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Abstract: SARS-CoV-2 continues to upend human life by posing novel threats related to disease
spread and mutations. Current models for the disease burden of SARS-CoV-2 consider the aggregate
nature of the virus without differentiating between the potency of its multiple strains. Hence, there
is a need to create a fundamental modeling framework for multi-strain viruses that considers the
competing viral pathogenic pathways. Alongside the consideration that other viral pathogens may
coexist, there is also a need for a generalizable modeling framework to account for multiple epidemics
(i.e., multi-demics) scenarios, such as influenza and COVID-19 occurring simultaneously. We present
a fundamental network thermodynamics approach for assessing, determining, and predicting viral
outbreak severity, which extends well-known standard epidemiological models. In particular, we use
historical data from New York City’s 2011–2019 influenza seasons and SARS-CoV-2 spread to identify
the model parameters. In our model-based analysis, we employ a standard susceptible–infected–
recovered (SIR) model with pertinent generalizations to account for multi-strain and multi-demics
scenarios. We show that the reaction affinities underpinning the formation processes of our model
can be used to categorize the severity of infectious or deceased populations. The spontaneity of
occurrence captured by the change in Gibbs free energy of reaction (∆G) in the system suggests
the stability of forward occurring population transfers. The magnitude of ∆G is used to examine
past influenza outbreaks and infer epidemiological factors, such as mortality and case burden. This
method can be extrapolated for wide-ranging utility in computational epidemiology. The risk of
overlapping multi-demics seasons between influenza and SARS-CoV-2 will persist as a significant
threat in forthcoming years. Further, the possibility of mutating strains requires novel ways of
analyzing the network of competing infection pathways. The approach outlined in this study allows
for the identification of new stable strains and the potential increase in disease burden from a complex
systems perspective, thereby allowing for a potential response to the significant question: are the
effects of a multi-demic greater than the sum of its individual viral epidemics?

Keywords: compartmental model; COVID-19; network thermodynamics; emerging viral strains

MSC: 80-10; 92B05; 92-10

1. Introduction

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has renewed the urgency of new epidemiological studies. SARS-CoV-2 has infected over
200 million people worldwide leading to over 4 million fatalities through August 2021.
Estimates suggest that SARS-CoV-2 case-fatality rates vary between 1.4% (India) and 3.5%
(Peru) and as high as 8.8% (Mexico) [1]. Early estimates from China suggest that at least
18.4% of those infected over the age of 80 will be hospitalized. With high transmissibility
and prevalence, the emerging SARS-CoV-2 variants—including Alpha, Beta, Gamma,
Epsilon, Delta, and so on—have piqued interest and urgency in classifying emergent viral
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dynamics. Hence, model-based analyses will play an important role in guiding our fight
against the current SARS-CoV-2 outbreak [2].

In compartmental model-based epidemiology, metrics pertaining to infection, expo-
sition, hospitalization, death, etc., are characterized through interaction within the popu-
lation. A vast array of compartmental models have been proposed to analyze infectious
diseases. Compartmental modeling methods are so ubiquitous that their archetypes can
be marginally modified to produce models capable of capturing the complex dynamics of
many different infectious outbreaks [3,4]. Early in the progression of SARS-CoV-2, SIR mod-
els were employed to make estimates about severity [5,6]. Large meta-population network
transmission models provided inter-neighborhood information about the SARS-CoV-2
outbreak of Spring 2020 in New York City [7] and helped inform public health decisions.
In computational epidemiology, widely used SIR models abstract simple directed networks
of representative compartments that illustrate the flow of infected individuals between the
compartments. For the purposes of modeling the SARS-CoV-2 pandemic, it is increasingly
apparent that the complexity of compartmental models must be increased such that models
are at least “complex enough” [8]. Researchers have designed several specifically adapted
compartmental models to represent the SARS-CoV-2 pandemic [9–12].

Here, we propose that these increasingly complex compartmental models can be
expressed as directed graphs that are well suited for network thermodynamic (NT) analy-
ses [13] as a means to deduce the severity of an outbreak, and stability of emergent strains.
The NT modeling paradigm allows for parameter lumping, which can maintain the model
complexity needed for complex biological processes while reducing dimensionality and
maintaining parameter explainability. NT analytical tools allow for stability assumptions
in emergent strains similar to the theory of chemostat [14], with small additional computa-
tional expense and wide adaptability to existing compartmental models. In this context,
thermodynamic methods become relevant; such methods have much utility in mass-action-
based dynamical systems [15,16]—a class of problems closely related to systems defined
by compartmental epidemiology-based equations. Our model presents a new form of the
classic compartmental model which is generally scalable and can capture the dynamics of
emerging viral mutations. In 2015, Browne proposed a model which included emergent
strains within-host in the case of incubating human immunodeficiency virus (HIV) [17].
Eletreby et al. highlighted the importance of including evolutionary effects in network ap-
proaches to epidemiology by characterizing a threshold by which strains may emerge [18].
Fudolig and Howard devised multi-strain models for influenza in which vaccination gives
rise to immunity and mutations [19]. The novelty contained herein lies in the scalability
and ability to capture emergent strains within-population. The scalability is such that
this modeling paradigm can be easily adapted to SIR-type models of any size. Further,
when the NT-based model is trained on concurrent infection data, compartments can be
easily added or subtracted to reflect physical observations and further infer the danger of
emergent strains.

As model-based epidemiological approaches rely on more complex compartmental
networks, the corresponding thermodynamic analysis of affinities between populations
provides insight pertaining to the competing nature and stability of the vast network
pathways. Previous work toward the theory of chemostat [14] discusses the stability of
emergent strains through the arduous composition of Lyapunov functions. De Leenheer
and Pilyugin worked out a multistrain model by which Lyapunov stability functions govern
the dominant strains [20]. The proposed network thermodynamic approach brings to bear
novel tools in the domain of computational epidemiology. Our framework enables the
modeling of phase transitions in viral pathways, and, by extension, provides a lens through
which threats to public health espoused by twindemics and novel strains can be further
classified as a thermodynamic phenomenon.

In the words of Mikulecky [13], “Network thermodynamics is a marriage of classical
and non-equilibrium thermodynamics along with network theory and kinetics to provide a
practical framework for handling these systems”. This approach, built on the framework of
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Rosen’s ‘relational theory’ [21], is particularly apt for studying nonlinear dynamical systems
which are out of thermodynamic equilibrium by focusing simultaneously on different scales
of a system: (a) the larger overall topological structure of the system; and (b) the smaller
internal functionality of each component which is captured by their relational aspects and
described by the energetic exchanges described by the corresponding models, wherein
applying the NT approach in the context of compartmental epidemiology, the stability
of emergent strains is abstracted by the energetic exchanges overlayed on the relations
in the infection network. The NT approach has found ubiquitous meaning ranging from
electrical, biological to chemical networks, but are yet to be implemented in epidemiological
investigations. The stability and spontaneity of viral pathways can be cast into a network
thermodynamic framework on existing compartmental models. Therefore, the overarching
goal of this study is to expand the arsenal of tools in interpreting epidemiological models.

2. Materials and Methods

In this model-based analysis, we employ a fundamental susceptible–infected–removed
(SIR) model with modifications for twindemic and emerging strain epidemics. The model-
ing paradigm is such that the flow between susceptible, infected, recovered and deceased
populations is discussed as an exchange along a directed graph, and rate constants capture
physical properties, such as infectiousness. Rate constants describing the historical data
of Manhattan’s influenza and SARS-CoV-2 epidemics are computed and used to calculate
network thermodynamic quantities, which correlate with the stability and activity of viral
spread. We first model the individual spread dynamics of both the ongoing SARS-CoV-2
pandemic, and several past flu seasons. Using historical data [1,22] for susceptible popula-
tion, confirmed infections, and influenza/SARS-CoV-2 deaths, a SIR-type compartmental
disease spread model fit is performed. SIR models have thoroughly studied the efficacy in
forecasting viral influenza spread [23–25], and for informing outbreak control strategies in
respiratory disease epidemics [26–28]. From the compartmental model, rate constants gov-
erning infection and death rates are obtained. These transition rates and fitted models allow
the framework to perform a network thermodynamic analysis of the individual spread of
a single viral pathogen. By computing the change in Gibbs free energy (∆G) describing
the thermodynamic spontaneity of the actions between compartments, we suggest a novel
technique in analyzing the stability of emergent pathways in viral models, and a predictive
tool for model-based epidemiology.

SARS-CoV-2 and influenza data are fit using the method of least squares. The gov-
erning equations are solved using a six-stage, fifth-order Runge–Kutta method. These
calculations are performed using the MATLAB lsqcurvefit and ode45 functions, respectively.
Table 1 displays values obtained from the select fits, along with the average standard score
by compartment.

Table 1. Rate values obtained for corresponding influenza seasons, and the first 100 days since first
infection in Manhattan, NY.

Avg. Standard ScoreData (β, δ) Susceptible Infected Deceased

10–11 Flu (1.12668, 1.04069) 1.1300 −0.1352 159.2231
11–12 Flu (1.01358, 0.98706) 0.6862 2.5187 10.8314
12–13 Flu (1.14799, 1.04573) 1.3165 −0.0746 9.8953
13–14 Flu (1.06940, 0.98776) 0.9962 −0.0931 13.3992
14–15 Flu (1.10619, 0.99636) 1.2201 −0.0875 215.7060
15–16 Flu (1.15666, 1.06116) 0.8254 −0.1168 379.5621
16–17 Flu (1.03672, 1.03568) 0.7227 −0.6256 22.4527
COVID-19 (2.84772, 2.76299) 0.6194 −1.9256 31.2687
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2.1. Models

Three models are employed for the purposes of this study. In order to extract infection
and death rates, data are fit to a simple SIR-type compartmental spread model (Figure 1a);
we say SIR-type because recovered individuals are not captured in their own bin and
corresponding assumptions are made to infer the reversibility of the underpinning reactions.
Here, S is the susceptible bin, I is the infected bin, and D is the deceased bin. Rather than a
traditional removed bin, a deceased bin is used in our data fits to best capture the burden of
infectious disease. Furthermore, recovered counts can be easily extrapolated from known
infections and deaths. The Centers for Disease Control and Prevention (CDC) defines
disease burden by infections and mortality per capita. β and δ correspond to rates entering
the infectious and deceased bins. Next, two modified SIR-type models are proposed.

The first twindemic model (Figure 1b) allows the dynamical consequences of two
distinct, concurrent epidemics to be explored. Subscripts c and f denote SARS-CoV-2- and
influenza-type rates and bins, respectively. Here R represents the recovered bin, and an
existing R binallows the dynamics of both viral pathways to interact. Hence, there exists a
connection from Rc to I f and R f to Ic showing that one can recover from influenza just to be
infected by SARS-CoV-2, and vice versa. Additionally, γ is chosen to represent the recovery
rate for the corresponding infection. Because data fits are not performed for recovered
individuals, we estimate γi = 1 − δi such that if an individual has not perished from
SARS-CoV-2 in a certain time, they will recover. This modeling paradigm will allow the
individually obtained rate constants to be used on a multi-pathway compartmental model
and open our analysis to examining the strife of concurrent flu and SARS-CoV-2 spread.

Second, a model based on emergent strains (Figure 1c) is studied. Here, α represents
a mutability parameter—controlling the likelihood of emergent strains mutating. This
model is presented as a general structure upon which multi-strain viral outbreaks can be
studied based on mutability parameters. Where twindemic covers the spread of concurrent
and distinct viruses, the multi-strain model allows the study of viral pathogens which are
closely related by mutations of one another, for example, different sub-types of influenza
or SARS-CoV-2 and its variants, such as Alpha, Beta, Gamma, Epsilon, or Delta. Figure 1d
shows the pathways between the susceptible and deceased nodes in the multi-strain model.
These pathways are the subjects by which the following analyses will determine stable and
emergent strain variations.

The governing equations for each model are shown below. The simple SIR-type model
is used to extract parameters based on historical data. Note that bin concentration data are
normalized by the estimated population of NYC.

dS
dt

= −βSI (1)

dI
dt

= βSI − δI (2)

dD
dt

= δI (3)
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The twindemic model is used to make predictions about concurrently propagating
epidemics.

dS
dt

= −S(β f I f + βc Ic) (4)

dD
dt

= δ f I f + δc Ic (5)

dI f

dt
= β f SI f − δ f I f + β f SRc (6)

dR f

dt
= γ f I f − βcR f S (7)

dIc

dt
= βcSIc − δc Ic + βcSR f (8)

dRc

dt
= γc Ic − β f RcS (9)

(a) (b)

(c) (d)

Figure 1. (a) Schematic of the simple compartmental model to which data are fitted. (b) Schematic of
the compartments in the twindemic spread model. This model allows for the interplay of competing
pathways to infection, thus emulating the possibility of a SARS-CoV-2 epidemic occurring in the
presence of another viral pathogen. (c) Exploratory setup of multi-strain modeling containing a
bridge between mutating pathogens. (d) Schematic of different pathways to infection in the multi-
strain model.

Presented in Figure 1c is the simplest possible multi-strain (emergent strain) model
containing only one mutation. This model could easily be extrapolated to include any num-
ber of distinct viruses, with any amount of possible mutations. For purposes of generality,
we will let subscript i = [1, 2 . . . , n] denote n-many viral mutations (e.g., i = [A, B] for Type
A and Type B influenza). Thus, the governing equations appear as follows:
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dS
dt

= −S
n

∑
i=1

βi Ii (10)

dIi
dt

= βiSIi − δi Ii − Ii

n−1

∑
j=1

(αj) + αi

n−1

∑
j=1

(Ij) , j 6= i (11)

dD
dt

=
n

∑
i=1

δi Ii (12)

Here subscript j denotes a mutation linked to virus j-type, where αj is the rate describ-
ing the likelihood of i mutating to j and αi refers to j mutating to i. Equations (10)–(12)
allow a unique framework for modeling the switching of viral pathogens and, by extension,
the danger of emergent variants. The model is explored in the context of just two influenza
mutations because data are widely available for infections in each category. This model’s
utility will be fully realized when data for SARS-CoV-2 infections are more easily separable
with respect to strain type, and individual rates can be derived.

Once determined, transmission rates can be used to predict future dynamics, but also
to analyze ∆G quantities on the compartmental model. It would also be useful to examine
the individual spread of past flu seasons in addition to the current SARS-CoV-2 pandemic.
This study compares individual spreads to a novel multi-strain model inspired by the
rapidly mutable SARS-CoV-2 virus to answer the question: are the effects of a twindemic
greater than the sum of its individual viral spreads? Ultimately, employing the multi-strain
model in a historical flu season will showcase the efficacy of this model in emergent viral
dynamics, and lay the groundwork for future research on emergent SARS-CoV-2 mutations.

2.2. Thermodynamics

We will employ tools of network thermodynamics [13,29,30] as a means for analyzing
the compartmental models. Such an analysis has proven fruitful in examining the stability
of mass-action type models [15], a class of problems closely related to compartmental
disease spread models. By taking advantage of the similarity between compartmental
models and chemical reactions [31], both models are examined by calculating the change
in Gibbs free energy (∆G) associated with the affinity of reactions [32] underpinning the
population transfer between bins. This thermodynamic-based analysis of network affinities
is useful in modeling a myriad of complex and biological processes [33]. ∆G for the reaction
pathways described by our SIR-type model is a physically apt way to examine the reaction
fluxes and forces in the system [34]. At equilibrium, Gibbs free energy is defined by
∆G0, which is given in terms of the equilibrium constant as ∆G0 = −RT ln Keq. In the
case of a system out of thermodynamic equilibrium, the free energy can be applied to
time-dependent situations in terms of the chemical affinity of the reaction and expressed as

∆G = ∆G0 + ∆̄G

where ∆̄G = RT ln
(

R f /Rr

)
, R f , Rr are the forward and backward reactions rates, respec-

tively. Here, R and T correspond to the Rydberg constant and ambient temperature of the
system. The second term is time dependent and determines the overall direction of the
reaction. More specifically, the expression for free energy can be written as

∆G = −RT ln Keq + ∆̄G

Note that ∆G < 0 is indicative of a spontaneously, forward occurring reaction, while a
positive ∆G implies that the particular reaction requires added energy to occur [34]. For the
following study, we highlight the following possibilities:



Mathematics 2022, 10, 3513 7 of 19

1. When 0 < ∆̄G < ∆G0 or 0 > ∆G0 > ∆̄G and limt→∞ ∆̄G = |∆G0|, the net free energy
of the system, ∆G ≤ 0 for t ≥ 0, therefore supporting the reaction promoting the
formation of the products.

2. Similarly, in the case, where 0 > ∆̄G > ∆G0 or 0 < ∆G0 < ∆̄G and limt→∞ ∆̄G = |∆G0|,
then ∆G ≥ 0 for t ≥ 0 promoting the formation of the reactants.

It is notable that the model studied will reach the non-disease free (or herd immunity)
steady state as t→ ∞. However, in experimental studies of past flu seasons and the current
SARS-CoV-2 pandemic, steady state is not reached. Nevertheless, we conclude that in
sufficient time, ∆̄G will equal |∆G0|. The change in free energy for reactions describing the
population transfer between epidemiological compartments during the active spread of
disease is calculated and used to describe the stability of population transfer.

In this study, the definition of ∆G is based upon a few assumptions in our SIR-type
modeling paradigm. First, the reactions describing the transfer of populations between
bins are out of the chemical equilibrium. This assumption is safe to conclude, as standard
SIR models contain two general types of equilibria: the zero infection case and the herd
immunity case. Since ongoing epidemics are studied in these models, it is assumed that
equilibrium is not achieved in the time frames discussed. Second, it is assumed that the
underlying reactions are reversible processes. Assuming reversibility is unorthodox in
standard compartmental epidemiology, which typically does not discuss the reversibility of
underpinning reactions and implies ipso facto that they are irreversible. This is not without
just cause; it is difficult to discuss what a reversible infection looks like. Seen globally, one
could argue that compartmental models account for reversible reactions through alternate
pathways, which requires the introduction of additional compartments to the system as is
done in our more complex twindemic model. Nevertheless, when we abstract individual
humans as chemical reactants interacting to form products, these sort of interactions are
possible. Many family members have anecdotally observed the following: a person can be
infected with a serious case of a disease, such as COVID-19, become hospitalized, recover
to be discharged, and then relapse only to succumb to their disease later. Alternatively,
a person could be exposed to a viral load sufficient for minor transmission, but not severe
infection, further misconstruing the exactness of the binning structure. There is a similar
uncertainty in the bin labeling data that feeds our model. For example, in the 2015 influenza
season there is a discrepancy between average susceptible, infected, and deceased categories
and the total population. The total population of Manhattan is estimated to be 1.632 million.
At the end of the flu season, about 1.6244 million are still susceptible, i.e., they were not
infected or killed. If we compare the total population of Manhattan to the sum of average
susceptible, infected, and deceased individuals over the entire season, there is about a
%0.009 difference. Computing the difference at each week based on a running average,
there is a standard deviation of ±%0.01. Standard compartmental models add more bins,
such as recovered, hospitalized, or exposed, to catch individuals that do not fall neatly
into the prescribed categories. However, this solution adds more irreversible reactions. We
choose to maintain only the S, I, and D compartments and abstract the lack of individual
bin certainty as reversible chemical kinetics at play. Regardless, our two assumptions are
made to open our model to change in free energy calculations. The validity comes from
the fact that ∆G, describing the forward transmission of infections and deaths, is negative,
suggesting that these reactions occur in a forward direction spontaneously. In other words,
the backward reactions need not occur, but abstracting their existence opens SIR-type
models to the possibilities of chemical kinetic and thermodynamic explorations. Future
studies will require larger model architectures with more bins and pathways, further
accentuating the utility of a NT approach.
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By considering reactions as forward into I and D, we define for individual spread cases

¯∆GI = RTln
(

β
I
S

)
(13)

¯∆GD = RTln
(

δ
D
I

)
(14)

and for twindemic spread cases

¯∆GIc = RTln

(
β2

c
I2
c

SR f

)
(15)

¯∆GI f = RTln

(
β2

f

I2
f

SRc

)
(16)

¯∆GD = RTln

(
δcδ f

D2

Ic I f

)
(17)

Equations (13) and (14) will show the spontaneity at which the population will
transfer into the infected and deceased bins when a single viral pathogen is present.
Equations (15)–(17) give us ∆̄G for forming SARS-CoV-2 infections, influenza infections,
and deaths when both viruses spread on the same population contemporaneously. We build
a directed, chemically inspired network by abstracting the compartmental epidemiological
model as sequential, elementary reaction steps. By treating each individual as a singular
chemical constituent, we examine the change in free energy for each population exchange
between bins. The population in each bin is taken to be the effective concentration of the
corresponding reactant.

The multi-strain model will calculate ∆̄G based upon the network path toward in-
fection. Four network paths are defined in Figure 1d. ∆̄G is calculated along each path
individually in order to separate and identify the stability of each pathway to infection.
Note that ∆G is additive in consecutive elementary steps.

The goal is to extrapolate these equations for any graph, G(V, E) defined by the
connected nodes of the compartmental model.

The following algorithmic approach is applied to formulate the change in free energy
along all possible multi-strain pathways in a compartmental epidemiology model. We
employ a depth-first search (DFS) with backtracking and store all possible paths from source
to destination, given a directed acyclic graph, with one node denoting the susceptible bin,
one node being the deceased bin, and an indeterminate number of mutated infectious
bins. In other words, S, D, Ii ∈ G, where S, the susceptibility bin, is the source node, D,
the deceased bin, is the destination node, and Ii are the intermediate infectious bins with
i = [1, 2, ..., n] as in the general formulation of the governing Equations (10)–(12). We will
utilize several algorithms—one to find all paths in the compartmental model: Algorithm
1 with a modified DFS for traversing the graph: Algorithm 2. Additionally another to
calculate ∆̄G along each path: Algorithm 3 with a subtask to calculate ∆̄G along sub-paths.

Algorithm 1: Find all paths in directed acyclic graph.

Require: S, D, Ii ∈ G , i = [1, 2, ..., n]
Let S = ‘source node’, D = ‘destination node’
all_paths=DFS(S,D,G)
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Algorithm 2: DFS with backtracking.
out=DFS(source,destination,graph)
if source==destination then

A ‘path’ has been found. Push path in the list all_paths
else

for every adjacent node ‘adj_node’ that is adjacent to source do
Push adj_node in the path
DFS(adj_node,destination,graph)
Pop adj_node from path

end for
end if
return all_paths

Algorithm 3: Calculate ∆̄G for each path.
Require: all_paths is list of lists obtained from Algorithm 1

for j in length(all_paths) do
¯∆Gj = Gibbs(all_paths,j)

end for

Thus, we compute a list of all paths in the form of a list of lists, where each entry is
a list of adjacent nodes in a path from susceptible to deceased. We employ two further
algorithms to calculate ∆̄G along each path by computing the change in free energy for
each edge in all paths, and adding them together. Here, K and K + 1 are the effective
concentrations of products and reactants in the reaction underpinning the (K, K + 1) edge
of the graph, respectively. rk is the reaction rate between the K and K + 1 nodes.

Algorithms 1–4 present a framework for which ∆̄G can be calculated along all path-
ways in any directed acyclic graph. Extensions of this work will be applied to the highly
mutable SARS-CoV-2, thus spawning many network paths and increasing non-linearity.
The utility of this analysis on complex SIR networks, such as the framework laid out in
Equations (10)–(12) and Algorithms 1–4, will be to provide the ability to ascertain stable
pathways in vast networks. This will be invaluable in future versions of this work when
dynamic quantities in each bin are highly interdependent on many other bins.

Algorithm 4: Calculate ∆̄G for a given sub-path.
out=Gibbs(l=list of all paths, i=index location of path)
for for k in length(l[i])−1 do

Let K = l[i][k] , K + 1 = l[i][k + 1]
eqn=eqn+RTln(rk

K+1
K )

end for
return eqn

2.3. Dominant Pathway Determination

In Section 3 we employ a game-theoretic framework to discuss the dominance of each
pathway to infection. This dominant pathway analysis was performed in fundamentally
similar mass-action-based models of protein aggregation [15,35] and fluid interface particle
flocking [36]. The viral pathways toward infection, as defined by Figure 1d, are treated as
players in a competition to decide which pathways are forming infections in a dominant
fashion. We perform a game analysis on the multi-strain model to classify the dominant
network pathway. In essence, each pathway toward infection is categorized as a player,
and each player competes to be the most dominant. A pathway is considered dominant
when each constituent node in the pathway has a larger concentration than its counterpart
at the same level. In the current toy model, we are strictly interested in comparing the size
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of each infected bin. The simple SIR-type multi-strain model provides a framework by
which this process can be extrapolated to properly capture rapidly mutable respiratory
viruses, such as SARS-CoV-2. In the case of a larger network and more complex binning
structure, pathways are more complex. In the simple two-pathway case, Type A and Type
B influenza, our model is governed by the following characteristic equations:

dS
dt

= −S(βA IA + βB IB) (18)

dIA
dt

= βASIA − δA IA + α1 IB − α2 IA (19)

dIB
dt

= βBSIB − δB IB + α2 IA − α1 IB (20)

dD
dt

= δA IA + δB IB (21)

We solve these equations employing the MATLAB ode45 solver. ode45 is a six-stage,
fifth-order Runge–Kutta method. At each time step, we compare the values of each
bin, and declare a winner of the pathway game. It is apparent that as the complexity
of the system increases, so will the difficulty in solving the equations underpinning the
pathway game.

The game analysis can provide insight into strain dominance as a function of time,
and viral mutability. Phase diagrams inform the payoff matrix, which tells us the parameter
range for which a strain becomes dominant. In the influenza cases, the system is strongly
biased toward Type A flu. For this reason we see the A pathway and AB pathway dominant
in the beginning of each season. When enough time has passed, and mutability is high
enough, the B and BA pathways may gain dominance. With the eventuality of reliable
rates for each strain of SARS-CoV-2, this infection pathway analysis will be valuable for
determining the danger of emerging strains. The possible system’s states are illustrated by
a phase space, dependent upon the position in time (t) of the flu season and the value of
the mutability parameter α2. The dominant pathway is calculated with each combination
of parameters. The A-pathway is dominant if Type A infections > Type B infections and
Type B infections < 0.00001. The BA pathway is dominant if Type A infections > Type B
infections and Type B infections > 0.00001. The B pathway is dominant if Type A infections
< Type B infections and Type B infections > 0.00001. Finally, the AB pathway is dominant
if Type A infections < Type B infections and Type B infections < 0.00001. The threshold
0.00001 is chosen because, on average during the 2015 influenza season, 0.00001% of the
NYC population was infected by Type B influenza; this is universally lower than Type A
influenza. In applications of this model toward the SARS-CoV-2 virus, we could reasonably
expect this threshold to be lower or nonexistent, as emerging strains have shown the ability
to become dominantly infectious. α2 and t determine the bridge pathways’ dominance if
Type B cases are above or below the threshold. Thus, for any flu season, a payoff matrix is
determined by the duration of spread and the value of a viral strain’s mutability, as seen in
Table 2.

Table 2. The table shows the dominant pathways for given choice of time and mutability. Estimations
for the conditionals are based on the general shape of the phase diagram. Most notably, α2 has a
noticeable switch at about α2 = 1, while the time at which a pathway switch occurs is based on
the magnitude of α2. The equations shown as column headers are best-fit curves for the borders of
red/purple and green/cyan.

t < −28.33(α2) + 63.33 t > 94.79(α2)2 − 155.51(α2) + 98.75

α2 > 1 AB-pathway B-pathway

α2 < 1 A-pathway BA-pathway
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3. Results

∆̄G calculations are performed on individual epidemic spread of Influenza and SARS-
CoV-2. ¯∆GI and ¯∆GD are compared to epidemic severity measures such as death and
infection counts. Fits are performed for data extracted from New York County, NY. Data are
courtesy of Johns Hopkins [1] and the Centers for Disease Control (CDC) [22]. The change
in free energy of reaction is examined in three contexts: individual spread, or case studies
of of past flu seasons; twindemic forecasting, or theoretic contemporaneous spread of
SARS-CoV-2 overlaid with previous flu seasons; multi-strain model, or an application of
the scalable multi-strain epidemic model for Type A and Type B influenza.

In Figure 2a–i and moving forward, t denotes the number of weeks since the beginning
of the influenza season or SARS-CoV-2 spread. First, ∆̄G calculations are examined in the
context of past flu seasons.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. In (a−i) The green line represents ¯∆GI and the red line is ¯∆GD. Flu season beginning
(a) 2010 (b) 2011 (c) 2012 (d) 2013 (e) 2014 (f) 2015 (g) 2016 (h) 2017 (i) 2018.

Individual spread: A strong source of model validity will be the thermodynamic
analysis on the viral spread for previous flu seasons. The results will be compared to CDC
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estimates for the “burden” of an individual influenza epidemic. The CDC defines a season’s
burden based on confirmed infections and deaths. We present ∆̄G values generated by
our model through recent flu seasons. Figure 2a–i shows the thermodynamic behavior
captured by the rate constants in our fit.

Here, it is shown how the thermodynamic activity between bins behaves during
different influenza epidemics. Across each season in Figure 2a–i, a lower number of deaths
near the end of each season corresponds to − ¯∆GD becoming less negative. It is generally
true that deaths wane at the end of an influenza season, and the same is true for − ¯∆GD,
which generally increases after the peak of the influenza season. Depicted in Figure 2a–i,
around the middle of each season, there is a concave down segment of ¯∆GI corresponding
to a peak in new infections. ¯∆GI provides a pre-severity measure: spontaneity is highest as
infections grow, and lowest when infections peak and subsequently begin to die out. Some
flu seasons with a multimodal distribution of infections, such as in 2013 (Figure 2d), contain
an inflection point in their concave down section of ¯∆GI . This is another pre-severity
measure. ¯∆GI returns to the baseline just before the new season is set to begin. One can
imagine the rightmost side of panel (a) connecting to the leftmost edge of panel (b) as
data for new infections are collected continuously from year to year. The same is not true
for ¯∆GD because the death counts reset each flu season. Spikes in both ¯∆GI and ¯∆GD are
artifacts of weeks near the beginning or end of an infectious season reporting zero new
infections. For the purposes of data smoothing to avoid computational singularities, we
estimate zero infections to be equal to 10−7 new infections. Nevertheless, the change in
magnitude helps illustrate how ∆G is sensitive to sudden changes in concentrations.

We further examine ¯∆GD values for the 2014, 2015, and 2016 flu seasons as an inter-
esting change in burden that occurs in these sequential years. Figure 3a shows that the
years 2014 and 2016 have similar profiles, while 2015 has a later and less-burdensome death
count. This is reflected in Figure 3b, where − ¯∆GD for each year is minimal just before the
steepest point of its corresponding deaths curve. The correlation is most apparent in the
delayed time for − ¯∆GD in 2015 to reach the minimum. Thus, the comparison of 2014 and
2016 to 2015 in Figure 3 affords two important conclusions: the overall burden of a year’s
infections correlate to the persistence of relatively highly negative − ¯∆GD values, and the
timing of peak burden tracks closely with the minimum of − ¯∆GD.

Twindemic forecasting: By taking rate constants derived from individual spread
dynamics, we apply those constants to initial conditions based on the current population
to understand how the interplay of two viral pathways might give rise to an increase in
network thermodynamic activity, measured by ∆G. In compartmental models, network
thermodynamics can answer the question: does the existence of two distinct viral pathways
increase the activity along the branches of a compartmental epidemiological network?
In other words, is a twindemic’s burden greater than the sum of its viral parts? The
answer to this question could have implications in the future of SARS-CoV-2 and influenza
twindemics and the rising threat of quickly mutating respiratory viruses.

We examine the effects of adding a second viral pathway on the baseline of ¯∆GIc . We
sample the data from the first months of the SARS-CoV-2 outbreak in NYC and overlay
those data with a small sample of our previously explored flu seasons from 2010 to 2014
during peak infectiousness. For each season studied in Figure 4, any parallel viral pathway
increases the infectious thermodynamic activity of a viral outbreak. Hence, the methods
proposed are valuable in predicting the future interplay of SARS-CoV-2 and seasonal
influenza and how this interplay affects disease burden.
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Figure 3. (a) The number of deaths weekly in NYC for the influenza seasons beginning 2014 (solid),
2015 (dotted), and 2016 (dashed) and (b) the values of ¯∆GD for the corresponding influenza seasons.
This graph is cut to t = 30 to capture just the area of concern.

Figure 4. Plot comparing the baseline ¯∆GIc for the beginning of the SARS-CoV-2 outbreak and
average ¯∆GIc values over an Influenza season while SARS-CoV-2 is overlaid with a distinct viral
pathogen corresponding to infectiousness gathered during the Influenza season beginning 2010, 2011,
2012, and 2013. Black bars indicate the baseline ¯∆GIc for SARS-CoV-2 outbreak. Red bars indicate the
increasing spontaneity into the infected bin when the epidemics occur simultaneously.

For the 2020–2021 flu season, these predictions would be difficult because of the col-
lateral effects that mitigation efforts, such as masking, distancing, and lockdowns, have
produced. However, as data become more widely available, periods of time where interven-
tion techniques were mandated can be compared to non-mandated regions or time frames
to further infer the effect of imposed mitigation. Further thermodynamic investigation
of SARS-CoV-2 variants could help understand the stability of novel mutations and their
infectious pathways. Quantifying the conception that the kinetic implications of multi-
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pathway viral epidemics can contribute to increased infectiousness may help reconcile the
boom of cases found around SARS-CoV-2 variants.

Multi-strain model: Finally, a model based on emergent strains is studied. An explo-
ration toward the efficacy of this model is performed based on the Type A and Type B
influenza seasons beginning in 2015. This season is chosen for an ample distribution of
both Type A and Type B influenza. As before, data fits are performed for infection and
death rates: βA and δA for Type A and βB and δB for Type B. This modeling paradigm
then introduces rates along a bridge between infectious categories that is interpreted as
mutability between strains. Here, α1 is the likelihood of Type B mutating to Type A, and
α2 is Type A mutating to Type B. In the emerging strain model, α1 is set to 1 by normaliza-
tion and we exert control on virus mutability by varying α2 from 0 to 3. By employing a
game-theoretic analysis of pathway domination [15] we determine the dominant infectious
pathway throughout an entire influenza season as a function of α2. Essentially, we classify
dominant pathways by comparing the dynamic concentrations of each compartment.

The dynamics of a viral epidemic in the emergent strain model will rely heavily
upon the chosen mutability parameter. The A pathway to infection is dominant with
sufficiently low α2 Conversely, the B pathway is dominant with sufficiently high values of
α2. In between, there are critical values of α2 where pathway switching occurs. In context,
this phase diagram shows the emergence of potentially more dangerous strains. Based on
known mutability and epidemic length, the phase diagram and payoff matrix offer insight
into when controls of spread should be established.

These figures inform the payoff matrices, seen in Table 2, which displays the parameter
range for which a strain becomes dominant. In the influenza cases, the system is strongly
biased toward Type A flu. For this reason, we see the A pathway and AB pathway being
dominant in the beginning of each season. When enough time has passed, and mutability
is high enough, the B- and BA pathways may gain dominance. With the eventuality of
reliable rates for each strain of SARS-CoV-2, this infection pathway analysis will be valuable
for determining the danger of emerging strains. The reason we choose to present the 2015
season in the main study is because Type B flu has substantially many infections such that
it can become dominant. In 2016, Type-A contains a larger majority of infections, thus the
B-pathway is not likely to become dominant.

Ultimately, we will examine the executable control on the multi-strain model through
the mutability rates. We will generate values for infections and ∆G for viral pathways with
various levels of α2.

With mutability rates set to zero, the multi-strain model reverts to a standard SIR-type
model. A dominance of Type-A infections, which agrees with actual influenza spread
for 2015, is observed in row one of Table 3. Further, when mutability parameters are set
to zero, we notice that the two mutation pathways, AB and BA, are not stable. When
mutability parameters are introduced, all pathways in the multi-strain model become
stable. With α2

α1
> 1, Bin f overtakes Ain f . In other words, with sufficiently high mutability,

a new strain can become dominant. The difference in infections supports the conclusions
drawn by the dominant pathway phase plane in Figures 5 and 6.

Table 3. The table shows the non-dimensional difference in maximum new cases of Type B and Type
A influenza, and the stability of each pathway. The first row is the control model, with no bridge
rates defined. Each successive row increases the mutability of the Type-A to Type-B mutation.

α2
α1

Bin f − Ain f ¯∆GA < 0 ¯∆GBA < 0 ¯∆GB < 0 ¯∆GAB < 0

α1 = α2 = 0 −0.0109 Yes No Yes No

1 −0.00351 Yes Yes Yes Yes

1.5 0.0104 Yes Yes Yes Yes

1.75 0.0115 Yes Yes Yes Yes

2 0.0107 Yes Yes Yes Yes
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Figure 5. This contour shows the dominant pathway in our emergent strain model based upon
seasonal data for the flu season beginning 2015 and varying control parameter α2. The colors green,
cyan, red, and purple refer to the pathways A, BA, AB, and B respectively, as defined in Figure 1d.
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Figure 6. Phase planes depicting the dominant infection pathway for the flu season beginning
(a) 2015 and (b) 2016 The colors green, cyan, red, and purple refer to the pathways A, BA, AB,
and B, respectively.

It is worth noting that this method can be extrapolated to study the various subtypes
of Type A influenza and/or notable variants, such as H1N1, which are more intimately
genetically related. Most importantly, this model is primed for a study of the SARS-CoV-2
virus and its many variants.

4. Discussion

The main goal of this paper is to bring network science and non-equilibrium thermo-
dynamics (i.e., network thermodynamics) along as tools into model-based epidemiology.
To such ends, we answer three main questions:
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Q1 : What is the novel utility of the multi-strain model?

Q2 : Why is ∆G a good metric for characterizing infectious activity and a tool for analyzing

emergent strains?

Q3 : How can the multi-strain model be used in the future for SARS-CoV-2 and other

highly mutable viruses?

The utility of the models presented here is chiefly to open the compartmental epi-
demiology to network thermodynamics and allows for the investigation of highly complex
problems. First, human behavior is not easily categorized and is certainly far from the
thermodynamic equilibrium; the same applies to the way that diseases spread. By adding
pathways to the model, we aim to distribute the model parameters in a way that more ac-
curately captures the complex organization of epidemiological systems. The modification
of the standard SIR-type models is motivated by the onset of SARS-CoV-2 and the danger
of highly mutable respiratory viruses. As the model dimension grows and complexity
increases, tools of non-equilibrium thermodynamics help us draw stronger conclusions
about the emergent adaptation of the system to control parameters. ∆G can identify the
stability of pathways in large networks, while the game-theoretic framework quantifies the
dominance of a particular strain.

∆G is a valuable tool in analyzing this network approach to model-based epidemiology.
Compartmental models are mass-action based, thus giving us access to a population’s
effective concentration and inter-compartmental rates of transfer. These components create
a direct analogy to the utility of free energy computations in chemistry. The directed nature
of these networks allows us to discuss the chemical properties of ∆G, such as spontaneity
and stability in the context of infectious activity and emergent strains. The multi-strain
approach in Section 3 could be adapted to seasonal studies in order to ascertain seasonal
occurrence of emergent strains. In Figure 7, concurrent Influenza seasons are stitched to
display the continuity of ∆G and infection counts. Such analyses allow a predictive tool for
peak infectiousness across seasons.

Figure 7. Infection counts shown on the primary y-axis by the black line, and ¯∆GI shown on the
secondary y-axis by the green line.

In the context of the multi-strain model, this analysis can show the emergence of
new dominant strains as in the toy model shown in Table 3. The progression of emergent
strains can be seen in the rows of the table. When mutability increases, bridge pathways
between strains become stable and the difference of B infections to A infections becomes
closer to zero. Then as mutability further increases, B infections become larger than A.
Thus it is possible to create an automatic alert system which signifies the spontaneity
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of new viral pathways to infection. With contemporary data on strain-differentiated
infections, one can note the changing spontaneity of bridge pathways and infection counts
in real time and before emergent strains gain dominance, triggering alerts and advising
intervention strategies. Therefore, ∆G serves as an indicator of emerging paths—before
they are destructively widespread—and arms policy makers with early warning signs.
Further, considering many virus and host-dependent factors contributing to mutability [37],
a study of large phase spaces as shown in Figure 5 illuminates the large number of possible
states in the viral landscape.

Furthermore, the ∆G equation contains physical parameters (such as temperature),
which can abstract “seasonal” components to viral spread. For example, high T =⇒
high ∆G =⇒ high spontaneity. Thus, T is a controllable parameter which can increase or
decrease infectious spontaneity. This controllability can open ∆G as a metric for informing
intervention methods. For example, lockdowns and social distancing would mean low T,
which reduces spontaneity. This correlates with the fact that lockdowns reduce infections.
This is one way of using ∆G for creating informative intervention tools.

Finally, the use of complex lumped parameter networks will help us build models
which accurately describe quickly mutating epidemics. The switching dynamics of viruses
which can change characteristics quickly is not captured by standard SIR-type models.
Instead, the multi-strain model can illuminate the nuances of strain emergence by defining
switching parameters. Equations (10)–(12) and Algorithms 1–4 present a framework for
which complex networks of mutable pathogens can be built. This is one direction in
which epidemiological models could move toward to better understand SARS-CoV-2 and
its variants.

5. Conclusions

In addition to the novel utility of the models proposed, we provided some examples
of their efficacy. First, we use change in free energy (∆G) computations to show how
infectiousness corresponds to the spontaneity measure of ∆G, i.e., we show how rising
deaths during past flu seasons correspond to a change in magnitude for ∆G in Figure 3a,b.

Second, we explore a model where two viruses spread contemporaneously. By exam-
ining ∆G, the twindemic model shows how two viral interplaying pathways can be more
burdensome than a simple sum of parts. In other words, ∆G highlights how the nuance of
the relationship between connected populations can be captured by employing network
thermodynamics in high order compartmental models.

Third, we present the multi-strain model as a framework for modeling highly mutable
epidemics. This is particularly aimed toward modeling SARS-CoV-2 and its variants
with a properly complex model. A case study in Type A and Type B influenza shows
the efficacy of the multi-strain model for modeling related viral strains. Particularly for
future compartmental models with high complexity, where dynamic quantities are difficult
to relate, ∆G identifies the stability of extended pathways in large networks, while the
game-theoretic framework quantifies a certain mutation’s dominance.

We considered many future directions of this work when formulating our models.
One limitation of our study is the simplicity of the underlying SIR-type model. Future work
in the area of SARS-CoV-2 can include more fine-tuned models, such as SEIRD models.
Further, spatial mobility models could make an improvement in the case of SARS-CoV-2,
where geography plays an important role. Most importantly, the multi-strain model is
scalable to any number or type of compartments. Thus, the multi-strain model is ripe for
optimization techniques which can uncover the most effective modeling paradigm. This
application is not only important to the current applications, but toward an automatic
model complexity selection process in general.
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