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Abstract: Currently, the on-site measuring of the size of a steel pipe cross-section for scaffold con-
struction relies on manual measurement tools, which is a time-consuming process with poor accuracy.
Therefore, this paper proposes a new method for steel pipe size measurements that is based on edge
extraction and image processing. Our primary aim is to solve the problems of poor accuracy and
waste of labor in practical applications of construction steel pipe inspection. Therefore, the developed
method utilizes a convolutional neural network and image processing technology to find an optimum
solution. Our experiment revealed that the edge image that is proposed in the existing convolutional
neural network technology is relatively rough and is unable to calculate the steel pipe’s cross-sectional
size. Thus, the suggested network model optimizes the current technology and combines it with
image processing technology. The results demonstrate that compared with the richer convolutional
features (RCF) network, the optimal dataset scale (ODS) is improved by 3%, and the optimal image
scale (OIS) is improved by 2.2%. At the same time, the error value of the Hough transform can be
effectively reduced after improving the Hough algorithm.

Keywords: steel tube measuring; dimension survey; edge detection; convolutional neural network;
connected domain; circle detection
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1. Introduction

With the rapid development of modernization, construction steel pipes have been
widely used on construction sites, with the steel pipes’ size [1] requirements becoming more
stringent. In construction engineering, the construction of a steel pipe is indispensable,
and its size varies. Thus, workers should pay attention to the size of the steel pipes
when classifying the construction of steel pipes so that they can be used easily next time.
When the steel pipe is connected, it is necessary to find the corresponding size for the
connection to avoid problems during the project implementation. Measuring the size
manually wastes not only time but also has a high error rate. Since constructing a steel pipe
requires accuracy, accurately measuring a steel pipe size is mandatory. This imposes higher
requirements for steel pipe size detection. Indeed, the accurate size of the construction
steel pipes significantly assists the management and distribution of the construction of steel
pipes. Due to the rise of deep learning [2], deep learning-based size detection methods can
improve the detection speed and accuracy of a steel pipe’s size.

1.1. Background and Significance of the Study

This paper investigates the cross-sectional measurement for scaffolding construction
steel pipes. Since the steel pipe is used more frequently on construction sites, each has
different degrees of friction or damage. Currently, the measurement process using vari-
ous measuring tools is manual, time-consuming, labor-intensive, inefficient, and prone
to human errors. Additionally, the domestic research on the automatic cross-sectional
measurement of construction steel pipes [3] is limited.
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Recently, foreign cross-section measurement methods for constructing steel pipes rely
on ultrasonic, isotope, and laser-based schemes. Although these measurement methods
are highly efficient and accurate, the hardware cost is high, so these methods cannot be
effectively promoted. The construction sites mainly use vernier calipers for measurement.
Although simple and convenient, their measurement speed is extremely slow, does not
reduce labor, and requires workers to measure the pipes individually.

Due to the development of deep learning, convolutional neural networks [4] con-
stantly push the boundaries in various domains. In [5], the authors solely relied on image
processing and object-size detection methods, which require an appropriate environment,
relatively complex equipment, and multiple parameter adjustments. Considering the prob-
lem that was investigated here, measuring the cross-section dimensional of the building
steel pipe relies on accurately determining its edges. The edge features can be extracted
using convolutional neural networks, i.e., performing edge detection, which achieves the
high efficiency and accuracy that is required for the measurement in conjunction with
image processing. Additionally, this strategy is more practical due to its low cost, simple
operation, and easy promotion.

1.2. Technical Research Background
1.2.1. Visual Measurement Research Background

Some scholars apply image processing to measure an object’s size. In [6], the authors
propose a Halcon-based vision inspection scheme for irregular size detection and center
coordinate acquisition, which is appropriate for tiny irregular part sizes. In [7], a method
for the dimensional measurements of hoses is developed relying on a modified area growth
method with different sequential scanning in the direction of varying growth gradients.
This strategy measures the inner and outer diameter of the hose. Specifically, first, the ran-
dom positioning stable detection method of a specific size is used to realize the components’
screening and center coordinate acquisition. Then the nine-point calibration method is used
to calibrate the camera to obtain the pixel equivalents and complete the real-time detection.

Some scholars improve on the traditional edge detection operators, e.g., Roberts,
Sobel, and Canny. In [8], the authors apply a polynomial interpolation method to localize
edge pixels and achieve subpixel edge localization, thus improving the classic operators.
The work of [9] applies grayscale transformation and Gaussian filtering to the image and
employs the canny operator to detect the target edges. Morphological processes such as
hole filling and small target removal are applied to obtain the refined edges of the target.
In [10], the authors use the Canny edge detection operator to find edges and combine it
with the least-squares method to calculate the parameters of a circle for measuring the
dimensions of a circular part. The Canny operator has also been combined with the Ostu
algorithm and the two-gate limit detection method [11]. The work of [12] enhanced the
Sobel operator using an eight-way convolution scheme and entropy. Since the differential
operation is more sensitive to noise and the extracted edges are not satisfactory enough,
this method is usually used for cases where the boundary is more apparent and the scene
is simple. Currently, the canny operator is the most effective edge detection operator, with
its improvements involving double thresholds and reducing the image noise. The Canny
operator is a multi-stage algorithm that is divided into four main steps, i.e., image noise
reduction, image gradient computation, non-maximal value suppression, and threshold
screening. Figure 1 (right) illustrates the results of the canny operator detection that is
applied in Figure 1 (left) image.
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Figure 1. Canny Algorithm detection effect.

Figure 1 highlights that the edge map that was extracted by the canny operator has
many cluttered edges that affect the measuring of the building steel pipe size. Although
the traditional image processing methods are more mature, practical applications require a
variety of pre-processing that is applied to the original image. However, the pre-processing
strategy is heavily affected based on the actual situation and is not uniform. Moreover, the
edge detection operator also suffers from adjusting its parameters. Furthermore, the real
scene is more complex in engineering, and the detected objects have different degrees of
wear, damage, and other influencing factors. Therefore, the traditional methods do not pose
a practical solution, as these are easily disturbed and are less robust. With the advancement
of machine learning research, automatically extracting the image features has become a
reality. Several neural networks [13] and support vector machines [14] have already been
introduced to replace manual feature extraction in edge detection. Further development
in machine learning and deep learning, especially the convolutional neural networks,
can extract more complex image features, presenting a practical solution compared to
traditional image processing methods.

1.2.2. Background of Convolutional Neural Networks

In recent years, many algorithms have achieved an appealing performance with the
rise of artificial intelligence and especially the development of convolutional neural net-
works (CNNs). For instance, [15] combines a CNN with the nearest neighbor search, where
the former calculates the features of each patch in the image, and then the latter searches in
the dictionary to find similar edges, to finally integrate the edge information and output
the result. In [16], the authors use depth features that are learned by a CNN to improve
the edge detection accuracy. In 2015, Xie et al. [17] proposed the HED (holistically-nested
network) edge detection model, where edge information extraction using convolutional
neural networks has become one of the many hot research topics. The HED model involves
a side-output network framework for edge detection by considering feature fusion in the
convolutional layer using the deep supervision structure without increasing the depth of
the backbone network. In 2016, Yu Liu et al. introduced the RDS (relaxed deep supervision)
edge detection method based on deep convolutional neural networks at the CVPR (IEEE
Conference on Computer Vision and Pattern Recognition) Computer Vision Topical Confer-
ence [18]. The innovation of this algorithm is utilizing relaxed labels to solve the problem
of whether a pixel in an image is an edge point or not. In 2018, Liu proposed the RCF
algorithm [19], which fully exploits the feature information from each convolutional layer
and surpasses even the recognition ability of the human eye in terms of detection accuracy.
A context-aware deep edge detection tracking strategy has also been proposed [20]. In [21],
the authors suggest a new multiscale approach to constructing down-sampling pyramid
networks and lightweight up-sampling pyramid-rich encoders and decoders. From the
development of edge detection technology, it is evident that with the development of deep
learning technology, the edge detection algorithms that are based on CNNs surpass the
traditional edge detection operators. Moreover, based on the image processing capability of
CNNs, features can be extracted effectively without processing the original image. There-
fore, this paper performs image processing based on edge information that is extracted
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from a CNN, affording high-accuracy detection results. In practical engineering, there are
many cases of wear and damage at the cross-section of the construction steel pipe. In this
case, compared with the RCF network, the ODS and OIS of the proposed network model
are increased by 3% and 2.2%, respectively.

The image can be obtained as a coarse edge image after edge detection, and the
rough edge image of the building steel pipe is circular. The circle detection algorithm
generally includes a random Hough transform, random sample consistency, and random
circle detection. The work of [22] proposes a fast and accurate random circle detection
algorithm to obtain higher detection speeds and accuracy. In [23], the authors suggest
a method that is based on central clustering to identify rod-subjected particles, which
combines K-means and DBSCAN algorithms that are used to detect circles. A new model
combining a complete variation algorithm with an improved Hough transform is proposed
in [24] to extract the edges of annual wood rings. Ref. [25] uses the Hough detection
algorithm to locate holes, effectively identifying spots. The connected domain labeling
algorithm is introduced in [26,27], which can find various shapes quickly. In this work, we
reasonably employ the connected domain properties and combine them with the Hough
circle detection algorithm to propose an optimized Hough circle detection scheme. In this
paper, the improved Hough circle detection method presents a lower error than the classic
Hough circle detection scheme, obtaining an accurate result. The flow chart of this paper is
illustrated in Figure 2.
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2. Network Model

Convolutional neural networks have strong feature learning abilities and can learn
high-order features in images. HED and RCF, as classic deep learning algorithms in edge
detection, have achieved appealing results. In this paper, the edge features of construction
steel pipes are extracted based on the improved RCF network, and then the feature images
are processed.

When applying machine vision for size measurement, the edge extraction of the object
is an essential part. By extracting the edge image of an object and then converting the
pixel space in the edge image into the actual physical distance using pixel equivalence, the
actual size of an object can be measured. The development of the traditional edge detection
operators has been relatively mature and straightforward but has certain limitations in the
actual application environment. In practical applications, the edges of architectural steel
pipes are subject to multiple wear and tear, and the cross-sectional information is rather
messy. These effects cannot be circumvented using the traditional edge detection operator,
and the detection is ineffective.
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Through the above analysis, the edge detection algorithm of this paper is requested
to explore an edge detection method that is applicable to construction projects, which
makes the cluttered texture features of the cross-section of the construction steel pipe less
influential and outputs only the desired edge information. Hence, we propose an improved
RCF coarse edge detection that uses a CNN to extract the image’s edge features, which
does not need to pre-process the original image. Additionally, to accurately measure the
dimensions of the cross-section of the building steel pipe, the extracted rough edge images
are processed to obtain more accurate edge dimensions.

2.1. Improved RCF-Based Coarse Edge Detection Method

RCF is based on the VGG16 network and realizes end-to-end edge detection. The
network structure of RCF is divided into three parts: backbone network, deep supervision
module, and feature fusion module. The backbone network uses the fully convolutional
layer of VGG16, realizing the automatic extraction of edge features. The deep supervision
module performs supervised learning on each stage to output an edge image. The feature
fusion module uses a 1 × 1 convolutional layer to fuse the feature maps that are generated
by each stage and finally outputs the fused feature image. The features that are extracted
by the convolutional neural network in various depth layers differ, and the underlying
network learns simple location information. With the increase of the level depth, the
high-level network structure abstractly integrates the basic features thata re learned by
the underlying network, the location information is continuously lost, and the semantic
information in the image is constantly enriched. The network structure of the model has
low-level and high-level information to ensure the quality of the edge image.

• Algorithm design

The RCF network model is generalized based on the improved edge detection HED
model. The RCF network model extracts more complete edge features with a less inter-
fered contour, and the robustness is enhanced. However, directly using RCF for the edge
extraction of architectural steel pipe suffers from edge blurring, and the contour is inter-
fered. The reason is mainly due to the CNN’s characteristics, as after undergoing multiple
convolutions, many details of the image feature information are lost. To overcome this
problem, this paper adopts the following improvements:

(1) The proposed model uses the dil (dilation convolution) module in the last stage,
which adds voids to the standard convolution layer to increase the perceptual field.
Compared with standard convolution, the dilation convolution has one more dilation
parameter, which in this work is set to 2.

(2) In the RCF model, a loss calculation function is added at the end of each stage, and a
deconvolution layer is upsampled in each layer to map the image size to the original
size. Finally, the output of each stage is superimposed on a 1 × 1 − 1 convolution
to merge multiple channels and calculate the loss. Our model only uses it for loss
calculation of the images after merging multiple channels, affording our model to
detect edges more clearly and interfere with fewer contour lines than the original
model. The network model of this paper is illustrated in Figure 3.
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• Training sample set

We created our training set for image edge detection of building steel pipes for the
application scenario that was investigated. Data enhancement is performed on the collected
dataset, which is expanded by rotating, mirroring, and deflating the 100 initial data to
400 training sets and 50 test sets. The Labelme tool is used to manually label the edges in the
training set and the edge features that are learned by the training model are used to adjust
the network parameters to make the output match the expected value and obtain a clearer
edge image. Figure 4 depicts the collected dataset and the manually labeled edge images.
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2.2. Model Training and Detection

The experiments were conducted on a Windows operating system using Pytorch as
the development framework, with an NVIDIA Tesla P100- PCI-E-16GB graphics card and
Cuda version 11.2. The Labelme tool was used to mark the edges.

In this paper, the CNN that was used is the RCF model. The loss must calculate
each layer of the feature image in the original model and the fused feature image. This
training method does not reflect the importance of the fused feature image and the edge
images of each stage on the network model to optimize the model better. The fused feature
image is the final output image, with the model neglecting the loss calculation of the deep
supervision module and only using the fused loss for training. The following parameters
of the VGG16 model are used as the initial values to train the model.

(1) Choice of the loss function

For the edge detection problem, which is a binary classification problem of pixel
points, i.e., edge points or non-edge points, the edge detection dataset is usually marked by
multiple markers. For each image marker, an edge probability map is generated, ranging
from zero to one, where zero means there is no marker at the pixel and one means the
quality is marked at this pixel. The pixel with an edge probability that is higher than η is
considered a positive sample, while pixels with a chance that is equal to zero are considered
negative samples. If a pixel point is marked by a marker that is less than η, it is considered
a disputed point, and treating the disputed issue will confuse the network, so the model
directly ignores the disputed issue. For the binary classification problem of pixel points, this
model uses the cross-entropy function as the loss function and calculates the loss function
of each pixel point expressed as:

l(Xi; W) =


α · log(1− P(Xi; W)) if yi = 0
0 if 0 < yi ≤ η

β · log P(Xi; W) otherwise

(1)

α = λ · |Y+|
|Y+|+ |Y−| (2)

β =
|Y−|

|Y+|+ |Y−| (3)

where Y+ and Y− represent the number of positive and negative samples, the hyperpa-
rameter λ is used to balance the difference between the number of positive and negative
examples, Xi is the activation value of the neural network, Yi is the probability value that
pixel i is an edge point in the labeled graph, and W represents the parameters that can be
learned in the neural network. After removing the loss calculation of the deep supervision
module, the loss formula for each picture is:

L(W) =
|I|

∑
i=1

L
(

Xi
Fuse; W

)
(4)

(2) Backward propagation parameters and activation functions

The backpropagation algorithm uses an SGD optimization algorithm, and the base
learning rate is kept constant during the training process. The base learning rate is set to
1 × 10−7, and the specific parameters are adjusted according to the actual sample situation.
The sigmoid function is used for the activation function. For the binary classification
problem, the sigmoid function can transform the input arbitrary value x into a value
between 0 and 1 to achieve data mapping. The formula is as follows:

sigmoid(x) =
1

1 + e−x (5)
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(3) Training process

During the training process, the value of loss represents the pixel error between the
edge images thata re generated by the network model and the manually annotated map,
which can visually observe the good or bad training results. Figure 5 (left) shows the
loss value curves during the training of the RCF network model, and the figure on the
right represents the loss value curve of the network model that is suggested in this paper.
The figure highlights that the value of the loss function decreases with the growth of the
training number. Moreover, the curve is smoother than the original curve, and the loss
curve gradually converges when the training set is iterated for a certain number of times,
indicating that the edge images that are generated by the network model are gradually
approaching the manually labeled edge images.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 15 
 

 

1
sigmoid( )

1 x
x

e



 (5)

(3) Training process 
During the training process, the value of loss represents the pixel error between the 

edge images thata re generated by the network model and the manually annotated map, 
which can visually observe the good or bad training results. Figure 5 (left) shows the loss 
value curves during the training of the RCF network model, and the figure on the right 
represents the loss value curve of the network model that is suggested in this paper. The 
figure highlights that the value of the loss function decreases with the growth of the train-
ing number. Moreover, the curve is smoother than the original curve, and the loss curve 
gradually converges when the training set is iterated for a certain number of times, indi-
cating that the edge images that are generated by the network model are gradually ap-
proaching the manually labeled edge images. 

 
Figure 5. Loss value change. 

The detection model is trained for 650 iterations, with Figure 6 depicting the image 
input into the detection model. Specifically, the left image in Figure 6 is the test result of 
the original RCF network model, which presents some confusing and unclear edge lines. 
Part of the edge lines are intermittent and cannot be used to measure the cross-section of 
the building steel pipe. However, Figure 6 (right) illustrates our model’s output highlight-
ing its effectiveness compared to the original model, affording clearer and more realistic 
lines without messy details and continuous edge lines. After removing the loss calculation 
of the deep supervision module, the time to calculate the loss of six pictures becomes the 
time to calculate the loss of one image. The time complexity changes from T(6) to T(1), the 
space storage of six images becomes the space storage of one image, and the space com-
plexity changes from O(6mn) to O(mn), significantly reducing the running time and space 
storage. 

  
Figure 6. Comparison of the test results. 

2.3. Experimental Analysis 
The evaluation metrics of edge detection models are mainly the ODS (optimal dataset 

scale) and OIS (optimal image scale). ODS refers to the detection results when a uniform 
threshold is used for all images in the test set, and OIS is the detection result when using 

Figure 5. Loss value change.

The detection model is trained for 650 iterations, with Figure 6 depicting the image
input into the detection model. Specifically, the left image in Figure 6 is the test result of the
original RCF network model, which presents some confusing and unclear edge lines. Part
of the edge lines are intermittent and cannot be used to measure the cross-section of the
building steel pipe. However, Figure 6 (right) illustrates our model’s output highlighting
its effectiveness compared to the original model, affording clearer and more realistic lines
without messy details and continuous edge lines. After removing the loss calculation of the
deep supervision module, the time to calculate the loss of six pictures becomes the time to
calculate the loss of one image. The time complexity changes from T(6) to T(1), the space
storage of six images becomes the space storage of one image, and the space complexity
changes from O(6mn) to O(mn), significantly reducing the running time and space storage.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 15 
 

 

1
sigmoid( )

1 x
x

e



 (5)

(3) Training process 
During the training process, the value of loss represents the pixel error between the 

edge images thata re generated by the network model and the manually annotated map, 
which can visually observe the good or bad training results. Figure 5 (left) shows the loss 
value curves during the training of the RCF network model, and the figure on the right 
represents the loss value curve of the network model that is suggested in this paper. The 
figure highlights that the value of the loss function decreases with the growth of the train-
ing number. Moreover, the curve is smoother than the original curve, and the loss curve 
gradually converges when the training set is iterated for a certain number of times, indi-
cating that the edge images that are generated by the network model are gradually ap-
proaching the manually labeled edge images. 

 
Figure 5. Loss value change. 

The detection model is trained for 650 iterations, with Figure 6 depicting the image 
input into the detection model. Specifically, the left image in Figure 6 is the test result of 
the original RCF network model, which presents some confusing and unclear edge lines. 
Part of the edge lines are intermittent and cannot be used to measure the cross-section of 
the building steel pipe. However, Figure 6 (right) illustrates our model’s output highlight-
ing its effectiveness compared to the original model, affording clearer and more realistic 
lines without messy details and continuous edge lines. After removing the loss calculation 
of the deep supervision module, the time to calculate the loss of six pictures becomes the 
time to calculate the loss of one image. The time complexity changes from T(6) to T(1), the 
space storage of six images becomes the space storage of one image, and the space com-
plexity changes from O(6mn) to O(mn), significantly reducing the running time and space 
storage. 

  
Figure 6. Comparison of the test results. 

2.3. Experimental Analysis 
The evaluation metrics of edge detection models are mainly the ODS (optimal dataset 

scale) and OIS (optimal image scale). ODS refers to the detection results when a uniform 
threshold is used for all images in the test set, and OIS is the detection result when using 

Figure 6. Comparison of the test results.

2.3. Experimental Analysis

The evaluation metrics of edge detection models are mainly the ODS (optimal dataset
scale) and OIS (optimal image scale). ODS refers to the detection results when a uniform
threshold is used for all images in the test set, and OIS is the detection result when using
the best threshold for the currently available image. This paper measures the indicators
using the Matlab tool. Table 1 compares each indicator with the Canny operator and RCF,
revealing that in this paper’s dataset, our model attains a better performance than RCF.
Indeed, our model’s ODS and OIS are 3% and 2.2% higher than RCF, respectively.
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Table 1. The model is compared with the RCF results.

ODS OIS

Canny 0.519 0.519
RCF 0.648 0.660

Model of this paper 0.678 0.682

3. Image Processing of Coarse Edges

The image that was obtained from the improved RCF-based algorithm is clearer, the
edge contour is complete, and the interference contour line is less. To improve the edge
detection accuracy, we process the coarse edge images by applying corrosion operation,
connected domain, and circle detection for binary images.

3.1. Connected Domain-Based Image Processing

The connected region generally refers to the image area with the same pixels and
adjacent pixel points in a position. The binary image after the above processing is subjected
to the connected domain labeling algorithm, which is divided into two pictures of different
domains. This strategy affords not disturbing the exact center and radius of one circle by
another area. The labeling algorithms for the connected parts can be broadly classified into
three methods: line labeling, pixel labeling, and region growing.

The connected domain-based image processing algorithm calls the cv2.connected-
ComponentsWithStats function in Python when implementing the connected domain
distinction. This function returns the number of all connected domains, the marker for
each pixel in the image, the statistics for each title, and the centroid of the connected part.
During the implementation, it was found that our dataset may have some independent
points or lines in the binary image after processing and background information in the
picture so that some abnormally connected domains will be detected. By appropriately
setting the threshold value of the connected domains, the irregular connected domains and
the background information of the image are discarded, removing the error information
due to the abnormally connected domains and leaving two correctly connected domains,
as depicted below.

Figure 7 shows the image without connected domain. As shown in Figure 8, by using
connected domains, the contour lines in the image are rougher, imposing a significant error
on the refined size detection. To reduce this error, we exploit the binary image etching
operation, and specifically the contour line etching. The etching effect is illustrated in
Figure 9.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 15 
 

 

the best threshold for the currently available image. This paper measures the indicators 
using the Matlab tool. Table 1 compares each indicator with the Canny operator and RCF, 
revealing that in this paper’s dataset, our model attains a better performance than RCF. 
Indeed, our model’s ODS and OIS are 3% and 2.2% higher than RCF, respectively. 

Table 1. The model is compared with the RCF results. 

 ODS OIS 
Canny 0.519 0.519 

RCF 0.648 0.660 
Model of this paper 0.678 0.682 

3. Image Processing of Coarse Edges 
The image that was obtained from the improved RCF-based algorithm is clearer, the 

edge contour is complete, and the interference contour line is less. To improve the edge 
detection accuracy, we process the coarse edge images by applying corrosion operation, 
connected domain, and circle detection for binary images. 

3.1. Connected Domain-Based Image Processing 
The connected region generally refers to the image area with the same pixels and 

adjacent pixel points in a position. The binary image after the above processing is sub-
jected to the connected domain labeling algorithm, which is divided into two pictures of 
different domains. This strategy affords not disturbing the exact center and radius of one 
circle by another area. The labeling algorithms for the connected parts can be broadly clas-
sified into three methods: line labeling, pixel labeling, and region growing. 

The connected domain-based image processing algorithm calls the cv2.connected-
ComponentsWithStats function in Python when implementing the connected domain dis-
tinction. This function returns the number of all connected domains, the marker for each 
pixel in the image, the statistics for each title, and the centroid of the connected part. Dur-
ing the implementation, it was found that our dataset may have some independent points 
or lines in the binary image after processing and background information in the picture 
so that some abnormally connected domains will be detected. By appropriately setting the 
threshold value of the connected domains, the irregular connected domains and the back-
ground information of the image are discarded, removing the error information due to 
the abnormally connected domains and leaving two correctly connected domains, as de-
picted below. 

 Figure 7 shows the image without connected domain. As shown in Figure 8,by using 
connected domains, the contour lines in the image are rougher, imposing a significant 
error on the refined size detection. To reduce this error, we exploit the binary image 
etching operation, and specifically the contour line etching. The etching effect is illustrated 
in Figure 9. 

 
Figure 7. Diagram of the unrealized connected domains. Figure 7. Diagram of the unrealized connected domains.



Mathematics 2022, 10, 3535 10 of 14Mathematics 2022, 10, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 8. After realizing the connectivity domain. 

 
Figure 9. Image after corrosion. 

3.2. Accuracy of Circle Detection based on Hough Transform 
3.2.1. Hough Circle Detection 

The principle of the Hough transform circle detection: Assuming that the circle’s ra-
dius is r0 and the coordinates of the center are (a0, b0), a circle is expressed as in (6). Pro-
jecting any point (xi, yi) of the circle into the parameter space is realized through expres-
sion (7). If a, b, and rare are the three variables in the parameter space and (xi, yi) corre-
sponds to any point of the circle in the original image, which are all known, then Equation 
(7) is a circle in the parameter space. As r grows step-wise between [rmin and rmax], the 
expression of any point in space can be expressed as a conic surface. With the increase in 
(xi, yi), numerous conic surfaces will be formed in the parameter space. However, the conic 
surfaces must intersect at a point (a0, b0). This point is the center of the circle of the original 
image, as shown in Figure 10. 

 

   2 2 2
0 0 0x a y b r     (6)

   2 2 2
i ia x b y r     (7)

Figure 8. After realizing the connectivity domain.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 8. After realizing the connectivity domain. 

 
Figure 9. Image after corrosion. 

3.2. Accuracy of Circle Detection based on Hough Transform 
3.2.1. Hough Circle Detection 

The principle of the Hough transform circle detection: Assuming that the circle’s ra-
dius is r0 and the coordinates of the center are (a0, b0), a circle is expressed as in (6). Pro-
jecting any point (xi, yi) of the circle into the parameter space is realized through expres-
sion (7). If a, b, and rare are the three variables in the parameter space and (xi, yi) corre-
sponds to any point of the circle in the original image, which are all known, then Equation 
(7) is a circle in the parameter space. As r grows step-wise between [rmin and rmax], the 
expression of any point in space can be expressed as a conic surface. With the increase in 
(xi, yi), numerous conic surfaces will be formed in the parameter space. However, the conic 
surfaces must intersect at a point (a0, b0). This point is the center of the circle of the original 
image, as shown in Figure 10. 

 

   2 2 2
0 0 0x a y b r     (6)

   2 2 2
i ia x b y r     (7)

Figure 9. Image after corrosion.

3.2. Accuracy of Circle Detection Based on Hough Transform
3.2.1. Hough Circle Detection

The principle of the Hough transform circle detection: Assuming that the circle’s radius
is r0 and the coordinates of the center are (a0, b0), a circle is expressed as in (6). Projecting
any point (xi, yi) of the circle into the parameter space is realized through expression (7). If
a, b, and rare are the three variables in the parameter space and (xi, yi) corresponds to any
point of the circle in the original image, which are all known, then Equation (7) is a circle in
the parameter space. As r grows step-wise between [rmin and rmax], the expression of any
point in space can be expressed as a conic surface. With the increase in (xi, yi), numerous
conic surfaces will be formed in the parameter space. However, the conic surfaces must
intersect at a point (a0, b0). This point is the center of the circle of the original image, as
shown in Figure 10.

(x− a0)
2 + (y− b0)

2 = r2
0 (6)

(a− xi)
2 + (b− yi)

2 = r2 (7)
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3.2.2. Radius Circle Centering Accuracy

This paper applies the advantages of Hough circle detection for localizing the initial
circle. The process of dealing with the radius in this paper relies on the equal distance from
the point on the circle to the center of the circle to find the value of the radius according to
the specificity of the graphical data. During the experiment, it was found that the Hough
circle detection could not detect concentric circles, and the parameters needed to be adjusted
each time a curve was detected in the graph, which was overly burdensome. Based on
the image of the above-connected domain and the Hough circle detection, the circle in the
chart can be detected by adjusting the parameters only once during the experiment. The
detection effect can be positioned to the pixel level of the center and the circle’s radius,
also affording better robustness. In this paper, we optimize the accuracy aspects of the
radius and the center of a circle in the graph based on the connected-domain Hough circle
detection, as follows:

(1) Using the image of the connected domain, the approximate circle center, and coordi-
nates of the circle in the picture are first detected using Hough circle detection.

(2) Then, we determine the 8-neighborhood of the circle center based on the circle center
that is found, and use the 8-neighborhood as the error circle center.

(3) We calculate the distance from all the points on the image to the center of the eight
circles and take the average as the radius.

(4) We draw eight circles that are centered at the eight neighborhoods and the radius that
is calculated in the previous step. Then, we calculate the overlap between these nine
standard circles and the graph. The circle with the highest degree of overlap is the
optimal circle.

The algorithm flow is shown in Figure 11:
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In Figure 12, the top four circles are the outcome of using Hough circle detection, and
the following circles (including the results of Hough circle detection) compare the overlap
to define the impact of the optimal circle. The following figure compares these findings
in detail.
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Figure 12. Comparison of the results.

In Figure 13, the left side illustrates the edge detail of the Hough circle detection, and
the right side is the edge detail with the highest overlap. After optimizing the proposed
algorithm, it can be seen that the detected circle fits the circle in the graph to a greater extent.
By achieving the circle pixel overlap, the line width of each circle is the same, not affecting
the results by the line width. Table 2 compares the number of pixel overlaps per circle.
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Table 2. Pixel consistency comparison.

Outer Circle 1 Inner Circle 1 Outer Circle 2 Inner Circle 2

Hough Round overlap 3504 2617 2381 878
Algorithm overlap in

this paper 3504 1970 2742 2280

The images that were used in this article are all 72 dpi. The circle’s radius (number of
pixels per unit) is obtained from the following equation. We convert the number of pixels
into centimeters using the following formula:

C = 2.54× p
r

(8)

where C is the radius in centimeters, P is the number of pixels, and R is the resolution.
The measured values were obtained with an image measuring tool. Next, we compare the
proposed algorithm, Hough circle detection, and manual measurement against the true
radius of the steel pipe (unit centimeter). As shown in Table 3.

Table 3. Radius of contrast.

Outer Circle 1 Inner Circle 1 Outer Circle 2 Inner Circle 2

True value 9.3 8.0 9.9 8.2
Hough circle R 9.374 8.205 9.910 8.072

This paper tests the
circle R 9.374 8.180 9.893 8.287

Hough circle error 0.074 0.205 0.01 0.182
Error in this article 0.074 0.180 0.007 0.087

The experiments show that the Hough circle detection algorithm is very close to the
true circle, and the edge line is very thin with some anomalies in a few cases, while the
detection effect is good. However, in the case of thick edge lines and irregular circles, the
Hough circle detection is affected by the irregular edges and is shifted to one side. In the
case of practical applications, the cross-section of the construction steel pipe is subject to
damage, wear, and other conditions. Thus, solely employing Hough circle detection is not
a suitable method. In contrast, the improved algorithm retains Hough circle detection’s
advantages but also improves the detection accuracy.

3.3. Error Analysis

The errors in the images that are created using the suggested method are as follows.

1. Image clarity. Using CNNs does not require pre-processing the image and affords bet-
ter robustness. However, to a certain extent, image clarity still impacts the extraction
of coarse edges.
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2. Algorithm error. The coarse edge that is obtained by the optimized RCF model and
binary image erosion, although as close as possible to the actual edge, still cannot
accurately locate the actual edge.

4. Conclusions and Outlook
4.1. Summary

Currently, the construction engineering measurement of steel pipe size is a slow pro-
cess that is not accurate. Therefore, this paper utilizes deep learning and image processing
technology to improve the existing technology and solves the issues of slow speed and poor
accuracy during manual measurements. The main innovations of this paper are as follows:

1. A dimensional detection method for architectural steel tubes is proposed, which uti-
lizes convolutional neural networks to extract edge features, solving the problem of the
poor robustness of the traditional edge detection operator and improving practicality.

2. Based on the problem of coarse edge size detection, this paper proposes an optimiza-
tion algorithm for Hough circle detection based on the connected domain and binary
image processing, making the Hough circle detection algorithm more applicable
to engineering.

4.2. Outlook

This paper considers the environmental problems in real engineering and specifi-
cally investigates visual inspection technology for damaged and not easily detectable
construction steel pipes. Future improvements shall involve:

1. Optimize the coarse edge extraction model further so that the coarse edge image can
be free of interference edge lines. This will improve the image processing rate and,
thus, the speed of visual detection.

2. Optimizing the fine edge algorithm based on coarse edge extraction to reduce the
error between the refined edge and the actual edge.

3. In this paper, only the cross-section size of the steel pipe is measured, and the length
of the steel pipe can be further calculated using edge detection technology.

4. Extending this technology to measure circular objects.
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