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Abstract: A 2D metric space has a limited number of properties through which it can be described.
This metric space may comprise objects such as a scalar, a vector, and a rank-2 tensor. The paper
provides a comprehensive description of relations between objects in 2D space using the matrix
product of vectors, geometric product, and dot product of complex numbers. These relations are also
an integral part of the Lagrange’s identity. The entire structure of derived theoretical relationships
describing properties of 2D space draws on the Lagrange’s identity. The description of how geometric
algebra and tensor calculus are interconnected is given here in a comprehensive and essentially
clear manner, which is the main contribution of this paper. A new term in this regard is the total
geometric and matrix product, which—in a simple manner—predetermines and defines the existence
of differential relations such as the gradient, the divergence, and the curl of a vector field. In addition,
geometric interpretation of tensors is pointed out, expressed through angular parameters known
from the literature as a tensor glyph. This angular interpretation of the tensor has an unequivocal
analytical form, and the paper shows how it is linked to the classical tensor denoted by indices.
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1. Introduction

The mash of different mathematical fields is made of independent mathematical
streams functioning next to each other as parallel worlds. This comparison is somewhat
lame, as there also must be a clearly demonstrated interconnection between those streams,
something that cannot be said of parallel worlds. It can be assumed that this interconnection
is most illustrative if interpreted geometrically. This paper’s task is to point out the
comprehensive construction of various known space-describing algebra, with a common
factor running through. This common factor is the Lagrange’s identity, expressed in its
simplest form through four input elements.

Various means can be employed to describe space. At around 1636, French math-
ematicians René Descartes and Pierre de Fermat founded analytical geometry through
identifying solutions to an equation with two variables with points on a planar curve [1].

The first hint of the term vector space may be found in the work titled “Die lineale
Ausdehnungslehre, ein neuer Zweig der Mathematik by Hermann Grassmann” from
1844 [2]. However, his work remained mostly in obscurity because Grassmann was not a
professional mathematician, and he was describing his theory in a philosophical manner.
The exterior algebra created by Grassmann is an algebraic system, the result of which is
an outer product. The exterior algebra provides an algebraic space that makes it possible
to answer geometric questions. Clifford defined a new algebra, in which the product is
demonstrated as a unification of the Grassmann algebra and the Hamilton quaternion
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algebra. This is how the foundations of geometric algebra were laid. Clifford algebra
provides the grammar. Complex number, quaternions, matrix algebra, vector, tensor
and spinor calculus, and differential forms are integrated into a single comprehensive
system [3].

At present, geometric algebra is experiencing a sort of renaissance because it started
to be intensely used in the last decades only. There are a number of different ways to
define geometric algebra. Some works define the Clifford algebra as the multiplication
of vectors in R2 [4–7]. In that case, the outer and inner product are defined as the basic
equation of geometric algebra. This formalism is used to define Clifford spaces. The
Clifford algebra can also be defined using the quadratic form [8,9]. This is how various
Clifford algebras are created, some of which are used to describe physical phenomena. In
a more abstract form, the definition is based on the axiomatic principle [3,10]. The basis
is the definition of four vectors in the Clifford algebra marked Cl 1,3 (R). This algebra is
referred to as spacetime algebra and is suitable as a description of relativistic physics. Some
works are focused on the application of geometric algebra in various other algebras. For
example, ref. [11] gives a full classification of Lie algebras of specific type in complexified
Clifford algebras. Geometric algebra provides a new formalism for differentiation on vector
manifolds and for mappings between surfaces, including conformal mappings [12]. The
following works are already focused on the application of geometric algebra in physical
relationships. For example, ref. [13] aimed at a better description of the power theory of
electrical phenomena using geometric algebra. Article [14] aimed at a compact description
of electrical relationships via geometric algebra used in the field of electrical engineering.
Article [15] used conformal geometric algebra to improve imaging methods in medicine.
Similarly, geometric algebra is also used for visualization in the field of crystallography [16].

The tensor calculus was developed in about 1890 by G. Ricci-Curbastro under the
name of an absolute differential calculus, and Ricci-Curbastro first introduced it in 1892. It
became accessible to many mathematicians through publication of the classical text of Ricci-
Curbastro and Tullio Levi-Civita in 1900 as “Méthodes de calcul différentiel absolu et leurs
applications” (Methods of the absolute differential calculus and their applications) [17].

Description of spatial properties constitutes a subject matter with well-explored theory.
That is why research focused on application areas of using the tensor calculus, geometric
algebra, and complex numbers. Some works are focused on the application of tensor calcu-
lus in the description of the dynamics of a mechanical object. In robotics, the calculation
methodology using the inertia tensor has been improved [18]. The work [19] contains a
description of the metric tensor on a Riemannian manifold. The analysis provides opti-
mization of the dynamic parameters of the robotic arm. Tensors are also a good tool for the
analysis of complex systems such as turbulent flow. Article [20] provides a rigorous and
well-documented description of a mathematical and computational framework that can be
used for the calculation of the structure tensors in arbitrary turbulent flow configurations.
Other works are aimed at the further development of tensor calculus, for example, a special
method of higher-order tensor decomposition based on the similarity of matrix decompo-
sition [21] or a new method to produce lower bounds for the Waring rank of symmetric
tensors [22]. New perspectives are also provided by the field of Riemannian metrics. For
example, work [23] focused on the concept of quasi-semi-Weyl structure, and we provide a
few ways for constructing quasi-statistical and quasi-semi-Weyl structures by means of a
pseudo-Riemannian metric, affine connection, and tensor field on a smooth manifold.

This historical context points to a substantial development in the area of describing
space and its properties. Recently, thanks to numerical methods, works that try to make
the object of tensor more visible through numerical methods, calling it a tensor glyph, have
started to crop up.

A tensor glyph displays multidimensional data using several possible rules [24]. The
main use is in the visualization of fluid dynamics tensors, tension tensors or the Jacobian
of the velocity field [25]. Nowadays, tensor glyphs are fully used for visualization in the
field of medicine with magnetic resonance [26–28]. Various forms of displaying tensor
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glyphs exist. An analytical method of tensor glyph display has not yet been developed.
All methods are based on the application of numerical procedures. In some works, Mohr
diagrams are used to display the stress tensors [29]. A certain possibility is the use of
superquadratic tensor glyphs [30,31]. This method is only suitable for symmetric tensors.
Tensor visualization research also explores the use of different space metrics such as
Frobenius, Euclidean, Wasserstein, and Fisher Rao [32].

The focus of our paper falls on a new approach to space description. It draws on
topological concept of space described by the Lagrange’s identity. Nevertheless, this
identity also meets the description of a metric space. That is why Lagrange’s identity
takes the center stage in different algebra applications. Taking into account congruent
transformation properties, it appears that space may be described—depending on its
dimension—through only a limited number of parameters [33].

2. Description of 2D Space Using the Lagrange’s Identity

It is useful to start defining the interconnection between geometric space and tensors
by defining spatial properties of the space itself. We will present the spatial characteristics
in a somewhat non-traditional way, using the well-known Lagrange’s identity. The simplest
form of Lagrange’s identity is the so-called four-square identity, dating all the way back to a
Greek mathematician Diophantus from Alexandria (third century A.D.). Let a1, a2, b1, b2 be
countable elements of any set. Then, the form of the Lagrange’s identity will be as follows:(

a2
1 + a2

2

)(
b2

1 + b2
2

)
= (a1b1 + a2b2)

2 + (a1b2 − a2b1)
2. (1)

This identity has its structure, which determines its specific properties. While it is
true that the types of numbers that can be substituted for the identity elements are not
specified, the identity operates with addition, multiplication, and exponentiation. All
these operations may be matched by opposite operations such as subtraction, division, and
square root. In the light of this fact, the identity involves all algebraic operations, so the
domain of identity may correspond to the complex numbers domain.

2.1. Relation between Lagrangian Identity and Space

The left side of Lagrange’s’s identity can be linked to the common countable property
of shared space. It can also be a topological space where the distance is not defined. Then,
Lagrange’s’s identity may also be viewed as a form of transformation of elements into a
new space. The mixed product of elements on the right side creates four new elements on
the left side of the identity, which are, in a sense, a transformation of the original elements.
This operation may be written as follows:(

a2
1 + a2

2

)(
b2

1 + b2
2

)
= a2

1b2
1 + a2

1b2
2 + a2

2b2
1 + a2

2b2
2 = K2 + L2 + M2 + N2. (2)

New elements K, L, M, N will be of main importance in drawing the links between
various multiplications of vectors.

Thanks to two distinct forms of modifying of the expression, the Lagrange’s identity
takes two possible forms.

The first form is(
a2

1 + a2
2

)(
b2

1 + b2
2

)
= (a1b1 + a2b2)

2 + (a1b2 − a2b1)
2 = (F)2 + (G)2 = E2. (3)

The second form is(
a2

1 + a2
2

)(
b2

1 + b2
2

)
= (a1b1 − a2b2)

2 + (a1b2 + a2b1)
2 = (H)2 + (I)2 = E2. (4)
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In literature, the second, less-known form is called the Brahmagupta–Fibonacci identity.
The proof can be given by adding and subtracting 2a1b2a2b1 in the following way:(

a2
1 + a2

2

)(
b2

1 + b2
2

)
= a2

1b2
1 + a2

1b2
2 + a2

2b2
1 + a2

2b2
2 + 2a1b2a2b1 − 2a1b2a2b1. (5)

Coefficients of the right side of the Lagrange’s identity F, G, E or, alternatively, H, I, E
appear in the form of the Pythagoras theorem. It can also be shown that the ratios of the
F, G are independent of the ratio of the H, I. A metric space can be created from these
coefficients.

The Pythagoras theorem may be extended to higher dimensions of space, to which
spatial Pythagoras theorem applies. The coefficient c represents the spatial hypotenuse,
and the other components xi are the legs of a right triangle. The following holds:

c2 = x2
1 + x2

2 + . . . + x2
n. (6)

Similarly, the Lagrange’s identity, too, extends its applicability to higher dimensions
of space. Generally, the Lagrange’s identity is expressed in the form below and may be
used for description of spaces with higher dimensions.(

n

∑
k=1

a2
k

)(
n

∑
k=1

b2
k

)
=

(
n

∑
k=1

akbk

)2

+
n−1

∑
i=1

n

∑
j=i+1

(
aibj − ajbi

)2 (7)

2.2. Transformation Relations between the Left and Right Sides of the Lagrange’s Identity

Three independent elements suffice to describe a plane. The Lagrange’s identity is
determined by four independent elements. It is, therefore, necessary to examine to what
degree a transformation in the form of the Lagrange’s identity is reversible.

Theorem 1. Let a1, a2, b1, b2 ∈ R be the four input elements of the left side of the Lagrange’s
identity. Then, from the output elements K, L, M, N, which are obtained on the right side of the
Lagrange’s identity, a unequivocal back transformation to the original input elements cannot be
performed.

Proof of Theorem 1. Let us assume that we know the K, L, M, N elements, and we want
to reverse determine the input elements of a1, a2, b1, b2. We can proceed as follows. From
Equations (2)–(4), we obtain

K = 1
2 (F + H),

L = 1
2 (I + G),

M = 1
2 (I − G),

N = 1
2 (F− H),

(8)

K2 + L2 + M2 + N2 =
1
2

(
F2 + H2 + I2 + G2

)
= E2 (9)

Further adjustments yield equations of ratios:

a1

a2
=

K + L
M + N

= R, (10)

b1

b2
=

K + M
L + N

= V (11)

a2
1b2

1

(
1 + R−2

)(
1 + V−2

)
= E2 (12)
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For an undisputed reverse determination of input elements, one more independent
equation is still missing between elements a1 and b1. Reverse transformation is not possible.
�

Having arbitrarily selected value of an element, the above equations make it possi-
ble to additionally compute other elements. That is why reverse reconstruction of the
transformation is possible only partially. Symbolically, the following holds:

a1, a2, b1, b2 → K, L, M, N
a1, a2, b1, b2 L99 K, L, M, N.

(13)

3. Congruent Transformations in the Plane

Congruent transformations in the plane are those of an object rotation, translation,
and reflection. The Lagrange’s identity describes a metric space, which is why it is possible
to find a relationship between congruent transformations and the identity. Since the plane
is unequivocally determined by three parameters, the object that is a part of the plane
must also have three independent parameters so that individual congruent transformations
can be distinguished on it. An object may be, e.g., a triangle defined by three points, a
vector and a point constituting a triangle, or two non-parallel vectors anchored in the
coordinate system‘s origin. The last example may also be expressed by two complex
numbers in a complex plane. Thus, complex numbers operations yield the same results as
vector operations.

Linear vector space is defined by linear operations only. These operations enable
translation and scaling. Rotation and reflection cannot be done through linear operations.
That is why vector space must be extended by the operation of mutual vector multiplication.
Depending on the type of multiplication, a space with dot product is obtained (a unitary
space), or in the case of a vector product, the resulting space is that with Lie algebra. The
last extended spaces’ general properties of linear vector space by adding the possibility
of rotation and reflection. The Lagrange’s identity has four independent input elements,
which are multiplied by each other. That is why it can be assumed that the identity is in
some form related to the transformation by rotation or reflection.

There are three known options of vector multiplication, and dual principle of inter-
pretation of the multiplication result can be applied to all three cases. This is a matrix
multiplications of vectors, which leads to dyadic vector product, geometric vector product,
and finally dot product of complex numbers, where a complex number also represents a
vector in a plane. Since dyadic vector product is also used in tensor calculus, it will be
shown in what way the tensors are linked to multiplication of vector and how they are
linked to the Lagrange’s identity, too.

In congruent transformations, the object maintains its size. The condition of object size
maintenance, applying to various input elements, may be also transferred to the final value
of the Lagrange’s identity. Based on this, in vector multiplication, a request may be made
to keep a certain typical product characteristic under variable input elements. As will be
shown, this condition of conservation the value defines a rank-2 tensor.

4. Description of 2D Space Using Matrix Multiplication of Vectors and Their Relation
to Tensors and to the Lagrange’s Identity

For the sake of illustration, elements of the right side of the Lagrange’s identity will be
used in all three product types.

Definition 1. Let there be vectors defined as a = (a1, a2) and b = (b1, b2). For the sake of
coherence with the next chapter, the vectors are written in row form. This principle gives rise to the
following two multiplication options. The product of a matrix with the size of (1× 2) and (2× 1)
yields a matrix with the size of (1× 1)

a.bT = b.aT = a1b1 + a2b2 = K + N, (14)
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which is called a dot product of vectors.

Definition 2. By changing the order of vector transposition, we obtain a matrix of the size (2× 2)
determined by the product of matrices of sizes (2× 1) and (1× 2)

aT.b = a ◦ b =

[
a1b1 a1b2
a2b1 a2b2

]
=

[
K L
M N

]
= BI . (15)

This product is called a dyadic vector product. We mark it as the first form of dyadic
product BI . In general, a product of matrices is not commutative, which is why it is
advisable to interpret both multiplication options. Multiplication of bT.a yields the second
form of dyadic product BI I

bT.a = b ◦ a =

[
b1a1 b1a2
b2a1 b2a2

]
=

[
K M
L N

]
= BI I = BT

I . (16)

5. Description of 2D Space Using the Geometric Product of Vectors and Relation to the
Lagrange’s Identity

Geometric product of vectors originated from Clifford‘s work. Basic description of
space constitutes Euclidean vector space R2 defined by orthonormal bases e1, e2. The geo-
metric product of vectors is defined here in a new way based on the rules of multiplication
of base vectors.

Definition 3. Let two vectors of this space be defined as a = (a1, a2) and b = (b1, b2) and
anchored in the origin. For the sake of obtaining the product of bases, arising from vector algebra of
multiplying perpendicular and parallel vectors, inner and outer element multiplication is distin-
guished. Inner multiplication in the form of e·e is called a dot product and outer multiplication in
the form of e∧ e, a wedge product.

Products of identical base vectors

e1·e1 = 1,
e2·e2 = 1,

e1 ∧ e1 = 0,
e2 ∧ e2 = 0.

(17)

Products of perpendicular base vectors

e1·e2 = 0,
e2·e1 = 0,

e1 ∧ e2 = 1 = e12,
e2 ∧ e1 = −1.

(18)

Note. Multiplication rules for base vectors are complemented with unused forms of the geometric
product, where the product result is a zero. Unused forms do not affect the result of the geometric
product; the process of solving the equation will only be clearer.

Geometric product is a linear combination of two types of multiplication in geometric
algebra. However, various types of products cannot be added together. The wedge
product is distinguished from the dot product by being marked as e12. This form of
expressing the wedge product is not used in the literature but—as will be shown later—it
is very significant in a conversion between individual types of multiplications of the input
elements. In literature, the wedge product is referred to as a “blade”. In the case of 2D, this
is a “bivector”. Linear combination of elements of different types of products gives rise
to multivectors. The basic form of geometric product is a multivector, which consists of a
scalar and a bivector on the equation’s right-hand side
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ab = (a1e1 + a2e2)(b1e1 + b2e2) =
= (a1b1e1·e1 + a1b2e1·e2 + a2b1e2·e1 + a2b2e2·e2)+

+(a1b1e1 ∧ e1 + a1b2e1 ∧ e2 + a2b1e2 ∧ e1 + a2b2e2 ∧ e2) =
= (a1b1 + a2b2) + e12(a1b2 − a2b1) = a·b + a∧ b= F + e12G,

ab = K + N + e12(L−M).

(19)

Alternatively, when the order of vectors changes, the following applies

ba = (b1a1 + b2a2) + e12(b1a2 − b2a1) = a·b− a∧ b = F− e12G,
ba = K + N − e12(L−M).

(20)

Geometric product corresponds to the sum of the F, G elements from the right side
of the first form of the Lagrange’s identity. By introducing vectors at = (a2, a1) and
bt = (b2, b1), where the t index means a changed order of the vector coordinates, the
geometric product may be enhanced by the second form of the Lagrange’s identity ex-
pressed through the H, I elements. This operation corresponds to the reflection of base of
the vector space

atb = (a2e1 + a1e2)(b1e1 + b2e2) =
= (a2b1e1·e1 + a2b2e1·e2 + a1b1e2·e1 + a1b2e2·e2)+

+(a2b1e1 ∧ e1 + a2b2e1 ∧ e2 + a1b1e2 ∧ e1 + a1b2e2 ∧ e2) =
= (a2b1 + a1b2) + e12(a2b2 − a1b1) = at·b + at ∧ b = I − e12H,

atb = M + L− e12(K− N).

(21)

By changing the order in which the vectors are multiplied, we obtain

bat = (a2b1 + a1b2) + e12(a1b1 − a2b2) = at·b− at ∧ b = I + e12H,
bat = M + L + e12(K− N).

(22)

Alternatively, the geometric product of vector bt and vector a yields the following
identities

abt = bat = I + e12H. (23)

Similarly, also
bta = atb = I − e12H. (24)

The Relationship between the Geometric Product and the Lagrange’s Identity

Geometric product incorporated in the Lagrange’s identity is expressed by the follow-
ing equation:

E2 = (F)2 + (G)2 = λ2
1 + λ2

2 = (a·b)2 + |a∧ b|2. (25)

The above equation has the form of the Pythagoras theorem. Then, the dot and the
wedge vector product may be expressed through the angle α, formed by the a, b vectors
according to the equations below.

a·b = |a||b| cos α = λ1, (26)

a∧ b = |a||b| sin α = λ2. (27)

Geometric equations are plotted on the graph in Figure 1.
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Figure 1. Graphic representation of vectors of the geometric product and elements of the Lagrange’s
identity.

6. Description of 2D Space Using the Dot Product of Complex Numbers and the Link
to Geometric Product

In its essence, a complex number is a two-dimensional object. Direct multiplication of
complex numbers under the distributive law yields a result, the form of which is, again,
that of a complex number.

Multiplication of the a, b complex numbers in the exponential form is commutative

a·b = K1eiϕ1K2eiϕ2 = K1K2ei(ϕ1+ϕ2) = K1K2ei(ϕ2+ϕ1) , (28)

where K1, K2 are real, non-negative constants. Multiplying two complex numbers in the
algebraic form yields

a·b = (a1 + ia2)(b1 + ib2) = a1b1 + ia1b2 + ia2b1 − a2b2 =
= a1b1 − a2b2 + i(a1b2 + a2b1) = H + iI.

(29)

Generally, however, a two-constituent element may be multiplied under a rule different
than that of the distributive law applying to real numbers. In the case of complex numbers,
the dot product of complex numbers may be used, too [34].

a·b = ∑
i

aibi. (30)

This product type is definitely used to solve spatial tasks because it is directly related
to the Pythagoras theorem.

A new approach is that the multiplication procedure leads to a dual solution. That is
why, unlike in the case of the usual representation of the dot product of complex numbers,
a special multiplication sign is used.

Definition 4. The dot product of complex numbers a, b in exponential form may be as follows:

a·1b = K1eiϕ1 ·1K2eiϕ2 = K1K2e−i(ϕ1−ϕ2), (31)

a·2b = K1eiϕ1 ·2K2eiϕ2 = K1K2ei(ϕ1−ϕ2), (32)

where ·1 is a sign for the planar product of complex numbers, while index 1 expresses a change of
the first component into a complex conjugate. In the case of index 2, the second component of the
product changes into a complex conjugate.
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For the dot product of complex numbers in algebraic form, we obtain

a·1b = ab = (a1 − ia2)(b1 + ib2) = a1b1 + a2b2 + i(a1b2 − a2b1) = F + iG; (33)

alternatively, if the second number is replaced with a complex conjugate, we obtain

a·2b = ab = (a1 + ia2)(b1 − ib2) = a1b1 + a2b2 − i(a1b2 − a2b1) = F− iG. (34)

The following identities hold:

a·1b = b·2a,a·2b = b·1a. (35)

Note. Complex numbers may be viewed as vectors having their initial point in the coordinate
system’s origin. As can be seen, the dot product of complex numbers fully corresponds with geometric
product of vectors as well as with the sum of the F, G elements of the right side of the first form of
the Lagrange’s identity. Through introduction of the vector space base reflection, equations can be
derived also for the H, I elements of the second form of the Lagrange’s identity. The only difference
between the dot product of complex numbers and geometric product of vectors is the presence of an
imaginary unit. This difference is similar to a difference between a complex and a real plane, as in
the Figure 2. Formally, it can be asserted that designating the wedge product as e12 corresponds—as
to its meaning—to the imaginary unit i. However, to avoid misunderstanding, the imaginary
unit in the case of a dot product of complex numbers is of a different nature than the one used in
multiplying complex numbers. For example, squaring the imaginary unit yields the absolute value
of the imaginary unit in this case

i·1i = −ii = 1. (36)

A plane created by the dot product of complex numbers is a complex plane, but the
calculations differ.

Figure 2. Various forms of representing a point in plane: (a) real plane with a matrix vector product;
(b) vector plane with a geometric vector product; (c) complex plane with a dot product of complex
numbers.

7. Second Order Tensor Relationship with Different Forms of Vector Multiplication in
2D Space

There are essentially three ways to define a tensor, which reflect the chronological
evolution of the notion through the last 140 years or so [35]:

• As a multi-indexed object that satisfies certain transformation rules,
• As a multilinear map,
• As an element of a tensor product of vector spaces.

The last two methods are independent of the coordinate system. However, for our
purposes, the definition in the form of multi-indexed object is suitable. In general, a
tensor is defined as multidimensional array. An nth-rank tensor in m-dimensional space is a
mathematical object that has n indices and mn components and obeys certain transformation
rules. Each index of a tensor ranges over the number of dimensions of space. This is a
higher-order generalization of the fact that a 2-tensor, i.e., a linear operator, a bilinear form,
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or a dyad, can always be represented as a matrix [36]. Only second-order tensors with
an orthonormal basis can have a relationship with various forms of vector multiplication
since the result is bound to metric space. For these tensors, it is not necessary to distinguish
between covariant and contravariant indices, and therefore, notation is possible in the
following index form:

B′kl = ∑
i

∑
j

Rki Bij Rl j , (37)

where Bij is a second-order tensor; Rki, Rl j are regular matrices; and B′kl is a second-order
tensor with changed basis. In matrix form, it is

B′ = RBR−1 . (38)

The matrices B, B′ are similar because the square matrix R is regular. All similar square
matrices that have the same Frobenian norm simultaneously have the same characteristic
polynomial.

The outlined principle of tensor expression is used for generating all other tensor
ranks. This means that, for example, it holds for rank 1 that a matrix of transformation R
exists from the first to the second base, which transforms the said vector. This vector is, at
the same time, a rank-1 tensor.

u′ = Ru, (39)

where u is a column vector expressed in the first base, and u′ is one and the same vector
expressed in the second base. Written in index form,

u′k = ∑
i

Rikui. (40)

This principle of generating tensors of various ranks assumes that any arbitrary tensor
and hence also a vector is invariant with respect to a change in the base. In this sense, a
vector invariant can only be the vector’s size.

7.1. Description of Symmetric 2D Tensor and Relationship with Lagrange’s’s Identity

As mentioned above, different forms of vector multiplication are interconvertible
using the right side of the Lagrange’s identity. Therefore, vector multiplication relations
expressing a tensor will be convertible to all forms of vector multiplication. Taking the
dyadic product creates a square matrix that can be used to describe the tensor.

A square matrix is a part of the same tensor if, upon a change in input parameters, it
maintains its norm and invariants. The size of the matrix is characterized by the Frobenius
matrix norm. If the matrix is to describe some congruent transformation, this norm should
be constant. Invariants can be derived from the matrix B characteristic polynomial

pB(λ) = det(B− λI), (41)

where I is the identity matrix, and λ is a variable representing matrix eigenvalues. We
determine the roots of the characteristic polynomial from the equation below.

det(B− λI) = 0. (42)

Adjusting it, we obtain the following form:

λ2 − λtr(B) + det(B) = 0 , (43)

where tr(B) is the trace as the first invariant, and det(B) is determinant as the second
tensor invariant. These invariants may also be expressed by means of input elements of
Lagrange’s identity

det(BI) = a1b1a2b2 − b1a2b2a1 = KN − LM = 0. (44)
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Similarly, the determinant is zero also in the case of the second form of dyadic product
BI I . The trace has the following form:

tr(BI) = tr(BI I) = a1b1 + a2b2 = F. (45)

The Frobenius norm for general matrix is in the following form:

‖B‖F =
√

tr
(
BTB

)
, (46)

where BT is the matrix transposed to matrix B. Expression employing input elements has
the following form:

‖B‖F =

√
(a1b1)

2 + (a1b2)
2 + (a2b1)

2 + (a2b2)
2. (47)

Using the elements of the right side of the Lagrange’s identity, the norm results are in
the following form:

‖B‖F =
√
(K)2 + (L)2 + (M)2 + (N)2 =

√
(F)2 + (G)2 =

√
(H)2 + (I)2 = E = const. (48)

It can by assumed from the last equation that a congruent transformation describes
the H component in the form of the matrix trace. Through transformation of rotation
and reflection, a change in the base of vector space can be achieved. For example, if we
want to express object reflection around the first coordinate axis, it is necessary to change
the polarity of the second coordinate of the selected vector. Then, a vector in the form of
br = (b1,−b2), where the index r denotes reflection, represents reflection around axis 1.
Reflection also maintains the matrix norm, as is evidenced from the following equations:

aT .br =

[
a1b1 −a1b2
a2b1 −a2b2

]
=

[
K −L
M −N

]
= BIr, (49)

det(BIr) = −a1b1a2b2 + b1a2b2a1 = −KN + LM = 0, (50)

tr(BIr) = a1b1 − a2b2 = H. (51)

As can be seen, all dyadic product components expressed through the matrix norm
can be rewritten using the symbols of the right side of the Lagrange’s identity. That is
why the same relationships apply to the reverse vector matrix product transformation
as to the reverse transformation of the Lagrange’s identity. This proves the fact that
reconstruction of original components is possible only partially, according to Theorem
1. This result speaks of the possibility to express tensors through dyadic product of two
vectors, but an unambiguous reverse transformation is not possible. Thus, transformation
equations written as a matrix apply only to right sides of the Lagrange’s identity and the
dyadic product

B =

[
a1b1 a1b2
a2b1 a2b2

]
=

[
K L
M N

]
=

1
2

[
F + H I + G
I − G F− H

]
. (52)

Let the symmetric 2-tensor be defined generally by means of two-index elements, and
let it be the result of some dyadic vector product. The symmetric matrix has the form of

A =

[
a11 a12
a21 a22

]
=

[
K L
L N

]
, for a21 = a12, (53)
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where aij are input elements of the symmetric matrix. Roots of a characteristic polynomial
of a symmetric tensor can be determined in the following way:

pA(λ) = det(A− λI) = 0, (54)

λ2 − λ(a11 + a22) + (a11a22 − a12a21) = 0, (55)

λ1,2 =
(a11 + a22)±

√
(a11 + a22)

2 − 4(a11a22 − a12a21)

2
. (56)

where I is the identity matrix, and λ1, λ2 are eigenvalues of the matrix A. The Frobenius
norm of the symmetric matrix A is in the following form:

‖A‖F =
√

tr2A− 2detA =
√

a2
11 + a2

22 + 2a12a21 =
√

λ2
1 + λ2

2 =
√

K2 + N2 + 2L2. (57)

7.2. Description of the General Tensor and Relationship with the Lagrange’s Identity

A general tensor, which emerged from dyadic product of vectors, is a sum of a
symmetric and an skew-symmetric matrix. Components are now represented by two-index
elements.

B = A + C =

[
K L
M N

]
=

[
b11 b12
b21 b22

]
=

[
a11 a12
a21 a22

]
+

[
c11 c12
c21 c22

]
, (58)

[
b11 b12
b21 b22

]
=

[
b11

1
2 (b12 + b21)

1
2 (b21 + b12) b22

]
+

[
0 1

2 (b12 − b21)
1
2 (b21 − b12) 0

]
, (59)

[
b11 b12
b21 b22

]
=

[
K 1

2 (L + M)
1
2 (M + L) N

]
+

[
0 1

2 (L−M)
1
2 (M− L) 0

]
. (60)

The degree of the general tensor asymmetry is expressed only by the element b21. If
b21 = b12, then C is a zero matrix, and the general tensor is, at the same time, a symmetric
tensor.

To the skew-symmetric tensor C, the following applies:

− c21 = c12, (61)

c11 = c22 = 0, (62)

c21 =
1
2
(b21 − b12) = const. (63)

The value of c21 is constant and independent of a change in the transformation param-
eter ϕ. Then the following must hold:

C′ = C. (64)

The transformed tensor B′ will have the form below.

B′ = A′ + C. (65)

A sufficient condition for describing a plane is to have three parameters available. This
condition is met by the symmetric tensor. In the case of a general tensor with four different
parameters, the description is that of a curved space. The symmetric tensor does not enable
an unambiguous reverse transformation to arrive at the original vector product elements
either. However, a condition may be established determining the ratio of the input vector
elements so that the result of dyadic product is a symmetric tensor. The following equation
constitutes that condition:

a1

a2
=

b1

b2
. (66)
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It can be derived from Equations (10) and (11) when L = M. The Figure 3 below
represents transformation options between individual mathematical entities.

Figure 3. Relationships transformability in a 2D plane.

8. Total Geometric and Matrix Product

In the case of geometric vector product and the dot product of complex numbers, each
component was multiplied according to the rules of vector calculus. In the matrix vector
product, vector components were considered to be only numbers, and vector calculus was
not applied. However, on the other hand, the matrix vector product created all kinds of
possible products between the input elements. By combining both multiplication types
rules, a total geometric and matrix product can be created.

Definition 5. Through different ordering of the transposed vector in the form of a sum of vari-
ous products, a multivector emerges. Changing the order of multiplication of the input vectors
a = (a1, a2) and b = (b1, b2) gives rise to two possible forms.

First form

a� b = a.bT + a∧ bT + aT.b + aT ∧ b =
= a1b1e1·e1 + a2b2e2·e2 + a1b1e1 ∧ e1 + a2b2e2 ∧ e2+

+

[
a1b1e1·e1 a1b2e1·e2
a2b1e2·e1 a2b2e2·e2

]
+

[
a1b1e1 ∧ e1 a1b2e1 ∧ e2
a2b1e2 ∧ e1 a2b2e2 ∧ e2

]
=

= a1b1 + a2b2 +

[
a1b1 0

0 a2b2

]
+

[
0 a1b2e12

−a2b1e12 0

]
=

= a1b1 + a2b2 +

[
a1b1 a1b2e12

−a2b1e12 a2b2

]
,

(67)

where the sign � designates a total geometric and matrix product. Similarly, the second
form of the total geometric and matrix product has the following form:

b� a = b1a1 + b2a2 +

[
b1a1 b1a2e12

−b2a1e12 b2a2

]
. (68)

Since no other forms of multiplication exist, the matrix of the total geometric and
matrix product may be considered a total tensor.

9. Differential Dependence of the Tensor Components

Gradient, divergence, and curl of a vector field are defined only for 3D space, using the
vector product of vectors. The use of the geometric matrix product enables the definition of
these concepts for other dimensions as well.
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Definition 6. Let several points in a plane compose a tensor field. If the value of the multivector,
which includes a tensor, changes with the change of position of a point in metric space, the degree of
change can then be expressed through derivation. In such case, the tensor is a function of the space
variables T(x1, x2, . . . , xn). Derivation of the total rank-2 tensor in a plane defines a gradient of the
tensor function T.

d(a� b)
dxi

=
∂(a1b1 + a2b2)

∂x1
+

∂(a1b1 + a2b2)

∂x2
+

[
∂a1b1
∂x1

e12
∂a1b2
∂x2

−e12
∂a2b1
∂x1

∂a2b2
∂x2

]
. (69)

The matrix part of the total tensor derivation is a tensor function gradient T

gradT =

[
∂a1b1
∂x1

e12
∂a1b2
∂x2

−e12
∂a2b1
∂x1

∂a2b2
∂x2

]
=

[
∂T11
∂x1

e12
∂T12
∂x2

−e12
∂T21
∂x1

∂T22
∂x2

]
. (70)

Definition 7. The sum of the gradient elements with the dot product expresses divergence of the
tensor function T.

DivT =
∂T11

∂x1
+

∂T22

∂x2
= ∇·T . (71)

Definition 8. The sum of the gradient components with the wedge product expresses the curl of the
tensor function T.

rotT = e12

(
∂T12

∂x2
− ∂T21

∂x1

)
= ∇∧ T . (72)

Note. The equations above express the fundamental theorem of geometric calculus [37], which takes
the form of

∇T = ∇·T +∇∧ T, (73)

where ∇T if the geometric product, and it cannot be replaced with a gradient.

10. Visualization of 2D Space Properties Using Second-Order Tensors

Capturing a tensor through utilizing indices results in good computational properties,
but it has a low degree of illustrativeness in terms of geometric rendering. In the case of
a vector, the change in the base is carried out through a rotational matrix. Thus, there is
a relative movement of the coordinate system with respect to the vector. The task may
be reversed in a way in which the vector rotates, and the coordinate system remains
unchanged. In such case, the geometric interpretation of the change in the vector’s end
point position is a circle with the center lying in the origin. This is a relativistic view of
tensor interpretation.

In the case of rank-2 tensors, the same interpretation philosophy may be applied. All
maps of similar matrices elements constitute geometric interpretation of the tensor with
respect to an unchanging coordinate system. The tensor is then expressed through angular
parameters. In such case, the tensor is an omnidirectional geometric shape designated as a
tensor glyph. If an angle ϕ of the coordinate system’s base rotation is marked graphically
on such tensor, as it is in the Figure 1, then the angular tensor expression has the same
information content as its notation by indices.

In the symmetric matrix case, it is necessary to verify transformational properties that
guarantee the Frobenius norm value’s immutability. Eigenvalues λ1, λ2, which constitute
legs of a right triangle in the coordinate system, may be determined for any chosen symmet-
ric matrix. The eigenvalues ratio may be expressed by the tangent of the angle α, subtended
between the vector (λ1, λ2) and the positive part of the axis x

tan α =
λ2

λ1
. (74)
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Then, the angle α is typical for that tensor. When the base is rotated by angle ϕ, values
of the matrix components change, but the angle α remains. This means that the eigenvalues
remain unchanged, and the matrix thus created corresponds to that same tensor.

Drawing on the knowledge of angle ϕ and the size of eigenvalues, elements of the
matrix of rotated symmetric tensor A′ can be computed. Tensor components may be
calculated by applying the following formulae. For a22(λ1, λ2, ϕ), the following holds true:

a′221,2
=

2λ2 cot2 ϕ + λ1 + λ2 ∓
√(

2λ2 cot2 ϕ + λ1 + λ2
)2 − 4

(
1 + cot2 ϕ

)(
λ1λ2 + λ2

2 cot2 ϕ
)

2
(
1 + cot2 ϕ

) . (75)

Derivation of equation is based on properties of symmetric tensor as described in the
article [33]. One root of the quadratic equation represents the initial state and the second
the state resulting from rotation by angle ϕ. For resolving the task, only the rotated state is
interesting. Subsequently, other components of the rotated symmetric tensor are expressed

a′11 = λ1 + λ2 − a′22, (76)

a′21 = cot ϕ
(
λ1 − a′11

)
, (77)

a′12 = a′21. (78)

Visualization of tensor elements depending on angle ϕ means expressing the tensor
elements through their decomposition into components of coordinate axes x, y. Angle
α is determined immutably and is responsible for a particular tensor glyph form of the
symmetric tensor in a plane. Individual coordinates are given by equations

a′11x = a′11 cos ϕ, (79)

a′11y = a′11 sin ϕ. (80)

Other components of tensors B′, A′, and C are determined in a similar way.
The λ1, λ2 parameters are responsible for the tensor glyph form of a symmetric tensor

rendered through visualization of elements of individual similar matrices depending on a
change in angle ϕ. If a unit tensor norm is prescribed, then it is sufficient to characterize
the tensor glyph form through a single parameter α, where α ∈ 〈0, 2π〉.

By changing the angle α, all possible symmetric forms of tensor glyph are obtained as
it is in the Figure 4. These forms are determined by a set of similar matrices. Under discrete
division of angle α, their number is finite. Since the individual adjacent forms are similar,
the total number of possible forms is finite, too.

Figure 4. Change in the form of tensor glyph of a symmetric tensor depending on angle α.
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11. Discussion

The paper does not redact knowledge of tensor calculus, geometric algebra, and
complex numbers theory available so far. In terms of calculations, all results are regular,
and only the manner of interpretation of these known things is different, which enables
a certain detached view of the issue of metric space. This new understanding of well-
known things is facilitated by the use of new mathematical tools, summed up in the bullet
points below:

• Lagrange’s identity and its relation to metric space;
• Enhancement of geometric product to include forms for which the result is a zero;
• Using the e12 designation for wedge product of components, which resulted in the

form of writing similar to that of the dot product of complex numbers;
• Use of two forms of the dot product of complex numbers;
• Introduction of total matrix and geometric product;
• Relativistic interpretation of a change in tensor values with respect to the base, re-

sulting in writing the tensor in angular form and making it possible to obtain its
visualization in the form of tensor glyph.

Basic spatial relations have been expressed for a 2D plane, as it is sufficiently simple
and illustrative. It goes without saying that here, too, these means can be applied to
higher dimensions.

12. Conclusions

A new view of known things through a new means of looking at them offers a certain
clarification of some well-established definitions of mathematical entities, for example,
definitions of divergence and curl. In this system, divergence and curl play the role of
multivector components.

The value of this paper lies in a definition of the total matrix and geometric product in
the form of a multivector, which features an added scalar part in addition to being written
as a matrix. The link between the notation by indices of tensors and the angular writing of
tensors using matrix eigenvalues is also pointed out. Overall, the main importance of the
Lagrange’s identity is brought to the fore, as it is integrally related to vector space.
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