicle. When the vehicle
is driving on uneven roads, the active suspension needs to be activated frequently and
the vehicle needs to turn frequently to avoid obstacles, hence there is a complex coupling
relationship between the steering and suspension systems [9,10]. The coupling mechanism
of both systems is shown in Figure 1.

When the vehicle turns, the tire’s angle will change its lateral force, thus affecting the
lateral movement and changing the handling stability of the vehicle. Meanwhile, the lateral
movement of the vehicle makes the vertical load of the tire transfer laterally, affecting the
driving comfort.

When the vehicle is driving on unstructured road, road excitation and active sus-
pension control make the vertical dynamic load of the tires change, affecting the vertical,
pitching, and rolling movements of the vehicle body, and further affecting the ride comfort.
At the same time, the pitching and rolling movements of the body transfer the vertical
load of the vehicle, changing the lateral force of the tires which further affects the lateral
movement of the vehicle and the vehicle’s handling and stability [11–14]. The optimal
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effect cannot be achieved by controlling the two systems separately; hence, coordination
control of the vehicle’s steering system and active suspension system is required [15–19].

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 20 
 

 

Subsystem

Vehicle 

speed

Pavement 

input

Wheel 

angle

Steering 

system

Suspension 

system

Rolling 

motion

Pitching 

motion

Vertical dynamic 

load of tire

Vertical 

force

Lateral 

force

Vertical 

motion

Handling stability Ride comfort

Vehicle 

input

Tire force

Vehicle 

motion

Control 

target

Active control 

force

Lateral 

movement

 

Figure 1. Coupling mechanism of active suspension system and steering system. 
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Figure 1. Coupling mechanism of active suspension system and steering system.

The control strategies of active suspension mainly include optimal control [20], fuzzy
control [21], neural network control [22], adaptive control [23], sliding mode control [24],
etc. These studies do not take special consideration of steering conditions. The control
strategies of multi-axle steering [5–8] take the side slip angle of mass center and yaw rate
as the control target at the same time to ensure the handling stability of the vehicle in the
steering process. These studies mostly design the linear controller based on the two-degree-
of-freedom model and ignore a large number of nonlinear terms and external disturbances
in the design process.

Many studies consider the coordination control of steering systems and active sus-
pension systems. Harada et al. [25] designed the integrated controller based on the
coupling model of the steering and suspension systems, and effectively improved the
handling stability of the vehicle. Hac et al. [26] proposed a comprehensive closed-loop
control strategy, which used integrated control to improve handling response and stabil-
ity. Dahmain et al. [27] designed an integrated controller of all-wheel steering and active
suspension systems to improve the mobility of the vehicle. Chokor et al. [28] designed
an integrated controller for coordinating steering, yaw moment, and active suspension,
which improved the overall performance of the vehicle. Yoshimura et al. [29,30] developed
an integrated controller for the active suspension and steering systems using the fuzzy
reasoning mechanism based on the linear dynamic model of the vehicle.

These studies mostly use two-axle vehicles as the research object, which simplifies the
coupling effect between the steering and suspension systems. Compared with two-axle
vehicles, the emergency rescue vehicle has a larger load capacity and a higher mass center,
and its road condition is more complex. This makes the interaction between the steering
system and the active suspension system more serious.

Taking the steering and suspension system of the high mobility emergency rescue
vehicles as the research objective, this study establishes an eleven-degree-of-freedom
coupling model and designs a dual sliding mode (DSM) controller and a dual linear
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quadratic regulator (DLQR) controller. Furthermore, a coordination control strategy is
designed for the multi-axle steering system and the active suspension system. Finally, the
effectiveness of the coordination control strategy is verified by experiments.

2. Coupling Dynamic Model of Steering and Suspension System

The eleven-degree-of-freedom (11-DOF) coupling model of the steering and suspen-
sion system is shown in Figure 2. The model includes the lateral motion along the y axis,
the roll, pitch, and yaw motion of the sprung mass, the vertical motion of the center of
mass, and the vertical motion of six unsprung masses.
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Figure 2. 11-DOF model of steering and suspension system coupling: (a) 11-DOF model of three-axle
vehicle; (b) top view of the model; (c) front view of the model.
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A description of the model variables is given in Table 1.

Table 1. Model variables (i = 1, 2, . . . , 6).

Variables Meaning Unit

m Sprung mass kg
Mwi Each unsprung mass kg
Zd Vertical displacement of body mass center m
zdi Displacement at each suspension fulcrum m
zwi Each unsprung weight displacement m
zri Road surface input of each wheel m
B Wheel track m
a Distance between center of mass and front axle m
b Distance between center of mass and middle axle m
c Distance between center of mass and rear axle m

θd Body roll angle rad
ϕd Body pitch angle rad
ωr Body yaw angle rad

αi
Included angle between axis direction and

horizontal direction of each wheel rad

β Sideslip angle of centroid rad
δi Angle of each wheel rad
Ix Moment of inertia about x axis kg·m2

Iy Moment of inertia about y axis kg·m2

Iz Moment of inertia about z axis kg·m2

ksi Stiffness coefficient of each suspension spring N/m
csi Variable damping coefficient N/(m·s)
kti Stiffness coefficient of each tire N/m
Ui Actuation force of each active suspension N
Fyi Lateral force on each tire N
u Vehicle speed m/s

hs
Distance from mass center of sprung mass to

roll axis m

According to Newton’s second law and Figure 1, we can derive the vehicle dynamics
equations as follows:

mu(
.
β + ωr)−mshs

..
θd =

6

∑
i=1

Fyi cos δi, (1)

Iz
.

ωr − Ixz
..
θd = aFy1 cos δ1 + aFy2 cos δ2 − bFy3 cos δ3 − bFy4 cos δ4 − cFy5 cos δ5 − cFy6 cos δ6, (2)

Ix
..
θd −mshsu(

.
β+ωr)− Ixz

.
ωr = B

2 (−Fs1 − Fs3 − Fs5 + Fs2 + Fs4 + Fs6) + msghsθd
+ B

2 (U1 + U3 + U5 −U2 −U4 −U6),
(3)

ms
..
Zd = −(Fs1 + Fs2 + Fs3 + Fs4 + Fs5 + Fs6) + U1 + U2 + U3 + U4 + U5 + U6 (4)

Iy
..
ϕd −mshsgϕd= a(Fs1 + Fs2 −U1 −U2)− b(Fs3 + Fs4 −U3 −U4)− c(Fs5 + Fs6 −U5 −U6) (5)

mw1
..
zw1 = Fs1 + U1 − Ft1,

mw2
..
zw2 = Fs2 + U2 − Ft2,

mw3
..
zw3 = Fs3 + U3 − Ft3,

mw4
..
zw4 = Fs4 + U4 − Ft4,

mw5
..
zw5 = Fs5 + U5 − Ft5,

mw6
..
zw6 = Fs6 + U6 − Ft6,

(6)
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where, g is the gravity acceleration; Fsi is the sum of spring force and damping force, Fsi =
ksi(zdi − zwi) + csi(

.
zdi −

.
zwi), (i = 1,2,3,4,5,6); Fti is the tire vertical force, Fti = kti(zwi − zri),

(i = 1,2,3,4,5,6); Fyi is the lateral force on each tire,

Fyi = kαiαi, (i = 1, 2, 3, 4, 5, 6) (7)

where, kαi is the cornering stiffness of each tire.
The dynamic relationship between the six suspensions, the vehicle body connection

points, the vertical motion of the vehicle body centroid, the pitch rotation, and the roll
rotation can be expressed as:

zd1 = Zd − a sin θd − B
2 sin ϕd;

zd2 = Zd − a sin θd +
B
2 sin ϕd;

zd3 = Zd + b sin θd − B
2 sin ϕd;

zd4 = Zd + b sin θd +
B
2 sin ϕd;

zd5 = Zd + c sin θd − B
2 sin ϕd;

zd6 = Zd + c sin θd +
B
2 sin ϕd.

(8)

The state variable X of the system is defined as:

X =
[

Zd, θd, ϕd, zw1, . . . , zw6,
.
Zd,

.
θd,

.
ϕd,

.
zw1, . . . ,

.
zw6, β, ωr

]T
(9)

The external input of the system is:

W =
[
Fs1 , . . . , Fs6 , Ft1 , . . . , Ft6 , Fy1 , . . . , Fy6

]T (10)

From Equations (1)–(6), it is evident that the nonlinearity of the coupling model is the
tire force and suspension force. Therefore, the nonlinear force is taken as the external input
of the vehicle state equation.

The control vector of the coupled system is defined as:

U =[U1, U2, U3, U4, U5, U6]
T (11)

The output vector of the coupled system is defined as:

Y =
[

Zd , θd , ϕd ,
..
Zd ,

..
θd ,

..
ϕd , zs1 − zw1 , . . . , zs6 − zw6 , zw1 − zr1 , . . . , zw6 − zr6 , β , ωr

]T

(12)
The state space expression of the coupling system is:{ .

X = A1X + B1U + C1W
Y = D1X + E1U + F1W

, (13)

Where, A1 = M−1N, B1 = M−1R, C1 = M−1Q, M, N, R and Q are coefficient matrices.
They are shown in Appendix A.

3. DSM Controller of Multi-Axis Steering

A DSM controller was designed according to the yaw rate and the sideslip angle of
the mass center. In addition, the output angle is decoupled in this section. Set the wheel
angle at the front axle δf = δ1 = δ2, the wheel angle at the middle axle δm = δ3 = δ4, the wheel
angle at the rear axle δr = δ5 = δ6, the tire cornering stiffness at the front axle kf = kα1 = kα2,
the tire cornering stiffness at the middle axle km = kα3 = kα4, and the tire cornering stiffness
at the rear axle kr = kα5 = kα6.
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Equations (1) and (2) can then be expressed as:

mu(
.
β + ωr) = (k f + km + kr)β +

1
u
(ak f − bkm − ckr)ωr − k f δ f − kmδm − krδr + ∆ fy, (14)

Iz
.

ωr = (ak f − bkm − ckr)β +
1
u
(a2k f + b2km + c2kr)ωr − ak f δ f + bkmδm + ckrδr + ∆mz. (15)

Set δm and δr as control quantities,{
δβ = −kmδm − krδr

δωr = bkmδm + ckrδr
. (16)

According to Equations (14)–(16), we can obtain:

.
β =

k f + km + kr

mu
β+(

ak f − bkm − ckr

mu2 − 1)ωr −
k f

mu
δ f +

1
mu

δβ+∆Fy, (17)

.
ωr =

ak f − bkm − ckr

Iz
β +

(a2k f + b2km + c2kr)

uIz
ωr −

ak f

Iz
δ f +

1
Iz

δωr + ∆Mz, (18)

where, ∆Fy, ∆Mz is the unmodeled term of the system, δβ is the full-axis-angle output
based on the side deflection angle of the mass center, and δωr is the full-axis-angle output
based on the yaw rate.

According to the integral sliding mode control [31], the sliding surface function based
on the sideslip angle of the mass center can be designed as:

Sβ = eβ + ξβ

∫ t

0
eβdτ (19)

The sliding surface function based on yaw rate can be designed as:

Sωr = eωr + ξωr

∫ t

0
eωrdτ (20)

where, eβ = β− βd, eωr = ωr − ωrd, βd is the control target value of β, ωrd is the control
target value of ωr and ξβ and ξωr are adjustable weight coefficients whose value is positive.

Taking the first-order derivative of Equations (19) and (20), we can obtain:

.
Sβ =

.
eβ + ξβeβ

= (
.
β−

.
βd) + ξβ(β− βd)

= (
k f +km+kr

mu + ξβ)β + (
ak f−bkm−ckr

mu2 − 1)ωr −
k f
mu δ f +

1
mu δβ −

.
βd − ξββd,

(21)

.
Sωr =

.
eωr + ξeωr

= (
.

ωr −
.

ωrd) + ξ(ωr −ωrd)

=
ak f−bkm−ckr

Iz
β + (

a2k f +b2km+c2kr
Izu + ξ)ωr −

ak f
Iz

δ f +
1
Iz

δωr −
.

ωrd − ξωrd.

(22)

The reaching laws are:
.
Sβ = −KβSβ − εβsgn(Sβ) (23)

.
Sωr = −KωrSωr − εωrsgn(Sωr) (24)

where, εβ, Kβ, Kωr, εωr are the undetermined coefficients, which can be obtained through a
simulation trial.

According to Equations (19)–(24), the control laws can be obtained as:

δβ = mu

[
−( k f +km+kr

mu + ξβ)β− (
ak f−bkm−ckr

mu2 − 1)ωr

+
k f
mu δ f + ξββd +

.
βd − KβSβ − εβsgn(Sβ)

]
(25)
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δωr = Iz

 −( ak f−bkm−ckr
Iz

)β− (
a2k f +b2km+c2kr

Izu + ξ)ωr

+
ak f
Iz

δ f +
.

ωrd + ξωrd − KωrSωr − εωrsgn(Sωr)

 (26)

The Lyapunov functions of the sliding mode controller based on the sideslip angle of
the mass center and the yaw rate are defined as:

Vβ =
1
2

S2
β (27)

Vωr =
1
2

S2
ωr (28)

After substituting Equation (25) into Equation (21), and Equation (26) into Equation
(22), respectively, and calculating the first derivative of Lyapunov function shown in
Equations (27) and (28), we can obtain:

.
Vβ = Sβ

.
Sβ = −KβS2

β − Sβsgn(Sβ) ≤ 0 (29)

.
Vωr = Sωr

.
Sωr = −KωrS2

ωr − Sωrsgn(Sωr) ≤ 0 (30)

According to Equations (29) and (30), the first derivatives
.

Vβ and
.

Vωr of the Lyapunov
function are always less than zero, that is, given any initial value of Sβ(0) and Sωr(0),
t→ ∞, Sβ(t)→ 0, Sωr(t)→ 0 . Therefore, the sliding mode controllers, based on the side
slip angle of mass center and yaw rate, are stable.

Decoupling the δβ and δωr according to Equation (16), the wheel angles of the middle
axle and the rear axle output by the controller can be obtained, as shown in Equation (31):{

δm = − 1
ckm−bkm

δωr − c
ckm−bkm

δβ

δr =
1

ckr−bkr
δωr +

b
ckr−bkr

δβ
(31)

4. DLQR Controller of Active Suspension

A DLQR controller includes an LQR integrated controller and an LQR roll controller.
The LQR integrated controller is designed for the active suspension system to reduce the
vertical acceleration, pitch angle, and roll angle of the vehicle. Furthermore, the LQR roll
controller is designed to further control the roll angle during steering.

The output matrix Y1 of the LQR integrated controller and the output matrix Y2 of the
LQR roll controller are expressed as:

Y1 =
[ ..

Zd,
..
θd,

..
ϕd, zd1 − zw1, . . . , zd6 − zw6, zw1 − zr1, . . . , zw6 − zr6

]
(32)

Y2 =
[
ϕd,

..
ϕd, zd1 − zw1, . . . , zd6 − zw6, zw1 − zr1, . . . , zw6 − zr6

]
(33)

The output equations are:

Y1 = D1X + E1Uz + F1W (34)

Y2 = D2X + E2Uϕ + F2W (35)

where, D1, E1, F1, D2, E2, and F2 are coefficient matrices of the performance output equation,
X is the state variable as shown in Equation (9) and W is the external input of the system as
shown in Equation (10).
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According to the LQR control [32], the objective function J1 of the LQR integrated
controller and the objective function J2 of the LQR roll controller are:

J1 =
∫ ∞

0 [q1
..
Z

2
d + q2

..
θ

2
d + q3

..
ϕ

2
d + q4(zd1 − zw1)

2 + q5(zd2 − zw2)
2 + q6(zd3 − zw3)

2

+q7(zd4 − zw4)
2 + q8(zd5 − zw5)

2 + q9(zd6 − zw6)
2 + q10(zw1 − zr1)

2

+q11(zw2 − zr2)
2 + q12(zw3 − zr3)

2 + q13(zw4 − zr4)
2 + q14(zw5 − zr5)

2

+q15(zw6 − zr6)
2 + q16U2

1 + q17U2
2 + q18U2

3 + q19U2
4 + q20U2

5 + q21U2
6 ]dt

=
∫ ∞

0 (YT
1 Q0Y1 + UT

z R0Uz)dt,

(36)

J2 =
∫ ∞

0 [s1 ϕ2
d + s2

..
ϕ

2
d + s3(zd1 − zw1)

2 + s4(zd2 − zw2)
2 + s5(zd3 − zw3)

2

+s6(zd4 − zw4)
2 + s7(zd5 − zw5)

2 + s8(zd6 − zw6)
2 + s9(zw1 − zr1)

2

+s10(zw2 − zr2)
2 + s11(zw3 − zr3)

2 + s12(zw4 − zr4)
2 + s13(zw5 − zr5)

2

+s14(zw6 − zr6)
2 + s15U2

1 + s16U2
2 + s17U2

3 + s18U2
4 + s19U2

5 + s20U2
6 ]dt

=
∫ ∞

0 (YT
2 S0Y2 + UT

ϕ T0Uϕ)dt,

(37)

where, Q0 = diag(q1 q2 q3 · · · q13 q14 q15) and S0 = diag(s1 s2 s3 · · · s13 s14 s15) are the weight
coefficients of the Y1 and Y2, R0 = diag(q16 q17 q18 q19 q20 q21) and T0 = diag(s16 s17 s18 s19 s20
s21) are the weight coefficients of the Uz and Uϕ.

By substituting Equation (34) into Equation (36), and Equation (35) into Equation (37),
we can obtain:

J1 =
∫ ∞

0
(XTQdX + 2DT

1 NdE1 + UT
z RdUz)dt (38)

J2 =
∫ ∞

0
(XTSϕX + 2DT

2 NϕE2 + UT
ϕ RϕUϕ)dt (39)

where, Qd = DT
1 Q0D1, Nd = DT

1 Q0E1, Rd = ET
1 Q0E1 + R0,Sϕ = DT

2 S0D2, Nϕ = DT
2 S0E2,

Rϕ = DT
2 S0E2 + T0.

According to the optimal control theory, if the suspension actuation force Uzi = −KzX
and Kϕi = −KϕX, then the objective function Equation (40) of the system can be minimized
under the constraint conditions. Where Kz and Kϕ are the optimal feedback gain matri-
ces, Kz = R−1

d NT
d + R−1

d BT
1 P1, Kϕ = R−1

ϕ NT
ϕ + R−1

ϕ BT
2 P2, and the matrixes P1 and P2 are

obtained from the Riccati equation.

5. Coordinated Control of Multi-Axis Steering and Active Suspension Systems
5.1. Coordinated Control Strategy

The suspension system and steering system are two important coupling subsystems on
the vehicle chassis, which jointly determine the ride comfort and handling stability of the
vehicle. The coordinated control strategy of the multi-axis steering and active suspension
systems is shown in Figure 3.

Evidently, the coordination control strategy designed in this paper includes the ex-
ecutive, control, and coordination layers. The executive layer consists of the multi-axis
steering system and active suspension system, the control layer consists of both steering
DSM and active suspension DLQR controllers, and the control layer consists of the upper
coordination controller.

The upper coordination controller adjusts the weight coefficients K1, K2, and K3 in
real time according to the vehicle speed u and front wheel angle |δf|. To achieve the
coordination of each sub-controller, the control rules are as follows:

If
(

u > 0 and
∣∣∣δ f

∣∣∣< δ0

)
, thenK3 = 0.

Herein, the active suspension DLQR controller works to improve the smoothness of
the vehicle. Relying solely on the integrated controller of the active suspension system can
achieve satisfactory results; that is, the weight coefficient K1 should be increased while the
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weight coefficient K2 should be reduced. The multi-axis steering controller does not work,
that is, K3 = 0.

If
(

u > 0 and
∣∣∣δ f

∣∣∣≥ δ0

)
, thenK3 = 1.
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Figure 3. Coordination control strategy. 
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Figure 3. Coordination control strategy.

At this time, the vehicle is affected by lateral torque. The vehicle’s body will have a
large roll angle, and the roll angle will increase with the increase in |δf|. Here, the main
task is to improve the handling stability of the vehicle and reduce the body roll angle. The
active suspension DLQR controller and the steering DSM controller work at the same time
to reduce the weight coefficient K1 and increase the weight coefficient K2, where K3 = 1.

Due to the real-time change of vehicle motion state, there are high requirements for the
real-time performance of the weight coefficient, and it is impossible to establish an accurate
mathematical relationship between the observation and the weight coefficient. Therefore,
the weight coefficients K1 and K2 are obtained through fuzzy reasoning.

Considering the actual situation of emergency rescue in the field, the maximum of the
|δf| is set to 32◦, and the maximum speed is set to 40 km/h. Therefore, the input of the
upper-level coordination controller is the front wheel angle |δf|∈[0, 32] and the vehicle
speed u∈[0, 40]. The fuzzy subsets are {ZO, PS, PM, PB, PVB}, adopting the Gaussian
membership function as shown in Figure 4.
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Figure 4. Membership function of input value: (a) the front wheel angle |δf|; (b) the vehicle speed u.

The outputs are K1∈[0, 1] and K2∈[0, 1], and the fuzzy subsets are {PES, PVS, PS, PM,
PB, PVB, PEB}, adopting the Gaussian membership function as shown in Figure 5. The
fuzzy control rules of K1 and K2 are shown in Tables 2 and 3.
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Table 2. The fuzzy control rules of K1.

u

K1 δ1
ZO PS PM PB PVB

ZO PES PES PVS PS PM
PS PES PVS PS PM PB

PM PVS PM PB PB PVB
PB PS PM PB PVB PVB

PVB PS PB PVB PEB PEB

Table 3. The fuzzy control rules of K2.

Weight Coefficients Fuzzy Control Rules

K1 PES PVS PS PM PB PVB PEB
K2 PEB PEB PB PM PS PVS PES

The actuation force Ui of the active suspension system is:

Ui = K1Uzi + K2Uϕi, i = 1, 2, . . . , 6. (40)

5.2. Simulation Analysis

Taking the nonlinear coupling model as the control object, the MATLAB/Simulink
simulation results of individual and coordination control are compared under two typi-
cal conditions. During individual control, the multi-axis steering system and the active
suspension system are controlled independently. In the case of coordination control, the
upper-level coordinated controller is used to control the two subsystems.

5.2.1. Step Angle

The vehicle ran on a class C pavement at 35 km/h, and the front axle angle was a step
signal with an amplitude of π/6. The comparative simulation result of individual control
and coordination control is shown in Figure 6, and the root mean square (RMS) values of
performance indexes are shown in Table 4.

Table 4. RMS values of the performance indexes under step steering.

Performance Index Individual Control Coordination Control

Roll angle (rad) 0.0607 0.0425 (↓ 29.98%)
Roll angle acceleration (rad/s2) 0.1635 0.1163 (↓ 28.87%)
Yaw angle acceleration (rad/s2) 0.0756 0.0581 (↓ 23.15%)

Lateral acceleration (m/s2) 3.1512 3.0642
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Figure 6. Response curves under step steering: (a) body roll angle; (b) lateral acceleration; (c) roll
angle acceleration; (d) yaw angular acceleration.

As shown in Figure 6 and Table 4, compared with the individual control, the RMS
value of roll angle was reduced by 29.98%, showing that the coordination controller can
effectively reduce the roll angle generated by the vehicle when turning. Furthermore, the
lateral acceleration has little difference, indicating that steering ability under coordination
control is not weakened. The roll angle acceleration and yaw angle acceleration also
decreased by 28.87% and 23.15%, respectively. Therefore, the proposed coordinated control
can effectively improve the steering performance of the emergency rescue vehicle.

5.2.2. Double Lane Change

The vehicle then ran on a B-grade road surface at 35 km/h, and a double lane change
was adopted. The comparative simulation result of individual control and coordination
control is shown in Figure 7, and the RMS values of performance indexes are shown in
Table 5.
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Figure 7. Response curves under double line change conditions: (a) centroid sideslip angle; (b) yaw 
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Table 5. RMS values of performance indexes under double line change conditions.

Performance Indexes Individual Control Coordination Control

Sideslip angle of centroid
(rad) 0.0012 0.001 (↓ 16.67%)

Roll angle (rad) 0.0077 0.0056 (↓ 27.82%)
Roll angle velocity (rad/s) 0.0895 0.0626 (↓ 30.01%)

Roll angle acceleration
(rad/s2) 0.2713 0.2134 (↓ 21.31%)

It can be seen from Figure 7 and Table 5 that under double line change conditions,
compared with individual control, the RMS values of the sideslip angle of the centroid,
the roll angle, roll angle velocity, and roll angle acceleration under the coordinated control
were reduced by 16.67%, 27.82%, 30.01%, and 21.31%, respectively. In addition, the peak
value of yaw angle speed was reduced, and the lateral acceleration was more stable, thus
improving the vehicle’s turning ability. Ultimately, under the conditions of double line
change, coordination control can effectively improve the stability and steering performance
of the emergency rescue vehicle.

6. Experiment

The emergency rescue vehicle used in this paper is shown in Figure 8. The hydraulic
cylinders are controlled by the electro-hydraulic servo valves and the pipelines connected
with the two chambers of the hydraulic cylinders are equipped with pressure sensors. The
steering hydraulic cylinders are controlled by proportional valves. The vehicle attitude, the
accelerations of three coordinate axes, and the angular velocities of three coordinate axes
are collected by the inertial measurement unit. The vehicle speed and wheel angle can be
read out by the vehicle CAN bus. The main parameters of the heavy rescue vehicle are also
shown in Table 6.
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Table 6. Main parameters of emergency rescue vehicles.

Parameters Value of parameter

Weight (kg) 36,000
Number of wheels 6
Number of axles 3

Wheelbase of the first and second axle (m) 2.95
Wheelbase of the second and third axle (m) 1.65

Wheel track (m) 2.55
System pressure (Pa) 26 × 106

Rated flow of servo valve (L/min) 120

The vehicle ran on a class C pavement at 35 km/h, and the front axle angle was a step
signal with amplitude of π/6. The coordinated control strategy proposed in this paper
was used to control the whole vehicle and was compared with individual control to verify
its effectiveness. Figure 9 shows a comparison diagram of the body roll angle, roll angle
acceleration, and yaw angle acceleration at RMS value vehicle speeds of approximately
5 km/h, 15 km/h, 25 km/h, and 35 km/h.
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acceleration; (c) yaw angular acceleration.

It is evident therein that when the RMS value of vehicle speed reaches the above-
mentioned speeds, the body roll angle, roll angle acceleration, and yaw angle acceleration
under coordinated control are reduced compared with those under individual control. In
addition, the higher the speed, the more they reduce. This shows that coordinated control
can effectively improve the handling stability of the vehicle. The test results showing the
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RMS value when the vehicle speed reaches 35 km/h are given in Figure 10. The RMS values
of the performance indexes are calculated in Table 7.
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Table 7. RMS value of the performance index.

Performance Index Individual Control Coordination Control

Roll angle (rad) 0.0412 0.0325 (↓ 21.12%)
Roll angle acceleration

(rad/s2) 0.2204 0.1563 (↓ 29.08%)

Yaw angular acceleration
(rad/s2) 0.0717 0.0518 (↓ 27.75%)

Vehicle speed (km/h) 34.8869 34.7564
Lateral acceleration (m/s2) 1.5262 1.4985

It can be seen from Figure 10a,b that the roll angle and lateral acceleration change
significantly when t = 5 s, indicating that the vehicle turns left when t = 5 s. Before the
vehicle turns (t < 5 s), the control effects of the two control methods are close. After the
vehicle turns (t ≥ 5 s), the roll angle under coordination control is obviously smaller than
that under individual control, and the lateral acceleration is more stable. When the vehicle
is turning, the coordination controller can adjust the weight coefficients K1, K2, and K3 in
time, that is, adjust K1 and K2 according to the fuzzy control rules (as shown in Tables 2
and 3), and let K3 = 1. The coordination control enhances the anti-roll ability of the vehicle.

As illustrated by both Figure 10 and Table 7, compared with the individual control, the
RMS value of the body roll angle, the body roll angle acceleration, and the yaw angle accel-
eration under coordination control are reduced by 21.12%, 29.08%, and 27.75%, respectively.
Furthermore, lateral acceleration is more stable. The proposed coordinated control strategy
can effectively reduce the load transfer and ultimately improve the handling stability and
ride comfort of the vehicle.

The output force of each actuator under coordination control is shown in Figure 11,
and how the control strategy implements is further presented.
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It can be seen from Figure 11a that before the vehicle turns left (t < 5s), the fluctuation
range of output force of the right actuator is close to that of the left actuator. After the
vehicle turns (t ≥ 5s), the output force of the right actuator increases while the output force
of the left actuator decreases. This shows that the coordinated control strategy can increase
the output force of the right actuator in time to resist the rolling movement of the vehicle
body. Furthermore, it can be seen from Figure 11b,c that the situations of the middle axle
and the rear axle are similar to that of the front axle. The coordination control strategy can
effectively maintain the stability of the vehicle body and improve the handling stability of
the emergency rescue vehicle.

7. Conclusions

(1) The study reveals the coupling relationship between the steering system and the active
suspension system of the high mobility emergency rescue vehicle. A coordination
control strategy is designed, and the fuzzy algorithm is used to select the weight value
to effectively coordinate the DSM controller and the DLQR controller. The driving
smoothness and handling stability of the vehicle are improved.

(2) Combined with vehicle dynamics, an 11-DOF model of the emergency rescue vehicle
is established. Considering the yaw rate and the sideslip angle of the mass center, the
DSM controller is designed for the multi-axis steering system. In addition, considering
straight driving conditions and steering conditions, the DLQR controller is designed
for the active suspension system.

(3) The test results show that compared with individual control, the RMS values of
the body roll angle, roll angle acceleration, and the yaw angle acceleration with
coordinated control are reduced by 21.12%, 29.08%, and 27.75%, respectively. The
proposed coordinated control strategy thus effectively improves the handling stability
and ride comfort of the vehicle.
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Appendix A

This Appendix A presents the expressions of the M, N, R and Q matrices (in Equation (13)).

M =



E9 09×3 09×6 09×2

03×9

ms 0 0
0 Iy 0
0 0 Ix

 03×6 03×2

06×9 06×3 [mwi]6×6 06×2

02×9

[
0 0 −msh
0 0 Ixz

]
02×6

[
mu 0
0 Iz

]


, (A1)
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where,

[mwi]6×6 =



mw1 0 0 0 0 0
0 mw2 0 0 0 0
0 0 mw3 0 0 0
0 0 0 mw4 0 0
0 0 0 0 mw5 0
0 0 0 0 0 mw6

. (A2)

N =



09×3 09×6 E9 09×20 0 0
0 msghs 0
0 0 msghs

 03×6 03×9

0 0
0 0
0 msgu


06×3 06×6 06×9 06×2

02×3 02×6 02×9

[
0 −mu
0 0

]


, (A3)

R =



03×6
06×6

1 1 1 1 1 1
−a −a b b c c

B
2 − B

2
B
2 − B

2
B
2 − B

2
02×6

, (A4)

Q =



03×6 03×6 03×6 03×3
06×6 06×6 06×6 06×3−1 −1 −1 −1 −1 −1

a a −b −b −c −c
− B

2
B
2 − B

2
B
2 − B

2
B
2

 03×6 03×6 03×6

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 −E6 06×6



1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1


02×6 02×6

[
1 1 1 1 1 1
a a −b −b −c −c

]
02×3



. (A5)
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