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Abstract: Graph-based molecular structure descriptors (often called “topological indices”) are
useful for modeling the physical and chemical properties of molecules, designing pharmacologically
active compounds, detecting environmentally hazardous substances, etc. The graph invariant
GRMα, known under the name general reduced second Zagreb index, is defined as GRMα(Γ) =

∑uv∈E(Γ)(dΓ(u) + α)(dΓ(v) + α), where dΓ(v) is the degree of the vertex v of the graph Γ and α is
any real number. In this paper, among all trees of order n, and all unicyclic graphs of order n with
girth g, we characterize the extremal graphs with respect to GRMα (α ≥ − 1

2 ). Using the extremal
unicyclic graphs, we obtain a lower bound on GRMα(Γ) of graphs in terms of order n with k cut
edges, and completely determine the corresponding extremal graphs. Moreover, we obtain several
upper bounds on GRMα of different classes of graphs in terms of order n, size m, independence
number γ, chromatic number k, etc. In particular, we present an upper bound on GRMα of connected
triangle-free graph of order n > 2, m > 0 edges with α > −1.5, and characterize the extremal graphs.
Finally, we prove that the Turán graph Tn(k) gives the maximum GRMα (α ≥ −1) among all graphs
of order n with chromatic number k.

Keywords: Zagreb indices; girth; clique number; chromatic number; Turán graph

MSC: 05C07; 05C35

1. Introduction

Let Γ = (V, E) be a simple graph with vertex set V = V(Γ) and edge set E = E(Γ),
where |V(Γ)| = n and |E(Γ)| = m. The degree of the vertex u of Γ, denoted dΓ(u), is
the number of vertices adjacent to the vertex u. For v ∈ V(Γ), NΓ(v) denotes the set of
vertices adjacent to v, that is, |NΓ(v)| = dΓ(v). Let ∆(Γ) be the maximum degree of graph
Γ. As usual, χ(Γ), ω(Γ), γ(Γ), and g denote, respectively, the chromatic number, the clique
number, the independence number, and the girth. Let Kn be the complete graph of order n,
and also let Kn1, n2,..., nk (n = n1 + n2 + · · ·+ nk) be a complete k-partite graph of order n.
The Turán graph Tn(k) is the complete k-partite graph on n vertices whose partite sets differ
in size by at most 1. An edge is a cut edge if, and only if, it is not contained in any cycle. For
F ⊆ E(Γ), Γ− F denotes the graph obtained from Γ by removing the edges in F. Similarly,
the graph obtained from Γ by adding a set of edges F is denoted by Γ + F. For F = {e}, we
write Γ− e and Γ + e. We skip the definitions of other standard graph-theoretical notions,
these can be found in [1–3] and other textbooks.

The most famous and studied degree-based topological indices of a graph are the first
Zagreb index M1 and second Zagreb index M2 of a graph Γ, are defined as

M1(Γ) = ∑
u∈V(Γ)

dΓ(u)2 and M2(Γ) = ∑
uv∈E(Γ)

dΓ(u)dΓ(v), (1)

respectively. The quantities M1(Γ) and M2(Γ) were found to occur within certain ap-
proximate expressions for the total π-electron energy [4]. For more informations on the
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mathematical theory and chemical applications of the Zagreb indices, see [5–44] and the
references cited therein. The Zagreb indices has been studied independently in the mathe-
matical literature under other names in [45–50].

Li et al. [51] studied on the extremal cacti of given parameters with respect to the
difference of Zagreb indices. Furtula et al. [52] presented some results on M2(Γ)−M1(Γ)
and then showed that M2(Γ)−M1(Γ) is closely related to the reduced second Zagreb index,
which is defined as

RM2(Γ) = ∑
uv∈E(Γ)

(dΓ(u)− 1)(dΓ(v)− 1).

The Wiener polarity index, denoted by Wp(Γ), is defined as the number of unordered pairs
of vertices that are at distance 3 in Γ. When the graph Γ is isomorphic to a tree, we have
RM2(Γ) = Wp(Γ) and it was examined in the recent papers [52–54]. An and Xiong [55]
gave some bounds on RM2(Γ) in terms of vertex connectivity, independence number, and
matching number, and also characterized the extremal graphs. In [56], the authors obtained
the extremal graphs for RM2(Γ) in the class of cyclic graphs of order n with k cut edges.
In [57], some upper bounds of RM2 were estimated and the extremal graphs with respect
to RM2 among all unicyclic graphs of order n with girth g were characterized.

In [58], Horoldagva et. al studied a generalization of both the reduced second Zagreb
index and the second Zagreb index, which is defined as

GRMα(Γ) = ∑
uv∈E(Γ)

(dΓ(u) + α)(dΓ(v) + α) = M2(Γ) + αM1(Γ) + α2|E(Γ)|. (2)

and named it general reduced second Zagreb index, where α is any real number. They
characterized some properties of GRMα and the extremal graphs of order n with k cut
edges with maximum GRMα when α ≥ − 1

2 .
The structure of the paper is as follows. We give a list of propositions and preliminaries

in Section 2. Among all trees of order n, and all unicyclic graphs of order n with girth g,
we characterize the extremal graphs with respect to GRMα (α ≥ − 1

2 ) in Section 3. Using
the extremal unicyclic graphs, we determine the lower bound for the general reduced
second Zagreb index of graphs of order n with k cut edges and completely determine
the corresponding extremal graphs in Section 4. In Section 5, we obtain several upper
bounds on GRMα of different class of graphs in terms of order n, size m, independence
number γ, chromatic number k, etc. In particular, we present an upper bound on GRMα of
connected triangle-free graph of order n > 2, m > 0 edges with α > −1.5, and characterize
the extremal graphs. Finally, we prove that the Turán graph Tn(k) gives the maximum
GRMα (α ≥ −1) among all graphs of order n with chromatic number k.

2. Preliminaries

Here, we list some previously known results and their direct consequences, which are
used to prove our main results. The following propositions were proved in [58].

Proposition 1 ([58]). Let Γ be a connected graph, and α ≥ −1. Additionally, let xy 6∈ E(Γ).
Consider the graph Γ′ = Γ + xy. Then

GRMα(Γ′) > GRMα(Γ).

Denote by Gn,m the set of connected graphs of order n with m edges.

Proposition 2 ([58]). Let Γ be a graph in Gn,m. Additionally, let GRMα(Γ) be maximum.
(i) If α > −1/2 then all cut edges of Γ are pendant.
(ii) If α = −1/2, and Γ is different from a double-star, then all cut edges of Γ are pendant.

In [59], the upper bounds in terms of order and size for the Zagreb indices of Kr+1-free
graphs were given. Two of these bounds are stated as the next proposition.



Mathematics 2022, 10, 3553 3 of 18

Proposition 3 ([57,59]). Let Γ be a Kr+1-free graph with n vertices (2 ≤ r ≤ n− 1) and m > 0
edges. Then

M1(Γ) ≤
2r− 2

r
nm and M2(Γ) ≤

2
r

m2 +
r− 2

2r
nM1(Γ).

Moreover, both equalities hold if, and only if, Γ is isomorphic to a regular complete r-partite graph
for r ≥ 3, and a complete bipartite graph for r = 2.

In [57,60], it is proved that the Turán graph Tn, χ gives the maximum Zagreb indices
and reduced second Zagreb index among all graphs of order n with chromatic number χ.
From the proof of these results, we can formulate the following proposition. We denote
∆M(Γ) = M2(Γ)−M1(Γ).

Proposition 4. Let Γ ∼= Kn1,n2,...,nk such that nq − np ≥ 2 for some integers p, q with 1 ≤ p <
q ≤ k. Additionally, let Γ′ ∼= Kn1,...,np−1,np+1,np+1 ...,nq−1,nq−1,nq+1 ...,nk . Then we have

M1(Γ′)−M1(Γ) > 0 and ∆M(Γ′)− ∆M(Γ) > 0.

3. Maximum and Minimum GRMα in Trees and Unicyclic Graphs

A star, denoted Sn is a tree with only one vertex of degree greater than one. A double-
star is a tree with diameter 3. Let Ta, b be a double-star, where degrees of non-pendant
vertices are a and b. Then we have

GRMα(Sn) = (n− 1 + α)(1 + α)(n− 1)

and

GRMα(Ta, b) = (a + α)(1 + α)(a− 1) + (b + α)(1 + α)(b− 1) + (a + α)(b + α)

= (1 + α)(a2 + b2) + ab + (α2 − 1 + α)(a + b)− α2 − 2α.

If α = − 1
2 then we can easily get

GRM−1/2(Ta, b) =
1
2
(a + b)2 − 5

4
(a + b) +

3
4
= GRM−1/2(Sa+b).

Since each edge in a tree is cut edge, one can easily obtain the following theorem using the
above result with Proposition 2.

Theorem 1. Let T be a tree of order n and α ≥ −1/2. Then

GRMα(T) ≤ (n− 1 + α)(1 + α)(n− 1)

with equality if, and only if,
(i) T is isomorphic to star graph Sn if α > −1/2,
(ii) T is isomorphic to star graph or double-star if α = −1/2.

Before determining the minimum value of GRMα for trees of order n, we introduce
the following transformation:

Transformation D: Let Γ be a connected graph of order greater than one with v ∈ V(Γ).
Let Γ1 be the graph obtained from Γ by attaching two new paths P : v(= v0)v1v2 · · · vp
and Q : v(= v0)u1u2 · · · uq of length p and q, respectively, at v, where v1, v2, . . . , vp and
u1, u2, . . . , uq are distinct new vertices. A graph Γ2 is obtained from Γ1 by deleting vu1 and
adding u1vp, as shown in Figure 1.
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Γ Γ

Γ1 Γ2

v1

vp−1

vp

u1
uq−1

uq

v v
v1

vp−1

vp

u1
uq−1

uq

D

Figure 1. Transformation D.

Now, we prove a lemma that shows that the general reduced second Zagreb index is
decreasing by Transformation D when α ≥ − 1

2 and it will play an important role in the
proof of the next result.

Lemma 1. Let Γ1 and Γ2 be the graphs in Figure 1.
(i) Let α > − 1

2 . Then GRMα(Γ1) > GRMα(Γ2).
(ii) Let α = − 1

2 and p = q = 1. Then GRMα(Γ1) > GRMα(Γ2) if ∑
x∈NΓ(v)

dΓ(x) > dΓ(v).

(iii) Let α = − 1
2 and p + q > 2. Then GRMα(Γ1) > GRMα(Γ2).

Proof. From (1), we obtain

M1(Γ1)−M1(Γ2) = (dΓ(v) + 2)2 + 1− (dΓ(v) + 1)2 − 4 = 2dΓ(v) > 0.

Now,

M2(Γ1)−M2(Γ2) = (dΓ(v) + 2)
(

∑
x∈NΓ(v)

dΓ(x) + dΓ1(v1) + dΓ1(u1)
)

+dΓ1(vp−1)dΓ1(vp)− (dΓ(v) + 1)
(

∑
x∈NΓ(v)

dΓ(x) + dΓ2(v1)
)

− dΓ2(vp−1)dΓ2(vp)− dΓ2(vp)dΓ2(u1)

=



∑
x∈NΓ(v)

dΓ(x) if p = q = 1,

∑
x∈NΓ(v)

dΓ(x) + dΓ(v) if q = 1 and p > 1,

∑
x∈NΓ(v)

dΓ(x) + dΓ(v) if q > 1 and p = 1,

∑
x∈NΓ(v)

dΓ(x) + 2dΓ(v) if q > 1 and p > 1.

Since | E(Γ1) |=| E(Γ2) | and the Equation (2), we obtain

GRMα(Γ1)− GRMα(Γ2) = M2(Γ1)−M2(Γ2) + α
(

M1(Γ1)−M1(Γ2)
)

=



∑
x∈NΓ(v)

dΓ(x) + 2αdΓ(v) if p = q = 1,

∑
x∈NΓ(v)

dΓ(x) + (1 + 2α)dΓ(v) if q = 1 and p > 1,

∑
x∈NΓ(v)

dΓ(x) + (1 + 2α)dΓ(v) if q > 1 and p = 1,

∑
x∈NΓ(v)

dΓ(x) + (2 + 2α)dΓ(v) if q > 1 and p > 1.
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If α > − 1
2 , then clearly GRMα(Γ1) − GRMα(Γ2) > 0. Let α = − 1

2 . When p = q = 1,
∑

x∈NΓ(v)
dΓ(x) + 2αdΓ(v) = ∑

x∈NΓ(v)
dΓ(x)− dΓ(v) > 0, that is, GRMα(Γ1)− GRMα(Γ2) > 0.

Otherwise, clearly GRMα(Γ1)− GRMα(Γ2) > 0. The proof is finished.

Repeating the Transformation D, any tree can be changed into a path. Thus, we can
obtain the next theorem.

Theorem 2. Let T be a tree of order n and α ≥ −1/2. Then

GRMα(T) ≥ (α + 2)(n + 2α− 1)

with equality if, and only if, T ∼=

P4 or S4 if n = 4 and α = − 1
2 ,

Pn otherwise.
.

We now determine the extremal unicyclic graphs with respect to general reduced
second Zagreb index. First, we give a sharp upper bound of GMRα of graphs from the
class of connected unicyclic graphs of order n with girth g, denoted by Un, g when α ≥ − 1

2 .
Let S(n1, n2, . . . , ng) be a unicyclic graph of order n with girth g and n− g pendant vertices
(see, Figure 2), where ni is the number of pendant vertices adjacent to i-th vertex of the
cycle (the vertices in the cycle are numbered clockwise). Then, clearly Cn ∼= S(0, 0, . . . , 0)

and
g
∑

i=1
ni = n − g. We denote by Sn, g (n and g are integers with 4 ≤ g ≤ n) the

class of all unicyclic graphs S(n1, n2, . . . , ng) (g ≥ 5), such that |n1 + n3 − n2| ≤ 1 and
n4 = n5 = · · · = ng = 0, and S(n1, n2, n3, n4), such that |n1 + n3 − (n2 + n4)| ≤ 1.

v1

v2 v3

v4

v5v6

v7

Figure 2. The graph S(3, 1, 0, 2, 1, 1, 4).

Lemma 2. Let g ≥ 3 be an integer, α be a real number and Γ ∼= S(n1, n2, 0, . . . , 0︸ ︷︷ ︸
g−2

), where n1, n2

are non-negative integers, such that n1 + n2 = n− g. Then

GRMα(Γ) = (1 + α)(n− g)2 + (α + 2)(α + 3)n− (α + 2)g− (2α + 1)n1n2.

Proof. By the definition of GRMα, we have

GRMα(Γ) = (n1 + 2 + α)(n2 + 2 + α) + (n1 + 2 + α)(1 + α)n1 + (n2 + 2 + α)(1 + α)n2

+(g− 3)(2 + α)2 + (2 + α)(n1 + 2 + α) + (2 + α)(n2 + 2 + α)

= n1n2 + (2 + α)(n− g) + (2 + α)2 + (1 + α)
(

n2
1 + n2

2 + (2 + α)(n− g)
)

+(2 + α)2(g− 3) + (2 + α)(n− g + 4 + 2α)

= (1 + α)(n− g)2 + (3 + α)(2 + α)n− (α + 2)g− (2α + 1)n1n2.

This completes the proof of the lemma.
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Note that for the graph Γ ∼= S(n1, n2, 0, . . . , 0︸ ︷︷ ︸
g−2

), GRM−1/2(Γ) depends only on n and g.

We denote by H the set of all unicyclic graphs S(n1, n2, 0, . . . , 0︸ ︷︷ ︸
g−2

), such that
⌈ n−g

2
⌉
≤ n1 ≤

n− g and n1 + n2 = n− g, where n and g are integers with 3 ≤ g ≤ n. Denote by G(n, N)
the set of graphs of order n with clique number n− N and all the remaining N vertices are
pendant.

Theorem 3. Let α ≥ − 1
2 , g ≥ 3 and Γ ∈ Un, g. Then

GRMα(Γ) ≤ (1 + α)(n− g)2 + (α + 2)(α + 3)n− (α + 2)g (3)

with equality if, and only if,
(i) Γ ∼= S(n− g, 0, . . . , 0︸ ︷︷ ︸

g−1

) when α > − 1
2 ,

(ii) Γ ∈ H when α = − 1
2 and g ≥ 4,

(iii) Γ ∈ G(n, n− 3) when α = − 1
2 and g = 3.

Proof. Let Γ0 be a unicyclic graph of order n with girth g and maximum GRMα-value.
Then we have

GRMα(Γ) ≤ GRMα(Γ0). (4)

By Proposition 2, all cut edges of Γ0 are pendant. Hence, there exist non-negative integers

n1, n2, . . . , ng such that
g
∑

i=1
ni = n− g and Γ0 ∼= S(n1, n2, . . . , ng). Let v1, v2, . . . , vg be the

vertices of the graph S(n1, n2, . . . , ng) whose degrees are greater than one. Then we have
dΓ0(vi) = ni + 2 for i = 1, 2, . . . , g. From (2), we obtain

GRMα(Γ0) =
g

∑
i=1

(ni + 2 + α)(ni+1 + 2 + α) +
g

∑
i=1

(ni + 2 + α)(1 + α)ni

=
g

∑
i=1

nini+1 + (α + 2)
g

∑
i=1

(ni + ni+1) + (α + 2)2g

+ (1 + α)
g

∑
i=1

n2
i + (2 + α)(1 + α)

g

∑
i=1

ni

= (1 + α)
g

∑
i=1

n2
i +

g

∑
i=1

nini+1 + (α + 2)(α + 3)(n− g) + (α + 2)2g,

where ng+1 = n1.
On the other hand, we have

(1 + α)
g

∑
i=1

n2
i +

g

∑
i=1

nini+1 =

[
1
2

g

∑
i=1

n2
i +

g

∑
i=1

nini+1

]
+

(
1
2
+ α

) g

∑
i=1

n2
i

≤ 1
2

(
g

∑
i=1

ni

)2

+

(
1
2
+ α

)( g

∑
i=1

ni

)2

(5)

= (1 + α)(n− g)2
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as α ≥ − 1
2 . From Inequality (4) and Inequality (5), we get

GRMα(Γ) ≤ GRMα(Γ0)

= (1 + α)
g

∑
i=1

n2
i +

g

∑
i=1

nini+1 + (α + 2)(α + 3)(n− g) + (α + 2)2g

≤ (1 + α)(n− g)2 + (α + 2)(α + 3)n− (α + 2)g.

Suppose now that equality holds in (3). Then, the equality must hold in (5). Without loss of
generality, we assume that n1 = max{n1, n2, . . . , ng}. Next, we distinguish the following
three cases.

Case 1. α > − 1
2 . From the equality in (5), we obtain

g
∑

i=1
n2

i =

( g
∑

i=1
ni

)2

, that is, n2 = n3 =

· · · = ng = 0 as n1 ≥ ni for 1 ≤ i ≤ n. So we have Γ0 ∼= S(n− g, 0, . . . , 0︸ ︷︷ ︸
g−1

). Additionally, by

Lemma 2, one can easily check that

GRMα(Γ0) = (1 + α)(n− g)2 + (α + 2)(α + 3)n− (α + 2)g,

when Γ0 ∼= S(n − g, 0, . . . , 0︸ ︷︷ ︸
g−1

). Hence, the equality holds if, and only if, Γ0 ∼= S(n −

g, 0, . . . , 0︸ ︷︷ ︸
g−1

).

Case 2. α = − 1
2 and g ≥ 4. From the equality in (5), we obtain

g

∑
i=1

n2
i + 2

g

∑
i=1

nini+1 =

(
g

∑
i=1

ni

)2

, (6)

that is,

2n1

g

∑
i=2

ni +

(
g

∑
i=2

ni

)2

= 2n1(n2 + ng) + 2(n2n3 + n3n4 + · · ·+ ng−1ng) +
g

∑
i=2

n2
i

≤ 2n1(n2 + ng) +

(
g

∑
i=2

ni

)2

,

that is,

n1(n3 + n4 + · · ·+ ng−1) ≤ 0 and hence n1(n3 + n4 + · · ·+ ng−1) = 0. (7)

If n1 = 0, then ni = 0 for all 1 ≤ i ≤ g (as n1 ≥ ni for all 1 ≤ i ≤ g), that is, Γ0 ∼= S(0, . . . , 0︸ ︷︷ ︸
g

)

(g = n), that is, Γ0 ∈ H. Otherwise, n1 > 0. From (7), we obtain n3 + n4 + · · ·+ ng−1 = 0,
that is, n3 = n4 = · · · = ng−1 = 0. From (6), we obtain

(n1 + n2 + ng)
2 = n2

1 + n2
2 + n2

g + 2(n1n2 + ngn1), that is, n2ng = 0.

Therefore, n2 = 0 or ng = 0. Without loss of generality, we can assume that ng = 0. Hence
the equality holds if, and only if, n1 + n2 = n− g, n1 ≥ n2 and n3 = n4 = · · · = ng = 0.
Hence Γ0 ∈ H.

Case 3. α = − 1
2 and g = 3. Then, the equality (5) holds clearly. Thus the equality holds in

(3) if and only if Γ0 ∈ {S(n1, n2, n3) | n1 ≥ 0, n2 ≥ 0, n3 ≥ 0 and n1 + n2 + n3 = n− 3} ∼=
G(n, n− 3). This completes the proof.
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Corollary 1. Let Γ be a unicyclic graph of order n with α ≥ − 1
2 . Then

GRMα(Γ) ≤ (1 + α)(n− 3)2 + (α + 2)(α + 3)n− 3(α + 2)

with equality if, and only if,
(i) Γ ∼= S(n− 3, 0, 0) when α > − 1

2 ,
(ii) Γ ∈ G(n, n− 3) when α = − 1

2 .

Proof. Denote by g the girth of the graph Γ. Then, by Theorem 3 and g ≥ 3, we have

GRMα(Γ) ≤ (1 + α)(n− g)2 + (α + 2)(α + 3)n− (α + 2)g

≤ (1 + α)(n− 3)2 + (α + 2)(α + 3)n− 3(α + 2)

with equality if and only if
(i) Γ ∼= S(n− 3, 0, 0) when α > − 1

2 ,
(ii) Γ ∈ G(n, n− 3) when α = − 1

2 .
By this, the proof is completed.

Let U(k1, k2, . . . , kg) be a unicyclic graph obtained from cycle Cg = v1v2 . . . vgv1 by
joining an edge between the vertex vi with a pendant vertex of a path Pki

of length ki,
i = 1, 2, . . . , g, that is, U(k1, k2, . . . , kg)− E(Cg) ∼= Pk1+1 ∪ Pk2+1 ∪ · · · ∪ Pkg+1. The graph
U(k1, k2, . . . , kg) has thus n = g + ∑

g
i=1 ki vertices (see, Figure 3). By relabeling, we can

assume that k1 = max{k1, k2, . . . , kg}. Let U (n, g) be a class of unicyclic graphs of order n
with girth g (n ≥ g ≥ 3), is defined as

U (n, g) =
{

U(k1, k2, . . . , kg) |
g

∑
i=1

ki = n− g and k1 ≥ max{k2, k3, . . . , kg}
}

.

v2

v3 v4

v5

v6v7

v1

Figure 3. The graph U(4, 3, 1, 0, 2, 1, 1) in U (19, 7).

Repeating Transformation D, any tree T attached to a graph Γ can be changed into a
path, as shown in Figure 4, and the general reduced second Zagreb index decreases when
α ≥ − 1

2 by Lemma 1. Thus, the next lemma follows immediately.

Γ T Γ
H

Figure 4. Repeating Transformation D.
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Lemma 3. Let Γ ∈ Un, g with minimum GRMα-value and α ≥ − 1
2 . Then Γ ∈ U (n, g).

Theorem 4. Let Γ ∈ Un, g with minimum GRMα-value and α ≥ − 1
2 . Then Γ ∼= U(n −

g, 0, . . . , 0︸ ︷︷ ︸
g−1

).

Proof. By Lemma 3, we have Γ ∈ U (n, g). So there exist non-negative integers k1, k2, . . . , kg
such that Γ ∼= U(k1, k2, . . . , kg). If ks 6= 0 for s ≥ 2, then we consider the graph
Γ1 = U(k1 + ks, k2, . . . , ks−1, 0, ks+1, . . . , kg). By definition of GRMα, we have

GRMα(Γ)− GRMα(Γ1) = (3 + α)(dΓ(vs−1) + dΓ(vs+1) + 2α) + (2 + α)(1 + α)

+ (3 + α)(2 + α)− (2 + α)(dΓ(vs−1) + dΓ(vs+1) + 2α)− (2 + α)2 − (2 + α)2

= dΓ(vs−1) + dΓ(vs+1) + 2α ≥ dΓ(vs−1) + dΓ(vs+1)− 1 > 0

as dΓ(vi) ≥ 2 for all 1 ≤ i ≤ g. This is a contradiction that tells us k2 = k3 = · · · = kg = 0.
The proof of the theorem is completed.

An elementary calculation yields

GRMα

(
U(n− g, 0, . . . , 0︸ ︷︷ ︸

g−1

)
)
=


(nα + 2n + 2)(2 + α) if 3 ≤ g ≤ n− 2,
(nα + 2n + 2)(2 + α)− 1 if g = n− 1,
n(2 + α)2 if g = n.

(8)

Corollary 2. Let Γ be a unicyclic graph of order n with α ≥ − 1
2 . Then

GRMα(Γ) ≥ n (2 + α)2

with equality if, and only if, Γ ∼= Cn.

4. Lower Bounds on GRMα

Denote by Gk+
n and Gk

n the class of connected graphs of order n with at least k cut
edges and the class of connected graphs of order n with exactly k cut edges. In [58], the
extremal graphs with maximum GRMα from Gk+

n and Gk
n were characterized. However,

the extremal graphs with minimum GRMα from Gk+
n and Gk

n were not characterized. In
this section, we give the lower sharp bounds on GRMα for these two classes of graphs. Let
G ′n, g be the class of connected graphs of order n with girth g. All trees of order n belong to
the class Gk+

n (k = n− 1). The next two results immediately follow from our results in the
previous section.

Theorem 5. Let Γ be a graph in Gk+
n and α ≥ −1/2. Then

GRMα(Γ) ≥ (α + 2)(n + 2α− 1)

with equality if, and only if,

Γ ∼=

P4 or S4 when n = 4 and α = − 1
2 ,

Pn otherwise.

Proof. Let S ⊂ E(Γ) be a set of non-cut edges in Γ, such that T = Γ− S is a tree. Then
we have

GRMα(Γ) ≥ GRMα(T) ≥ (α + 2)(n + 2α− 1)
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by Proposition 1 and Theorem 2. Equality holding if, and only if, Γ ∼= T and

T ∼=

P4 or S4 if n = 4 and α = − 1
2 ,

Pn otherwise.

This completes the proof.

Theorem 6. Let Γ be a graph in G ′n, g and α ≥ −1/2. Then

GRMα(Γ) ≥


(2 + α)(nα + 2n + 2) if 3 ≤ g ≤ n− 2,

(2 + α)(nα + 2n + 2)− 1 if g = n− 1,

n (2 + α)2 if g = n

with equality if, and only if, Γ ∼= U(n− g, 0, . . . , 0︸ ︷︷ ︸
g−1

).

Proof. Let C be a cycle of length g in Γ. Let Γ′ be a graph in Un, g, obtained by deleting the
edges (which do not lie on the cycle C) of Γ. By Proposition 1, Theorem 4 and (8), we obtain

GRMα(Γ) ≥ GRMα(Γ′) ≥


(2 + α)(nα + 2n + 2) if 3 ≤ g ≤ n− 2,

(2 + α)(nα + 2n + 2)− 1 if g = n− 1,

n (2 + α)2 if g = n.

Equality holding if, and only if, Γ ∼= Γ′ and Γ′ ∼= U(n− g, 0, . . . , 0︸ ︷︷ ︸
g−1

).

We now consider cyclic graphs in Gk+
n . Thus we have k ≤ n− 2, but there is no graph

of order n with k cut edges if k = n− 2. Therefore, we assume that k ≤ n− 3. Now, we
characterize the extremal cyclic graphs from Gk+

n with minimum GRMα using Theorem 6.
Let Un(k) be the set of all unicyclic graphs U(t, 0, . . . , 0︸ ︷︷ ︸

n−t−1

), such that k ≤ t ≤ n− 3. Because

the number of cut edges in the graph Γ is at least k, we have the girth of Γ is at most n− k.

Theorem 7. Let Γ be a cyclic graph from Gk+
n with minimum GRMα. Let n, k be positive integers,

such that k ≤ n− 3 and α ≥ − 1
2 . Then

(i) Γ ∼= Cn if k = 0.
(ii) Γ ∼= U(1, 0, . . . , 0︸ ︷︷ ︸

n−1

) if k = 1.

(iii) Γ ∈ Un(k) if 2 ≤ k ≤ n− 3.

Proof. Let g be the girth of Γ. Then, by Theorem 6, Γ ∼= U(n− g, 0, . . . , 0︸ ︷︷ ︸
g−1

), and we have

Equation (8). Additionally, we have g ≤ n− k as Γ ∈ Gk+
n . Hence, we obtain, easily, the

required result and this completes the proof.

Note that if k ≤ n− 3, then all graphs in Gk
n belong to the set of cyclic graphs in Gk+

n

and Gk
n ∩ Un(k) =

{
U(k, 0, . . . , 0︸ ︷︷ ︸

n−k−1

)
}

. Therefore, we can obtain the following theorem that

determines the extremal graphs of order n with k cut edges having minimum GRMα when
α ≥ − 1

2 .
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Theorem 8. Let Γ be a cyclic graph in Gk
n with minimum GRMα and α ≥ − 1

2 , k ≤ n− 3. Then,
Γ ∼= U(k, 0, . . . , 0︸ ︷︷ ︸

n−k−1

).

5. Upper Bounds on GRMα

In this section, we give some upper bounds on the general reduced second Zagreb
index GRMα. Recall that a complete split graph CS(n, γ) (1 ≤ γ ≤ n− 1) is defined as the
graph join Kγ ∨ Kn−γ, where Kγ is the complement of the complete graph on γ vertices.

Theorem 9. Let Γ be a graph of order n with independence number γ and α ≥ −1. Then

GRMα(Γ) ≤ (n− 1 + α)2
(

n− γ

2

)
+ (n− 1 + α)(n− γ + α)(n− γ)γ

with equality if, and only if, Γ ∼= CS(n, γ).

Proof. Let Γ0 be a graph of order n with independence number γ and maximum GRMα.
Additionally, let S be an independent set in Γ0 such that |S| = γ. If Γ0 6∼= CS(n, γ) then
there exist non-adjacent vertices u and v so that {u, v} 6⊂ S. For the graph Γ1 = Γ + uv, the
order is n and the independence number is γ. By Proposition 1, we have

GRMα(Γ0) < GRMα(Γ1)

and it is a contradiction to the fact that GRMα(Γ0) is maximum for the set of graphs of
order n with independence number γ. Thus, we have Γ0 ∼= CS(n, γ) and

GRMα(Γ) ≤ GRMα(Γ0).

One can easily check that

GRMα(CS(n, γ)) = (n− 1 + α)2
(

n− γ

2

)
+ (n− 1 + α)(n− γ + α)(n− γ)γ.

From this, the theorem is proved.

Recall that G(n, r) is the set of graphs of order n with clique number n− r, and all the
remaining r vertices are pendant. Denote by Pn, r the class of connected graphs of order n
with r pendant vertices. Then, we have G(n, r) ⊆ Pn, r. For any graph Γ in G(n, r), there are
some non-negative integers k1, k2, . . . , kn−r such that k1 ≥ k2 ≥ · · · ≥ kn−r, and the graph Γ
is constructed by attaching ki pendent vertices to the i-th vertex of a complete graph Kn−r,

denoted Γ(k1, k2, . . . , kn−r) (see Figure 5). Clearly, we have r =
n−r
∑

i=1
ki.

Figure 5. All graphs in G(9, 5). For example, the fourth graph is denoted by Γ(3, 1, 1, 0).

Lemma 4. Let Γ be a graph in Pn, r and α ≥ −1. If GRMα(Γ) is maximum in Pn, r then
Γ ∈ G(n, r).

Proof. If Γ /∈ G(n, r), then there exist two vertices u and v in Γ, such that uv /∈ E(Γ) and
dΓ(u) > 1, dΓ(v) > 1. Denote by Γ′ = Γ + uv. Then, Γ′ ∈ Pn, r and by Proposition 1, we
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obtain GRMα(Γ′) > GRMα(Γ), a contradiction as GRMα(Γ) is maximum in Pn, r. Hence
Γ ∈ G(n, r).

Theorem 10. Let Γ be a graph with maximum GRMα in Pn, r and α ≥ −1. Then
(i) Γ ∼= Γ(k1, k2, . . . , kn−r), where | kp − kq |≤ 1 for 1 ≤ p, q ≤ n− r if −1 ≤ α ≤ − 1

2 .
(ii) Γ ∈ G(n, r) if α = − 1

2 .
(iii) Γ ∼= Γ(r, 0, . . . , 0︸ ︷︷ ︸

n−k−1

) if α > − 1
2 .

Proof. By Lemma 4, we have Γ ∈ G(n, r). Therefore, Γ ∼= Γ(k1, k2, . . . , kn−r) for some

integers k1, k2, . . . , kn−r, such that k1 ≥ k2 ≥ · · · ≥ kn−r ≥ 0 and r =
n−r
∑

i=1
ki. By the

definition of GRMα, we obtain

GRMα(Γ) = ∑
1≤i<j≤n−r

(n− r− 1 + ki + α)(n− r− 1 + k j + α)

+
n−r

∑
i=1

ki(1 + α)(n− r− 1 + ki + α)

=

(
n− r

2

)
(n− r− 1 + α)2 + (n− r− 1 + α) ∑

1≤i<j≤n−r
(ki + k j)

+ ∑
1≤i<j≤n−r

kik j + (1 + α)(n− r− 1 + α)
n−r

∑
i=1

ki + (1 + α)
n−r

∑
i=1

k2
i

=

(
n− r

2

)
(n− r− 1 + α)2 + r(n− r− 1 + α)(n− r + α)

+ (1 + α)
n−r

∑
i=1

k2
i + ∑

1≤i<j≤n−r
kik j

=

(
n− r

2

)
(n− r− 1 + α)2 + r(n− r− 1 + α)(n− r + α)

+

(
1
2
+ α

) n−r

∑
i=1

k2
i +

1
2

(
n−r

∑
i=1

ki

)2

=

(
n− r

2

)
(n− r− 1 + α)2 + r(n− r− 1 + α)(n− r + α)

+

(
1
2
+ α

) n−r

∑
i=1

k2
i +

1
2

r2. (9)

(i) Let −1 ≤ α ≤ − 1
2 . Suppose that there are integers kp and kq such that kp − kq ≥ 2.

Then, we consider non-negative integers k′1, k′2, . . . , k′n−r with k′p = kp − 1, k′q = kq + 1 and
k′i = ki for all i 6= p, q. Then we get

n−r

∑
i=1

k′2i −
n−r

∑
i=1

k2
i = (kp − 1)2 + (kq + 1)2 − k2

p − k2
q = 2(kq − kp + 1) < 0.

Using this result in (9), we conclude that GRMα(Γ) is not maximum as −1 ≤ α ≤ − 1
2 . This

is a contradiction. Hence Γ ∼= Γ(k1, k2, . . . , kn−r), where |kp − kq| ≤ 1 for 1 ≤ p, q ≤ n− r.

(ii) Let α = − 1
2 . Then

GRMα(Γ) =
(

n− r
2

)
(n− r− 1 + α)2 + r(n− r− 1 + α)(n− r + α) +

1
2

r2.
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Hence Γ ∈ G(n, r).

(iii) Let α > − 1
2 . One can easily see that

n−r
∑

i=1
k2

i ≤ r2 with equality holding if, and only if,

k1 = r and k2 = k3 = · · · = kn−r = 0. Using this result in (9), we obtain

GRMα(Γ) ≤
(

n− r
2

)
(n− r− 1 + α)2 + r(n− r− 1 + α)(n− r + α) + (α + 1) r2

with equality if, and only if, k1 = r and k2 = k3 = · · · = kn−r = 0, that is, if, and only if,
Γ ∼= Γ(r, 0, . . . , 0︸ ︷︷ ︸

n−k−1

).

This completes the proof of the theorem.

From Proposition 3, the following theorem is obtained.

Theorem 11. Let Γ be a Kr+1-free graph of order n with m edges. Additionally, let n, r be positive
integers and α be real number, such that 2 ≤ r ≤ n− 1 and r−2

2r n + α ≥ 0. Then

GRMα(Γ) ≤
2
r

m2 +

(
r− 2

2r
n + α

)
· 2r− 2

r
mn + α2m (10)

with equality if, and only if, Γ is isomorphic to a regular complete r-partite graph for r ≥ 3 and a
complete bipartite graph for r = 2.

Proof. From the definition of GRMα with Proposition 3, we obtain

GRMα(Γ) = M2(Γ) + αM1(Γ) + α2m ≤ 2
r

m2 +

(
r− 2

2r
n + α

)
·M1(Γ) + α2m

≤ 2
r

m2 +

(
r− 2

2r
n + α

)
· 2r− 2

r
mn + α2m

as r−2
2r n + α ≥ 0. Moreover, the equality holds in (10) if, and only if, Γ is isomorphic to a

complete bipartite graph for r = 2 and a regular complete r-partite graph for r ≥ 3. This
completes the proof.

Note that if r ≥ 4 or r = 3 and n ≥ 6 then for all α ≥ −1, Theorem 11 holds as
r−2
2r n + α ≥ 0. Moreover, for all α ≥ −1, the following theorem, which is a generalization

of Theorem 2.3 in [57] holds. Denote Γ4 the graph of order 4 with size 1.

Theorem 12. Let Γ be a Kr+1-free graph with n vertices (3 ≤ r ≤ n− 1) and m > 0 edges. If
α ≥ −1 and Γ � Γ4, then

GRMα(Γ) ≤
2
r

m2 +

(
r− 2

2r
n + α

)
· 2r− 2

r
mn + α2m (11)

with equality if, and only if, Γ is isomorphic to a regular complete r-partite graph.

Proof. If r ≥ 4, or r = 3 and n ≥ 6, then we obtain r−2
2r n + α ≥ r−2

2r n − 1 ≥ 0 and by
Theorem 11, the proof is finished. Hence, we have only the following two cases.

Case 1. n = 4 and r = 3. The right-hand side of (11) is equal to 2
3 m2 +

( 2
3 + α

)
· 16

3 m + α2m.
For m = 1, it contradicts the assumption that Γ is not isomorphic to Γ4. For m = 2, we have
Γ ∼= K2 ∪ K2 or Γ ∼= K1, 2 ∪ K1. Then

GRMα(Γ) ≤ 2(1 + α)(2 + α) <
2
3

m2 +

(
2
3
+ α

)
· 16

3
m + α2m
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as α ≥ −1. Let now m ≥ 3. If ∆(Γ) ≤ 2, then

GRMα(Γ) ≤ (2 + α)(2 + α)m <
2
3

m2 +

(
2
3
+ α

)
· 16

3
m + α2m

as m ≥ 3 and α ≥ −1. Otherwise, ∆(Γ) = 3. Then, there are only three K4-free graphs,
which are K1, 3, K1, 3 + e and K4 − e, and for these graphs the strict inequality in (11) holds.

Case 2. n = 5 and r = 3. The right-hand side of (11) is equal to 2
3 m2 +

( 5
6 + α

)
· 20

3 m + α2m.
For m = 1, we have GRMα(Γ) = (1 + α)2 < 2

3 m2 +
( 5

6 + α
)
· 20

3 m + α2m. Let now m ≥ 2.
For ∆(Γ) ≤ 2, we obtain

GRMα(Γ) ≤ m(2 + α)(2 + α) <
2
3

m2 +

(
5
6
+ α

)
· 20

3
m + α2m

as m ≥ 2 and α ≥ −1. Let ∆(Γ) = 3. Then clearly m ≥ 3. For m = 3, Γ is K1, 3 + K1. If there
is a graph H of order 4 such that Γ is H + K1, then by the previous case, we have

GRMα(Γ) = GRMα(H) <
2
3

m2 +

(
2
3
+ α

)
· 16

3
m + α2m

<
2
3

m2 +

(
5
6
+ α

)
· 20

3
m + α2m

as α ≥ −1. For m = 4, Γ is the fork graph. Of course, the strict inequality in (11) holds
for the fork. Let m ≥ 5. Then Γ has at least one vertex of degree less than three by the
handshaking lemma. Hence

GRMα(Γ) ≤ (3 + α)(3 + α)(m− 2) + (3 + α)(2 + α) · 2

<
2
3

m2 +

(
5
6
+ α

)
· 20

3
m + α2m

as m ≥ 5 and α ≥ −1.
Let now ∆(Γ) = 4. If m = 4 or m = 5, then Γ is K1, 4 or K1, 4 + e. For m ≥ 6, all K4- free

graphs of order 5 with m edges and maximum degree 4 are displayed in Figure 6. One can
easily check that the strict inequality in (11) holds for all of the graphs in Figure 6.

Figure 6. All K4- free graphs of order 5 with m (m ≥ 6) edges and ∆ = 4.

Corollary 3. Let Γ be a Kr+1-free graph with n vertices (3 ≤ r ≤ n− 1) and m > 0 edges. If
α ≥ − 29

30 , then

GRMα(Γ) ≤
2
r

m2 +

(
r− 2

2r
n + α

)
· 2r− 2

r
mn + α2m

with equality if, and only if, Γ is isomorphic to a regular complete r-partite graph.

We give now an upper bound on GRMα, which is a generalization of Theorem 2.5
in [57] for the class of triangle-free graphs.
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Theorem 13. Let Γ be a connected triangle-free graph of order n > 2 with m > 0 edges and
α > −1.5. Then

GRMα(Γ) ≤
(⌊n

2

⌋⌈n
2

⌉
+ nα + α2

)
m (12)

with equality if, and only if, Γ ∼= Tn(2).

Proof. Let uv be an edge in Γ such that (dΓ(u) + α)(dΓ(v) + α) is maximum. Since Γ is
triangle free, we have NΓ(u) ∩ NΓ(v) = ∅, which means that dΓ(u) + dΓ(v) ≤ n. Therefore

GRMα(Γ) = ∑
uivj∈E(Γ)

(dΓ(ui) + α)(dΓ(vj) + α)

≤ m(dΓ(u) + α)(dΓ(v) + α) (13)

= m
(

dΓ(u)dΓ(v) + (dΓ(u) + dΓ(v)) α + α2
)

≤ m
(⌊

dΓ(u) + dΓ(v)
2

⌋⌈
dΓ(u) + dΓ(v)

2

⌉
+ (dΓ(u) + dΓ(v)) α + α2

)
. (14)

Let us consider a function

f (x) =
⌊ x

2

⌋⌈ x
2

⌉
+ xα, 3 ≤ x ≤ n.

One can easily see that

f (x + 1)− f (x) =


x
2
+ α if x is even,

x + 1
2

+ α if x is odd.

Since 3 ≤ x ≤ n and α > −1.5, we have f (x + 1)− f (x) > 0, that is,

f (3) < f (4) < · · · < f (n− 1) < f (n) =
⌊n

2

⌋⌈n
2

⌉
+ nα.

Since Γ is connected and n > 2, we have 3 ≤ dΓ(u) + dΓ(v) ≤ n. Using these results in (14),
we obtain

GRMα(Γ) ≤
(⌊n

2

⌋⌈n
2

⌉
+ nα + α2

)
m.

The first part of the proof is done.
Suppose now that equality holds in (12). Then, all inequalities in the above must be

equalities. From the equality in (13), we have

(dΓ(ui) + α)(dΓ(vj) + α) = (dΓ(u) + α)(dΓ(v) + α) for any edge uivj ∈ E(Γ). (15)

From the equality in (14), we have

dΓ(u)dΓ(v) =
⌊

dΓ(u) + dΓ(v)
2

⌋⌈
dΓ(u) + dΓ(v)

2

⌉
.

Moreover, we have dΓ(u) + dΓ(v) = n. Thus, we have dΓ(u)dΓ(v) =
⌊ n

2
⌋⌈ n

2
⌉
. From this we

conclude that
(

dΓ(u), dΓ(v)
)
= (
⌊ n

2
⌋
,
⌈ n

2
⌉
) or

(
dΓ(u), dΓ(v)

)
= (
⌈ n

2
⌉
,
⌊ n

2
⌋
). Let ui be any

vertex in Γ which is different from u and v. Then ui is adjacent to either u or v, because Γ
is triangle free and dΓ(u) + dΓ(v) = n. Suppose that ui ∈ NΓ(u). Then, all neighbors of ui
are adjacent to v as Γ is triangle-free and dΓ(u) + dΓ(v) = n. Hence dΓ(ui) ≤ dΓ(v). If vj is
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any vertex adjacent to ui, then vjv ∈ E(Γ). Similarly, we get dΓ(vj) ≤ dΓ(u). From (15), we
have dΓ(ui) = dΓ(v) and dΓ(vj) = dΓ(u). Hence Γ ∼= Tn(2).

Conversely, let Γ ∼= Tn(2). Then

GRMα(Γ) =
(⌊n

2

⌋⌈n
2

⌉
+ nα + α2

)
m.

Let Xn,k be the set of graphs of order n with chromatic number k. In [57,60], the
extremal graphs of order n with chromatic number k respect to M2 and RM2 were charac-
terized. We now generalize these results. From the definition of Xn,k and Proposition 1, we
obtain, easily, the following lemma.

Lemma 5. Let Γ ∈ Xn,k be a graph with maximal GRMα(Γ) and α ≥ −1. Then Γ ∼= Kn1,n2,...,nk .

Theorem 14. Let Γ ∈ Xn, k and α ≥ −1. If GRMα(Γ) is maximum in Xn, k, then Γ ∼= Tn(k).

Proof. Let Γ ∈ Xn, k such that GRMα(Γ) is maximum. From Lemma 5, Γ ∼= Kn1,n2,...,nk .
By contradiction we prove that Γ ∼= Tn(k). For this we assume that Kn1,n2,...,nk 6∼= Tn(k).
Then, there are two parts of the partitions in Kn1,n2,...,nk whose sizes are np and nq, such that
nq − np ≥ 2 for 1 ≤ p < q ≤ k.

Consider the complete k-partite graph Γ′ ∼= Kn1,...,np−1,np+1,np+1 ...,nq−1,nq−1,nq+1 ...,nk and
by definition of GRMα, we have

GRMα(Γ′)− GRMα(Γ) = M2(Γ′)−M2(Γ) + α
(

M1(Γ′)−M1(Γ)
)
+ α2(m(Γ′)−m(Γ)

)
.

From Proposition 4, we have

M1(Γ′)−M1(Γ) > 0 and ∆M(Γ′)− ∆M(Γ) > 0.

Additionally, by the definition of a complete k-partite graph, we have

2m(Γ′)− 2m(Γ) = (n− nq + 1) (nq − 1) + (n− np − 1) (np + 1)

−(n− np)np − (n− nq)nq

= 2(nq − np − 1) > 0.

Thus, we obtain

GRMα(Γ′)− GRMα(Γ)

= M2(Γ′)−M2(Γ) + α
(

M1(Γ′)−M1(Γ)
)
+ α2(m(Γ′)−m(Γ)

)
≥ M2(Γ′)−M2(Γ)−

(
M1(Γ′)−M1(Γ)

)
+ α2(m(Γ′)−m(Γ)

)
= ∆M(Γ′)− ∆M(Γ) + α2(m(Γ′)−m(Γ)

)
> 0.

This is contradicts the fact that GRMα(Γ) is maximum. Hence Γ ∼= Tn(k) and the proof is
completed.
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