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Abstract: The time-optimal control problem for a system consisting of two non-synchronous oscilla-
tors is considered. Each oscillator is controlled with a shared limited scalar control. The objective
of the control is to accelerate the oscillatory system to a given specific position, where the first
oscillator must have non-zero phase coordinates, but the second one must remain motionless at
the terminal moment. For an arbitrary number of unknown switching moments that determine the
optimal relay control, the necessary extremum conditions in the form of nonlinear matrix equalities
are proposed. The study of the necessary/sufficient conditions of the extremum made it possible
to describe the reachability set in the phase space of the first oscillator, to find an analytical form of
the curve corresponding to the two-switching control class, which also separates the reachability set
of the three switching-control class. The corresponding theorems are proved and the dependence
of the criteria on control constraints is shown. Matrix conditions for different classes of control
switchings are found. All of the obtained analytical results are numerically validated and illustrated
with mathematical modeling.
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1. Introduction

Problems surrounding the lack of control resources (when the dimensions of a con-
trol vector are less than the dimensions of the state space of a physically-controlled sys-
tem) have widespread applications in practice. Oscillatory systems, such as electric cir-
cuits [1], mechanical systems [2,3], quantum oscillators [4,5], systems involving physical
nature [6,7], and controlled with one external force, are instances of such systems. Using
the oscillatory system, it is possible to investigate periodic solutions and the stability of the
model of two coupled oscillators in the optics of chiral molecules [6], as well as consider
the behaviors of biologically complex mechanisms [7]. Increasing the number of oscilla-
tors in these models to sufficiently large N makes it possible to study (analytically and
numerically) the macro-parameters and properties of similar systems [8,9].

Thus, the Timoshenko–Ehrenfest beam motion control, which is modeled with a
system of N oscillators that perform forced oscillations under the actions of scalar and
limited control forces, was considered in work [2]. The time-optimal problem for a platform
with attached oscillators was investigated in [3]. The maximum variation of the oscillation
energy of the oscillator system for a given time was examined in [10]. Due to the difficulties
in finding an analytical solution for the control problems, it is of interest to asymptotically
synthesize the optimal control of a system of an arbitrary number of linear oscillators (with
general limited control), as obtained in [11].

Optimal control problems were investigated using the Pontryagin maximum principle,
which was formulated during the seminars on the theory of oscillations and automatic
control by L.S. Pontryagin and M.A. Aizerman in the 1950s, where the problem of optimal
performance was considered [12]. For systems considered in [1,5], it is often necessary
for one of the subsystems to get into the required position as quickly as possible, while
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the others should remain at rest at the terminal moment. Thus, for a single oscillator, V.G.
Boltyansky obtained the synthesis of optimal control in the time-optimal problem [13].
The optimal control problems for the systems of many oscillators with various criteria
have already been studied by F.L. Chernousko in [14], where a significant complexity of
obtaining an analytical solution was noted, and the problem involving two oscillators was
solved for a very special case of their frequency ratio.

In this paper, we review the time-optimal control problem for two non-synchronous
oscillators controlled by limited scalar impacts with initial zero-phase coordinates but
different terminal ones, which are features of the problem statement that considerably
complicate it.

One of the key aspects of such control problems is the study of the accessibility and
controllability of the oscillatory system [15]. It can be shown with the methods of geometric
control theory [16], namely: the Sussman–Djurdjevic and the Poincare theorems, as well as
with the results of the classical optimal control theory, the La Salle–Conti theorem [17].

This article is structured as follows. In Section 2, the optimal control problem is
formulated. In Section 3, the optimal control law is presented using the Pontryagin maxi-
mum principle. Section 4 examines the necessary and sufficient optimality conditions for
different classes of control switchings. Section 5 discusses the continuity of the problem
criterion on the control parameter. Section 6 illustrates the obtained results, in particular,
the mathematical modeling of the set of reachability of the first oscillator, the criterion of
the problem, and the time intervals of the switching controls. In the conclusion, we suggest
directions for further research.

2. Optimal Control Problem Statement

A system consisting of two non-synchronous oscillators, i.e. having different natural
frequencies (ω1 6= ω2), was considered. The control u(t) impacts the momenta p1, p2 of
both oscillators, but not their coordinates q1, q2. The motion of this linear control system is
described with the following system of equations:

q̇1(t) = p1(t),
ṗ1(t) = −ω2

1q1(t) + u(t),
q̇2(t) = p2(t),
ṗ2(t) = −ω2

2q2(t) + u(t),

x = (q1, p1, q2, p2)
T ∈ R4 = M. (1)

The system (1) can be rewritten in matrix form ẋ(t) = Ax(t) + Bu(t), where

A =


0 1 0 0
−ω2

1 0 0 0
0 0 0 1
0 0 −ω2

2 0

, B =


0
1
0
1

.

The number of non-zero components of the control vector B is less than the dimen-
sionality of the system; moreover, the control is limited by a value ε, which is a parameter
of the problem:

u(t) ∈ [−ε, ε] = U. (2)

At the initial moment, the phase states of both oscillators coincide with the origins of
the phase coordinate planes, i.e., their coordinates and momenta are equal to zero. At the
terminal moment, the phase coordinates of the second oscillator become zero again, while
the first oscillator moves to the state (qT0

1 , pT0
1 ), which are also parameters of the problem.

The explicit forms of the initial and terminal conditions are

x(0) = x0 = (0, 0, 0, 0)T , (3)

x(T0) = xT0 = (qT0
1 , pT0

1 , 0, 0)T , (4)
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where T0 is a terminal moment and T defines a transpose operation.
The total time of the system’s movement from the initial state to the terminal one is

chosen as the criterion of the problem and needs to be minimized:

T0[u] =
∫ T0

0
dt→ min

u(·)∈U
. (5)

The proofs of global controllability and strong accessibility of the system (1) with the
condition (2) are given in [15,18] .

3. Solution of the Optimal Control Problem

To investigate and solve problems (1)–(5), the Pontryagin maximum principle (PMP)
is used. The maximum principles in the canonical coordinates consist of the following
statements:

• The Hamiltonian for the optimal control problem is expressed as

hu = −λ0 + ξ1 p1 + ξ2 p2 + η1(−ω2
1q1 + u) + η2(−ω2

2q2 + u), λ0 > 0, (6)

where ξ1, ξ2, η1, η2 are adjoint variables and λ0 is constant.

• A Hamiltonian system, including motion equations and an adjoint system of equations:


q̇1(t) = p1(t),
ṗ1(t) = −ω2

1q1(t) + u(t),
q̇2(t) = p2(t),
ṗ2(t) = −ω2

2q2(t) + u(t),



ξ̇1(t) = −
∂hu

∂q1
= ω2

1η1(t),

η̇1(t) = −
∂hu

∂p1
= −ξ1(t),

ξ̇2(t) = −
∂hu

∂q2
= ω2

2η2(t),

η̇2(t) = −
∂hu

∂p2
= −ξ2(t).

(7)

• Maximum condition

hu∗ = max
u(·)∈U

hu = −λ0 + ξ1 p1 + ξ2 p2 − η1ω2
1q1 − η2ω2

2q2 + u∗(η1 + η2). (8)

Transversality conditions are absent because the optimal problem statement involves
fixed endpoints.

The Hamiltonian (8) is linear with respect to u∗ and, thus, the optimal control is given
by the bang–bang control: u∗ = −ε for η1 + η2 < 0 and u∗ = ε for η1 + η2 > 0, which can
be written as

u∗(t) = ε sign(SF(t)), (9)

SF(t) = η1(t) + η2(t), (10)

where SF(t) is a switching function. The adjoint system can be rewritten in the following form{
η̈1(t) = −ω2

1η1(t),
η̈2(t) = −ω2

2η2(t).
(11)

From the system (11) η1(t) and η2(t) can be found:

η1(t) = C1 cos(ω1t) + C2 sin(ω1t),
η2(t) = C3 cos(ω2t) + C4 sin(ω2t),

(12)
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where C =
(
C1, C2, C3, C4

)
is a constant vector. Combining the expressions (9) and (12),

an explicit form of the optimal control law can be obtained

u∗(t) = ε sign(C1 cos(ω1t) + C2 sin(ω1t) + C3 cos(ω2t) + C4 sin(ω2t)). (13)

This function is uniquely defined and cannot be equal to zero on the whole interval,
perhaps with the exception of the isolated points, which lead to the absence of special
control modes.

The relay form of the optimal control obtained in this Section allows explicitly writing
solutions of the motion Equation (1) taking into account how many times the control (13)
will change the sign and obtain the necessary extremum conditions for any number of
such switchings.

4. The Necessary Extremum Conditions

For the relay control (13), two values are defined: the moment of switching ti,
i = 1, K− 1 , K ∈ N, when the control changes signs and the duration of control in-
tervals τn, n = 1, K. Here, a further designation 1, K, which means “1, 2, . . . , K”, is used for
convenience. The optimal control u∗(t) with K− 1 switchings and K control intervals is
illustrated in Figure 1:

Figure 1. Control intervals for optimal control u∗(t).

Definition 1. The term “(K− 1)-switching control class” defines an optimal solution where the
optimal control has exactly K− 1 switchings.

The solution to the system of motion Equation (1) with boundary conditions (3) and (4)
has a general form

q1(T0) =
1

ω1

∫ T0

0
sin(ω1(T0 − τ))u(τ)dτ = qT0

1 ,

p1(T0) =
∫ T0

0
cos(ω1(T0 − τ))u(τ)dτ = pT0

1 ,

q2(T0) =
1

ω2

∫ T0

0
sin(ω2(T0 − τ))u(τ)dτ = 0,

p2(T0) =
∫ T0

0
cos(ω2(T0 − τ))u(τ)dτ = 0.

(14)

The structure of optimal control (13) allows to write a solution of the system that takes
into account not only the number of switchings K− 1, but also the sign of the control at the
first interval.



Mathematics 2022, 10, 3552 5 of 19



2
K

∑
j=1

(−1)j+1 cos

(
ω1

K

∑
i=j

τi

)
− cos

(
ω1

K

∑
i=1

τi

)
= (−1)K−1 + (−1)k+1 qT0

1 ω2
1

ε
,

2
K

∑
j=1

(−1)j+1 sin

(
ω1

K

∑
i=j

τi

)
− sin

(
ω1

K

∑
i=1

τi

)
= (−1)k pT0

1 ω1

ε
,

2
K

∑
j=1

(−1)j+1 cos

(
ω2

K

∑
i=j

τi

)
− cos

(
ω2

K

∑
i=1

τi

)
= (−1)K−1,

2
K

∑
j=1

(−1)j+1 sin

(
ω2

K

∑
i=j

τi

)
− sin

(
ω2

K

∑
i=1

τi

)
= 0,

(15)

where an additional parameter k equal to 0 or 1 corresponds to the initial control ε
and −ε, respectively.

Remark 1. A system (15) consisting of four equations can be used to study the three-switching
control class, where four control intervals need to be determined.

The two-switching control class occurs as degeneration of other classes. For example,
when the outermost interval is zeroed in on a three-switching control class, or the internal
interval is zeroed in on a four-switching control class.

Lemma 1. In the two-switching control class, the functional dependencies for the duration of the
control intervals τ1, τ2, τ3 are valid

cos(ω2τ1) = cos(ω2τ3),

cos(ω2τ2) =
2 cos2(ω2τ1)− 4 cos(ω2τ1) + 3

5− 4 cos(ω2τ1)
i f τ2 <

2π

ω2
.

The proof of Lemma 1 is given in Appendix A.
To investigate control classes with more than three switchings, the necessary extremum

conditions are introduced.

Theorem 1 (Necessary Extremum Conditions). Any solution to the problem (1)–(5) in the class
of piecewise constant controls (13) satisfies the system (15) and K− 4 equalities:

det


cos(ω1ti) cos(ω1ti+1) cos(ω1ti+2) cos(ω1ti+3)
sin(ω1ti) sin(ω1ti+1) sin(ω1ti+2) sin(ω1ti+3)
cos(ω2ti) cos(ω2ti+1) cos(ω2ti+2) cos(ω2ti+3)
sin(ω2ti) sin(ω2ti+1) sin(ω2ti+2) sin(ω2ti+3)

 = 0, i = 1, K− 4. (16)

Proof. The switching function (10) that determines the optimal control (13) becomes zero
at moments ti, i = 1, K− 1, when control switchings occur:

SF(ti) = C1 cos(ω1ti) + C2 sin(ω1ti) + C3 cos(ω2ti) + C4 sin(ω2ti) = 0, i = 1, K− 1 (17)

For a more compact notation, Equation (17) can be rewritten in matrix form

(C, Ωi) = 0, i = 1, K− 1, (18)
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where

C =
(
C1, C2, C3, C4

)
, Ωi =


cos(ω1ti)
sin(ω1ti)
cos(ω2ti)
sin(ω2ti)

.

Equation (18) form the system consisting of K− 1 equations
cos(ω1t1) cos(ω1t2) . . . cos(ω1tK−2) cos(ω1tK−1)
sin(ω1t1) sin(ω1t2) . . . sin(ω1tK−2) sin(ω1tK−1)
cos(ω2t1) cos(ω2t2) . . . cos(ω2tK−2) cos(ω2tK−1)
sin(ω2t1) sin(ω2t2) . . . sin(ω2tK−2) sin(ω2tK−1)


T

C1
C2
C3
C4

 =~0. (19)

The condition of the existence of the non-zero vector C in (19) is equivalent to K− 4
equalities

det(Ωi, Ωi+1, Ωi+2, Ωi+3) = 0, i = 1, K− 4. (20)

In other words, (20) are the non-degeneracy conditions of vector C, defining the
optimal control (13).

Remark 2. In the case when K− 1 = 4, the condition of the existence of non-zero vector C has the form

det


cos(ω1t1) cos(ω1t2) cos(ω1t3) cos(ω1t4)
sin(ω1t1) sin(ω1t2) sin(ω1t3) sin(ω1t4)
cos(ω2t1) cos(ω2t2) cos(ω2t3) cos(ω2t4)
sin(ω2t1) sin(ω2t2) sin(ω2t3) sin(ω2t4)

 = 0, (21)

which is equivalent to the following equation

sin(w2τ4) sin(w1τ2)− sin(w2(τ3 + τ4)) sin(w1(τ2 + τ3))− sin(w2(τ2 + τ3)) sin(w1(τ3 + τ4))+
+ sin(w2τ3) sin(w1(τ2 + τ3 + τ4)) + sin(w2(τ2 + τ3 + τ4)) sin(w1τ3) + sin(w2τ2) sin(w1τ4) = 0.

(22)

If K − 1 > 4, there are C4
K−1 (number of permutations) of the non-zero conditions for the

vector C

det


cos(ω1tm1) cos(ω1tm2) cos(ω1tm3) cos(ω1tm4)
sin(ω1tm1) sin(ω1tm2) sin(ω1tm3) sin(ω1tm4)
cos(ω2tm1) cos(ω2tm2) cos(ω2tm3) cos(ω2tm4)
sin(ω2tm1) sin(ω2tm2) sin(ω2tm3) sin(ω2tm4)

 = 0,

m1 6= m2 6= m3 6= m4; m1, m2, m3, m4 = 1, K− 1.

(23)

Then, in order to find τi, it is required to use (15) together with K− 4 equations from the set
(23), so that all the moments of ti are contained there. A set that satisfies these conditions is (20),
for example.

Remark 3. Theorem 1 allows finding all of the required switching moments ti, i = 1, K− 1 that
define vector C as the kernel of the corresponding linear mapping in (19).

This implies another necessary condition of the extremum, which is formulated in the
form of the following lemma.

Lemma 2. The optimal control u∗(t) with vector C obtained from (19) contains exactly K − 1
zeros and, according to Definition 1, corresponds to the (K− 1)-switching control class.

In the next section, a theorem considering the continuity of the problem criterion from
the parameter ε is formulated and proved.
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5. Continuity of T0(ε)

To find sufficient conditions for the continuity of a function T0(ε), the implicit function
theorem is applied. Let us write out the Jacobian of a system consisting of equations
of motion (15) and additional conditions (16) obtained by Theorem 1 on the necessary
extremum conditions.

The equations of the joint system are denoted by f1, f2, . . . , fK, where f1, f2, f3, f4 relate
to the equations of motion (15), and f5, . . . , fK are responsible for the non-degeneracy
conditions (20). The Jacobian JK−1 corresponds to the (K− 1)-switching control class and
consists of partial derivatives of K functions with K variables.

JK−1 = det



∂ f1

∂τ1

∂ f1

∂τ2
. . .

∂ f1

∂τK
∂ f2

∂τ1

∂ f2

∂τ2
. . .

∂ f2

∂τK

. . . . . .
. . . . . .

∂ fK
∂τ1

∂ fK
∂τ2

. . .
∂ fK
∂τK


= (24)

= det





−2ω1 sin

(
ω1

K

∑
i=1

τi

)
−2ω1

2

∑
j=1
−1j+1 sin

(
ω1

K

∑
i=j

τi

)
. . . −2ω1

K

∑
j=1
−1j+1 sin

(
ω1

K

∑
i=j

τi

)

2ω1 cos

(
ω1

K

∑
i=1

τi

)
2ω1

2

∑
j=1
−1j+1 cos

(
ω1

K

∑
i=j

τi

)
. . . 2ω1

K

∑
j=1
−1j+1 cos

(
ω1

K

∑
i=j

τi

)

−2ω2 sin

(
ω2

K

∑
i=1

τi

)
−2ω2

2

∑
j=1
−1j+1 sin

(
ω2

K

∑
i=j

τi

)
. . . −2ω2

K

∑
j=1
−1j+1 sin

(
ω2

K

∑
i=j

τi

)

2ω2 cos

(
ω2

K

∑
i=1

τi

)
2ω2

2

∑
j=1
−1j+1 cos

(
ω2

K

∑
i=j

τi

)
. . . 2ω2

K

∑
j=1
−1j+1 cos

(
ω2

K

∑
i=j

τi

)
∂ f5

∂τ1

∂ f5

∂τ2
. . .

∂ f5

∂τK

. . . . . .
. . . . . .

∂ fK
∂τ1

∂ fK
∂τ2

. . .
∂ fK
∂τK



+

+



ω1 sin

(
ω1

K

∑
i=1

τi

)
ω1 sin

(
ω1

K

∑
i=1

τi

)
. . . ω1 sin

(
ω1

K

∑
i=1

τi

)

−ω1 cos

(
ω1

K

∑
i=1

τi

)
−ω1 cos

(
ω1

K

∑
i=1

τi

)
. . . −ω1 cos

(
ω1

K

∑
i=1

τi

)

ω2 sin

(
ω2

K

∑
i=1

τi

)
ω2 sin

(
ω2

K

∑
i=1

τi

)
. . . ω2 sin

(
ω2

K

∑
i=1

τi

)

−ω2 cos

(
ω2

K

∑
i=1

τi

)
−ω2 cos

(
ω2

K

∑
i=1

τi

)
. . . −ω2 cos

(
ω2

K

∑
i=1

τi

)
0 0 . . . 0

. . . . . .
. . . . . .

0 0 . . . 0





.

Let us transform the above determinant, leading the Jacobian to a simpler form. The
determinant of the system will not change if the previous column is subtracted from each
column, except for the first.
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JK−1 = det



−ω1 sin

(
ω1

K

∑
i=1

τi

)
2ω1 sin

(
ω1

K

∑
i=2

τi

)
. . . −2ω1(−1)K+1 sin(ω1τK)

ω1 cos

(
ω1

K

∑
i=1

τi

)
−2ω1 cos

(
ω1

K

∑
i=2

τi

)
. . . 2ω1(−1)K+1 cos(ω1τK)

−ω2 sin

(
ω2

K

∑
i=1

τi

)
2ω2 sin

(
ω2

K

∑
i=2

τi

)
. . . −2ω2(−1)K+1 sin(ω2τK)

ω2 cos

(
ω2

K

∑
i=1

τi

)
−2ω2 cos

(
ω2

K

∑
i=2

τi

)
. . . 2ω2(−1)K+1 cos(ω2τK)

∂ f5

∂τ1

∂ f5

∂τ2
− ∂ f5

∂τ1
. . .

∂ f5

∂τK
− ∂ f5

∂τK−1

. . . . . .
. . . . . .

∂ fK
∂τ1

∂ fK
∂τ2
− ∂ fK

∂τ1
. . .

∂ fK
∂τK
− ∂ fK

∂τK−1



.

After multiplying the first and third rows of the resulting matrix by −1 and then
replacing the sign for each even column, the transformed Jacobian has the following form

JK−1 = (−1)[
K
2 ]8ω2

1ω2
2 det



sin

(
ω1

K

∑
i=1

τi

)
sin

(
ω1

K

∑
i=2

τi

)
. . . sin(ω1τK)

cos

(
ω1

K

∑
i=1

τi

)
cos

(
ω1

K

∑
i=2

τi

)
. . . cos(ω1τK)

sin

(
ω2

K

∑
i=1

τi

)
sin

(
ω2

K

∑
i=2

τi

)
. . . sin(ω2τK)

cos

(
ω2

K

∑
i=1

τi

)
cos

(
ω2

K

∑
i=2

τi

)
. . . cos(ω2τK)

2
∂ f5

∂τ1
− ∂ f5

∂τ2
+

∂ f5

∂τ1
. . . (−1)K+1

(
∂ f5

∂τK
− ∂ f5

∂τK−1

)
. . . . . .

. . . . . .

2
∂ fK
∂τ1

−∂ fK
∂τ2

+
∂ fK
∂τ1

. . . (−1)K+1
(

∂ fK
∂τK
− ∂ fK

∂τK−1

)



. (25)

The Jacobian, according to Equation (25), for the three-switching control class is
written as follows

J3 = 8ω2
1ω2

2 det


sin(ω1(τ1 + τ2 + τ3 + τ4)) sin(ω1(τ2 + τ3 + τ4)) sin(ω1(τ3 + τ4)) sin(ω1τ4)
cos(ω1(τ1 + τ2 + τ3 + τ4)) cos(ω1(τ2 + τ3 + τ4)) cos(ω1(τ3 + τ4)) cos(ω1τ4)
sin(ω2(τ1 + τ2 + τ3 + τ4)) sin(ω2(τ2 + τ3 + τ4)) sin(ω2(τ3 + τ4)) sin(ω2τ4)
cos(ω2(τ1 + τ2 + τ3 + τ4)) cos(ω2(τ2 + τ3 + τ4)) cos(ω2(τ3 + τ4)) cos(ω2τ4)

. (26)

The expression (26) has an explicit form

J3

8ω2
1ω2

2
= sin(w2τ3) sin(w1τ1)− sin(w2(τ2 + τ3)) sin(w1(τ1 + τ2))−

− sin(w2(τ1 + τ2)) sin(w1(τ2 + τ3)) + sin(w2τ2) sin(w1(τ1 + τ2 + τ3))+
+ sin(w2(τ1 + τ2 + τ3)) sin(w1τ2) + sin(w2τ1) sin(w1τ3).

(27)

Expressions (21) and (26) can be compared, or rather their explicit forms (22) and (27),
respectively. It turns out that with an index shift by one at τi, the functional parts of these
expressions are equal. Expression (26) includes four control intervals in the three-switching
class and Expression (21) includes five intervals in the four-switching class, where the first
control interval becomes zero at the boundary value ε, and that is how the transition into
the three-switching class occurs.
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This result is derived from several interrelated observations. The first four lines of the
Jacobian (25), ordered by cos, sin, and ω1, ω2, which obviously do not change the sign of
the determinants, can be written as

S4,K =


cos(ω1T0) cos(ω1(T0 − t1)) . . . cos(ω1(T0 − tK−1))
sin(ω1T0) sin(ω1(T0 − t1)) . . . sin(ω1(T0 − tK−1))
cos(ω2T0) cos(ω2(T0 − t1)) . . . cos(ω2(T0 − tK−1))
sin(ω2T0) sin(ω2(T0 − t1)) . . . sin(ω2(T0 − tK−1))

 = (Γ0, Γ1, . . . , ΓK−1) (28)

and then converted to the form

S4,K =


(

cos(ω1T0) sin(ω1T0)
sin(ω1T0) − cos(ω1T0)

)(
1 cos(ω1t1) . . . cos(ω1tK−1)
0 sin(ω1t1) . . . sin(ω1tK−1)

)
(

cos(ω2T0) sin(ω2T0)
sin(ω2T0) − cos(ω2T0)

)(
1 cos(ω2t1) . . . cos(ω2tK−1)
0 sin(ω2t1) . . . sin(ω2tK−1)

)
. (29)

The matrix S4,K includes the matrix

SK =


1 cos(ω1t1) . . . cos(ω1tK−1)
0 sin(ω1t1) . . . sin(ω1tK−1)
1 cos(ω2t1) . . . cos(ω2tK−1)
0 sin(ω2t1) . . . sin(ω2tK−1)

 = (Ω0, Ω1, . . . , ΩK−1), (30)

where the notation Ω0 = (1, 0, 1, 0)T is introduced. For the three-switching control class
K = 4, the equality is fulfilled

det S4,4 = det S4. (31)

The last equality follows from the next lemma.

Lemma 3. If a square matrix A of size N × N is composed of M blocks of matrices Ai of size

Mi × N, such that
M

∑
i=1

Mi = N, and a square matrix B of size N× N is made up of M blocks of the

product of matrices Bi Ai, where Bi are square matrices of size Mi ×Mi, then

det B = det A
M

∏
i=1

det Bi.

Proof. Matrix B can be written as the product of matrices B = B̃A, where matrix A has
the form

A =


A1
A2
. . .
AM

, (32)

and the auxiliary matrix B̃ containing Bi, i = 1, M has the form

B̃ =


B1 0 . . . 0
0 B2 . . . 0
...

...
. . .

...
0 0 . . . BM

 (33)

Due to the multiplicativity of the determinant and the properties of the block–diagonal
matrix, the determinant of matrix B has the form

det B = det(B̃A) = det B̃ det A = det A
M

∏
i=1

det Bi. (34)
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According to Lemma 3, the corresponding matrices for the three-switching control
class are equal

B = S4,4, A = S4, Bi =

(
cos(ωiT0) sin(ωiT0)
sin(ωiT0) − cos(ωiT0)

)
, i = 1, 2.

Moreover, det Bi = −1, i = 1, 2, so the equality (31) is established.
One can see that for the three-switching control class, the condition det S4 = 0 is

possible only if the necessary conditions of the extremum (23) and the equality t1 = 0 for
for the four-switching control class are fulfilled simultaneously.

The Jacobian JK−1 (25) can be written via the determinants of the square matrices of
size 4× 4, composed of Ωi, i = 0, . . . , K− 1 of the matrix SK.

JK−1 = ∑
0≤j0<j1<j2<j3≤K−1

αj0,j1,j2,j3 det(Γj0 , Γj1 , Γj2 , Γj3) =

= ∑
0≤j0<j1<j2<j3≤K−1

αj0,j1,j2,j3 det(Ωj0 , Ωj1 , Ωj2 , Ωj3).
(35)

The expression (35) is a decomposition of (25) by the last K− 4 rows, while the first
four rows are divided into C4

K corresponding minors.
For further narration, it is necessary to write down the implicit function theorem [19]

for the case of the following system of equations.
F1(x1, . . . , xm, y1, . . . , yn) = 0,
. . .
Fn(x1, . . . , xm, y1, . . . , yn) = 0,

(36)

which is solved with respect to the variables y1, . . . , yn. The following system of functional
relations (locally equivalent to system (36)) is studied.

y1 = g1(x1, . . . , xm),
. . .
yn = gn(x1, . . . , xm).

(37)

The following designations are introduced:

x = (x1, . . . , xm), y = (y1, . . . , yn).

System (36) is denoted with F(x, y) = 0 and the mapping (37) – with y = g(x).

g
′
(x) =


∂g1

∂x1 . . .
∂g1

∂xm

. . . . . . . . .
∂gn

∂x1 . . .
∂gn

∂xm

(x), F
′
x(x, y) =


∂F1

∂x1 . . .
∂F1

∂xm

. . . . . . . . .
∂Fn

∂x1 . . .
∂Fn

∂xm

(x, y),

F
′
y(x, y) =


∂F1

∂y1 . . .
∂F1

∂yn

. . . . . . . . .
∂Fn

∂y1 . . .
∂Fn

∂yn

(x, y),

A square matrix F
′
y(x, y) is reversible only when its determinant is non-zero.

Theorem 2 (The implicit function theorem as in [19]). If a mapping F : U → Rn, defined in
the neighborhood U of a point (x0, y0) ∈ Rm+n is such that the following requirements are met
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• F ∈ C(p)(U;Rn), p ≥ 1,
• F(x0, y0) = 0,
• F

′
y(x0, y0) − reversible matrix,

then there exists a (m + n)-dimensional interval I = Im
x × In

y ⊂ U where

Im
x = {x ∈ Rm||x− x0| < α}, In

y = {y ∈ Rn||y− y0| < β},

and a mapping g ∈ C(p)(Im
x ; In

y ), such that for any point (x, y) ∈ Im
x × In

y the following condition holds

F(x, y) = 0⇔ y = g(x),

and
g
′
(x) = −[F′y(x, g(x))]−1[F

′
x(x, g(x))]

Now, it is possible to prove the continuity, not only of τ1(ε), . . . , τK(ε) but also of the
criterion T0(ε) by the implicit function theorem applied to our problem.

Lemma 4. For continuity of the functions T0(ε), τ1(ε), . . . , τK(ε) for K − 1-switching control
class, the following condition is required

JK−1 6= 0.

Proof. The implicit function theorem 2 is applied for the considered problem. Let n = K, then
F1(x1, . . . , xm, y1, . . . , yn) = f1(ε, τ1, . . . , τK) = 0,
. . .
Fn(x1, . . . , xm, y1, . . . , yn) = fK(ε, τ1, . . . , τK) = 0,

(38)

x = ε, y = (τ1, . . . , τK),

where, as before, f1, f2, . . . , fK refer to the equations of the systems (15) and (20). For the
sake of the reader’s comprehension, the arguments of the functions are omitted.

F
′
y =


∂ f1

∂τ1
. . .

∂ f1

∂τK
. . . . . . . . .
∂ fK
∂τ1

. . .
∂ fK
∂τK

,

g
′
=


∂g1

∂ε
. . .
∂gK

∂ε

, F
′
x =


∂ f1

∂ε
. . .
∂ fK
∂ε

 =



(−1)k+1 qT0
1 ω2

1
ε2

(−1)k pT0
1 ω1

ε2

0
. . .
0


.

(39)

The first condition of Theorem 2 is satisfied if the parameter ε is non-zero. For the
solution of the optimal control problem, taking into account the term of Theorem 1, the
second condition of Theorem 2 is fulfilled. The reversibility of F

′
y requires the condition

det(F
′
y) 6= 0, which is equivalent to JK−1 6= 0. All conditions of the implicit function
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theorem are satisfied, so there is a (K + 1)-dimensional interval I = I1
ε × IK

τ1,...,τK
and

continuous mapping f on this interval.
τ1 = g1(ε),
. . .
τK = gK(ε).

(40)

Consequently, the durations of the control intervals τ1, . . . , τK are continuous functions
of ε. Since T0 = τ1 + . . . + τK, then T0(ε) is a continuous function of ε too.

Lemma 5 (Sufficient conditions of continuity of T0(ε)). T0(ε) is continuous if the non-zero
conditions of (23) are met in the (K− 1)-switching class.

Proof. We investigate the Jacobian JK−1, which we will rewrite using the formula (35) in
a form

JK−1 = ∑
0≤j0<j1<j2<j3≤K−1

αj0,j1,j2,j3 det(Ωj0 , Ωj1 , Ωj2 , Ωj3) =

= ∑
j0,j1,j2,j3∈I1

α
′
j0,j1,j2,j3 det(Ωj0 , Ωj1 , Ωj2 , Ωj3) + ∑

j0,j1,j2,j3∈I2

α
′′
j0,j1,j2,j3 det(Ωj0 , Ωj1 , Ωj2 , Ωj3),

(41)

where the total sum is divided into two parts. The set of indexes I1 always contains a null
time element that corresponds to Ω0. I2 corresponds to all other sets without a null time
element. The fulfillment of the conditions (23) leads to zeroing of the second sum in (41),
due to the fact that each summand is zero. Then, it holds

JK−1 = ∑
j0,j1,j2,j3∈I1

α
′
j0,j1,j2,j3 det(Ωj0 , Ωj1 , Ωj2 , Ωj3). (42)

Due to the linear dependence of any set consisting of four different Ωj, j = 1, K− 1
by the condition (23), any vector Ωj except Ω0 can be written as a linear combination of
Ω1, Ω2, Ω3. Then (42) can be expressed as follows

JK−1 = ∑
j

β j det(Ω0, Ω1, Ω2, Ω3), (43)

where β j combines both the coefficients α
′
j0,j1,j2,j3

and the coefficients of expansion Ωj,

j = 1, K− 1 by Ω1, Ω2, Ω3.
Further, two cases are possible, namely JK−1 6= 0, when T0(ε) is continuous by

Lemma 4, or JK−1 = 0. In this case, if det(Ω0, Ω1, Ω2, Ω3) = 0, then Ω0, Ω1, Ω2, Ω3
are linearly dependent. Moreover, if det(Ω0, Ω1, Ω2, Ω3) 6= 0, then due to JK−1 = 0 and
the presence in the first column of only the first and third elements other than zero, it
follows that the first and third rows match. Which again entails a linear dependence of
Ω0, Ω1, Ω2, Ω3. This means that the necessary conditions of the extremum include Ω0
corresponding to t1 = 0 and increasing the number of control switchings by one, which
changes the total number of control switchings from K− 1 to K. Thus, the conditions of the
lemma for the number of control switchings are violated, which means that JK−1 6= 0. By
Lemma 4, the function T0(ε) in the (K− 1)-switching control class is continuous.

Corollary 1. In a given control switching class, T0(ε) is a right-continuous function.

Remark 4. It can be concluded from entry (25) that due to the absence of τ1 in the explicit form
f5, . . . , fK, the sum of I2 in (41) always equals zero.

Corollary 2. Fulfillment of C4
K−1 Equation (23) in the K − 1-switching control class under the

condition t1 = 0 leads to JK−2 = 0.
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Lemma 6. T0(ε) is a continuous function for ε ∈ (0,+∞].

Proof. Let two adjacent control classes consist of P and Q switchings, respectively. Indeed,
due to Lemma 5 and Corollary 1 in a given class of control switchings, T0(ε) is continuous.
Let us denote the value of the criterion in each of the classes TP

P (ε) = T0(ε) with ε ∈ (ε1, εP]

and TQ
Q (ε) = T0(ε) at ε ∈ (εP, εQ], where the upper index indicates the number of control

switchings, and the lower index indicates the optimal value of control switchings. Next,
for TP

Q(ε), let us denote the value of the criterion in the P-switching control class with their

optimal number - Q for ε ∈ (εP, εQ], and vice versa TQ
P (ε), the value of the criterion in the

Q-switching control class with their optimal number is P and ε ∈ (ε1, εP]. Then obviously
the inequalities are fulfilled, TP

P (ε) ≤ TQ
P (ε) and TQ

Q (ε) ≤ TP
Q(ε). Again, let us use Lemma 5

and Corollary 1. So TQ
P (ε) and TP

Q(ε) are continuous on ε ∈ (ε1, εQ] = (ε1, εP]
⋃
(εP, εQ].

Then TQ
P (εP) = TP

Q(εP). Thus, taking into account the above inequalities, it follows that

TP
P (εP) = lim

ε→εP+0
TQ

Q (ε). The statement of the lemma follows from the union of all intervals

of control switchings.

Continuity of T0(ε) means that T0 is continuous in the phase plane of the first oscillator
on terminal positions (pT0

1 , qT0
1 ) in each direction qT0

1 = λpT0
1 . Then, applying the equations

of characteristics (7) according to [20], where
∂T0

∂p1
,

∂T0

∂q1
exist, we obtain

δT0 =
∂T0

∂p1

∣∣∣∣
p1=p

T0
1

δp1 +
∂T0

∂q1

∣∣∣∣
q1=q

T0
1

δq1 = ξ1(T0)δp1 + η1(T0)δq1.

The adjoint variables ξ1(t), η1(t) are bounded, including at t = T0, so the variation
of the criterion δT0 will be quite small under small variations of the terminal positions
δp1, δq1.

6. Modeling

To illustrate the aforesaid theoretical results, numerical modeling for various configura-
tions of the (1)–(5) problem were presented. All numerical experiments were conducted via
Python scripts, which were developed specifically for this problem. In particular, the SciPy
library was used to find solutions to the systems of nonlinear equations, and Matplotlib
was used to visualize the obtained results.

Firstly, in Section 6.1, the motion of the system to state (0, 1, 0, 0) (with optimal control
u∗(t) (13) for control classes with different switchings) was described. In these examples,
the dependencies of the optimal number of control switchings, the criterion of the problem
T0, and others on parameter ε, were investigated. In Section 6.2, a range of terminal states
of the first oscillator was considered, but now with a fixed value of ε. In this case, all the
values were considered to be functions of the parameters (qT0

1 , pT0
1 ).

6.1. Fixed Terminal Position of the First Oscillator

The problem (1)–(5) is considered with the following parameters chosen without loss
of generality:

ω1 = 1, ω2 = 1.4, qT0
1 = 0, pT0

1 = 1, qT0
2 = 0, pT0

2 = 0. (44)

Control classes with three, four, and five switchings (K− 1 = 3, 4, 5) are considered.
For a range of values ε in each control class, the solutions that satisfied Theorem 1 and
minimized the criterion (5) were found.

An important step is checking that the resulting system solutions form, according to
Remark 3, the control law with the number of switchings that are initially set. In other
words, Lemma 2 must be fulfilled. For example, an attempt to find a solution for a three-
switching control class for ε < 0.6 results in switching function SF(t) containing more
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than three switchings that do not satisfy Lemma 2. Figure 2 shows such an example
for the parameter ε = 0.599. The points obtained by Theorem 1 are highlighted in red.
An extra zero of function SF(t) is marked with a red cross. The constant vector C =(
−0.57, 0.57, −0.26, 0.52

)
, calculated according to Remark 3, defines the switching

function SF(t), which is pictured with a blue line.
Lemma 2 is not satisfied in this case.

Figure 2. Switching function SF(t) for ε = 0.599.

However, Lemma 2 will be fulfilled for ε = 0.76, as illustrated in Figure 3. Moreover,
the optimal control law u∗(t) defined by SF(t) is shown.

Figure 3. Switching function SF(t) and optimal control u∗(t) for ε = 0.76.

Vector C in this case: C =
(
−0.14, −0.72, −0.48, 0.46

)
. The phase portraits of the

first and second oscillators satisfy the given boundary conditions (44) and are presented in
Figure 4.
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Figure 4. The phase portraits of the first and second oscillators.

The dependence of the criterion T0 on the constraint ε is shown in Figure 5. The blue,
red, and black curves show solutions for three-, four-, and five-switching control classes,
which are defined by the boundaries of each control class. Figure 5 shows that T0(ε) is a
continuous function according to Lemma 6.

Figure 5. Dependence T0(ε).

Figure 6 illustrates the dependencies of the control interval durations from ε. The
implicit function theorem shows that the durations of control intervals are continuous
on ε inside each class, which can be observed in the graph. In area I, which corresponds
to the five-switching class, the duration of the first control interval becomes zero when
the boundary of the selected class (I→ II) is reached. Region II corresponds to the four-
switching class, where the second interval of I becomes the first interval, and it also becomes
zero when it reaches the boundary (II→ III). The third interval from region I becomes
the second interval in II and the first interval in the three-switching region (III). If one
of the internal intervals of the four-switching class is nullified, then the transition to the
two-switching class takes place.
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Figure 6. Dependencies τi(ε).

Figure 7 shows the dependencies of the Jacobian for different switching control classes
on ε.

Figure 7. Dependence J(ε).

As one can see from the graph, when the class boundaries are reached, the Jacobians
become equal to zero. Moreover, the Jacobian J4 of the four-switching class is zero when
passing to the two-switching class at one point. Lemma 1 is valid for the two-switching
control class. Two-, three-, and four-switching control classes for different finite states of
the first oscillator (qT0

1 , pT0
1 ) and ε = 0.4 are presented next. As before, it was checked that

the obtained solutions for each final state form, according to Remark 3, the control law with
the appropriate number of switchings.

6.2. The Phase Plane of the First Oscillator for Different Control Classes

Different control classes are shown in Figure 8. The red and green areas correspond
to the three- and four-switching control classes with initial controls −ε, ε, respectively.
The reflections of these regions relative to the origins lead to blue and orange regions for
the three- and four-switching control classes on the initial intervals ε, − ε, respectively.
The three-switching control classes are separated from each other by parametric curves
obtained by Lemma 1. This is due to the fact that nullifying the lateral control interval
in the three-switching control class also leads to the two-switching control class (orange



Mathematics 2022, 10, 3552 17 of 19

and red curves). Zeroing the internal control interval in the ’four-switchings’ results in
curves (blue and green) corresponding to the two-switching control classes at different
initial controls. The yellow and gray boundary curves were obtained by moving from the
four-switching class to the three-switching class by zeroing out the last control interval,
with the control at the initial interval coinciding with the initial controls in the regions
on either side of the boundary. The white and purple curves correspond to the zeroing
of the first control interval in the four-switching class, which means the transition to the
three-switching. The simultaneous nullifying of the side interval of the control constancy
in the four-switching class corresponds to the blue points where the curves obtained under
the conditions τ1 = 0 or τ2 = 0 intersect.

Figure 9 shows the dependence T0(pT0
1 , qT0

1 ) of the criterion on the phase coordinates
of the first oscillator. Three- and four-switching control classes are highlighted with red
and green points. The colors of all curves correspond to the description in Figure 8.

Figure 8. Terminal points of the phase plane of the first oscillator.

Figure 9. The dependence of the criterion T0 on the phase coordinates of the first oscillator (pT0
1 , qT0

1 ).
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7. Conclusions

Necessary and sufficient extremum conditions are proposed for the time-optimal
control problem of a system consisting of two non-synchronous oscillators, and controlled
by limited scalar impact. In addition, lemmas and theorems on the continuity of the
criterion by the parameter are proposed. These results can be further extended to systems
of any number of oscillators. Thus, a unified mathematical apparatus for describing the
set of reachability of the first oscillator for systems of many oscillators will be developed
in future works. The construction of control switching curves of the first oscillator in the
phase plane will allow us to develop an approach to solving the problem of the synthesis
of time-optimal control for multiple oscillators.
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Appendix A

Proof of Lemma 1. From dynamic Equation (7) for any terminal position (pT0
1 , qT0

1 ) of the
first oscillator and K = 3 of the next equation system is valid

cos(ω1(τ1 + τ2 + τ3))− 2 cos(ω1(τ2 + τ3)) + 2 cos(ω1(τ3)) = 1− (−1)k+1 qT0
1 ω2

1
ε

,

sin(ω1(τ1 + τ2 + τ3))− 2 sin(ω1(τ2 + τ3)) + 2 sin(ω1(τ3)) = (−1)k pT0
1 ω1

ε
,

cos(ω2(τ1 + τ2 + τ3))− 2 cos(ω2(τ2 + τ3)) + 2 cos(ω2(τ3)) = 1,
sin(ω2(τ1 + τ2 + τ3))− 2 sin(ω2(τ2 + τ3)) + 2 sin(ω2(τ3)) = 0.

(A1)

Let us consider separately the last two equations of the system (A1) in the follow-
ing form {

cos(ω2(τ1 + τ2 + τ3))− 2 cos(ω2(τ2 + τ3)) = 1− 2 cos(ω2(τ3)),
sin(ω2(τ1 + τ2 + τ3))− 2 sin(ω2(τ2 + τ3)) = −2 sin(ω2(τ3)).

(A2)

Equations of the system (A2) are squared and summed

1− 4 cos(ω2(τ3)) + 4 = 1 + 4− 4 cos(ω2(τ1)), (A3)

cos(ω2(τ3)) = cos(ω2(τ1)). (A4)

The first statement of Lemma 1 follows from (A4).
In the next step, the last two equations of the system (A1) are squared, summed,

and then transformed. Moreover, it is noticed that τ2 6= 0 and τ2 <
2π

ω2
according to

lemma condition.

2 + cos(ω2(τ1 + τ2))− 2 cos(ω2τ2) = cos(ω2τ1),

2 + cos(ω2τ1) cos(ω2τ2)− sin(ω2τ1) sin(ω2τ2)− 2 cos(ω2τ2) = cos(ω2τ1),
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cos(ω2τ2)(cos(ω2τ1)− 2) + 2− cos(ω2τ1) = sin(ω2τ1) sin(ω2τ2),

(cos(ω2τ1)− 2)(cos(ω2τ2)− 1) = sin(ω2τ1) sin(ω2τ2),

(cos(ω2τ1)− 2)2(1− cos(ω2τ2))
2 = (1− cos2(ω2τ1))(1− cos2(ω2τ2)),

(cos(ω2τ1)− 2)2(1− cos(ω2τ2))
2 = (1− cos2(ω2τ1))(1− cos(ω2τ2))(1 + cos(ω2τ2)),

(cos(ω2τ1)− 2)2(1− cos(ω2τ2)) = (1− cos2(ω2τ1))(1 + cos(ω2τ2)).

From this follows the required equality. Lemma 1 is proved.
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