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Abstract: In this work, we analyze a delayed rumor-propagation model. First, we analyze the
existence and boundedness of the solution of the model. Then, we give the conditions for the
existence of the rumor-endemic equilibrium. Regrading the delay as a bifurcating parameter, we
explore the local asymptotic stability and Hopf bifurcation of the rumor-endemic equilibrium. By
a Lyapunov functional technique, we examine the global asymptotically stability of the rumor-free
and the rumor-endemic equilibria. We provide two control variables in the rumor-spreading model
with time delay, and get the optimal solution via the optimal procedures. Finally, we present some
numerical simulations to verify our theoretical predictions. They illustrate that the delay is a crucial
issue for system, and it can lead to not just Hopf bifurcation but also chaos.
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1. Introduction

The rise of science and technology has made it simpler for people to communicate
with each other, but it has also made it easier for rumors to spread. Our modern world is
heavily influenced by rumors propagated on the Internet, via social media and by word
of mouth. Public opinion and financial markets are only a few examples that come to
mind. Other examples include causing economic harm, harming people’s reputations, and
causing undue panic during a disease outbreak. As a result, understanding how rumors
spread is essential if we are to minimize the harm that rumors may do.

Due to the striking similarities between the propagation of rumors and the propagation
of diseases, epidemiological models have been utilized extensively in this line of research.
Despite the fact that sickness and rumor propagation share similar traits, it is not possible
to create a cohesive framework or equivalent model for either of these processes. In 1965,
Daley and Kendall [1] proposed a model for the manner in which people disseminate
rumors. They assumed that people moved between groups based on a given mathematical
probability distribution and separated the population into three groups: those who were
uninformed, those who propagated the information, and those who stifled it. Following
it, Maki and Murray [2] applied a mathematical model to the rumors which led to the
development of the DK model. Then, numerous models for propagating rumors were
proposed and studied [3–10]. Zhao et al. [11] modified a flowchart of the rumor-spreading
process with the SIR (susceptible, infected, and recovered) model, and the impacts that
variations of different parameters have on the rumor-spreading process were analyzed.
Komi [12] investigated an SEIR (susceptible, exposed, infected, and recovered) rumor-
spreading model that considers the forgetting mechanism and the population’s education
rate. Zhou et al. [13] studied rumor propagation in complex networks analytically and
numerically by using the SIR model.

It is noted that the primary flaws of these existing models reside in their rules for
rumor dissemination. When an uninformed person approaches a rumor spreader, the
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susceptible person may believe the rumor and become a rumor spreader directly. This
assumption disregards the potential that susceptible individuals may undergo a dormant
phase before becoming spreaders. This idea is based on the fact that, when confronted with
confusing and contradictory messages, many individuals’ have their judgment clouded,
and certain ignoramuses have difficulties determining the veracity of information right
after hearing the rumor. Nevertheless, the models which are mentioned in the previous
paragraph were highly original and tremendously valuable for modeling and analyzing the
propagation of rumors. Therefore, time delay is a typical occurrence in the actual world. In
the process of rumor propagation, if users are unable to receive rumors in a timely manner
after their release, or if, after acquiring rumors, they are unable to disseminate them in a
timely manner for different reasons, etc., this will result in a delay in the transmission of
information [14,15]. In addition, there are many other things that can affect how rumors
spread. Gu [16] added the forgetting and remembering mechanisms to the way rumors
spread. Numerical simulations showed that the forgetting mechanism would change how
news spreads and could even stop rumors from going around. Afassinou [12] incorporated
a forgetting mechanism and education rate into the SEIR rumor-spreading model, with
the belief that there was a correlation between education and the ultimate dissemination
of rumors. Cheng et al. [17] developed an improved rumor-spreading model taking into
account the delay of an interactive system; and control strategies such as deleting rumor
posts and educating the public about popular science were considered. Jiang and Yan [6]
proposed an immune-structure SIR model to explore the control method of rumor spreading.
Huo et al. [18] studied the optimal control of a delayed rumor-spreading model with
consideration of psychological factors. Zhu and Wang [5] proposed a rumor-propagation
model with a silence-forcing function in online social networks, and they investigated the
Hopf bifurcation and optimal control of the model. These studies [19–23] show us that
when rumors spread, there are some real-world factors that affect communication, such
as government rules, propagation delays, and so on. These factors need to be taken into
account in the study.

Based on these discussions, we consider the following model:

dS
dt

= rS(1− S
K )−

βSI
(1 + α1S)(1 + α2 I)

,

dI
dt

=
βS(t− τ)I(t− τ)

(1 + α1S(t− τ))(1 + α2 I(t− τ))
− γI(I + R)− µI,

dR
dt

= γI(I + R)− µR,

(1)

where S(t), I(t), and R(t) denote the susceptible individuals ( referred to as “susceptible”
in this paper), the rumor spreaders, and the removal individuals (referred to as “removal”
in this paper), respectively. r, K, β, α1, α2, γ, and µ are all positive constants.

Model (1) is based on the following assumptions:

(A1) The susceptible group’s growth follows the logistic model of population increase
rS(1− S

K ), where r denotes the population growth rate per time unit and K represents
the environmental population capacity.

(A2) The rumor spreads between those who are unaware of it and those who propagate it,
and the propagation is carried out using the functional response below:

βSI
(1 + α1S)(1 + α2 I)

,

where α1 and α2 are positive constants. Due to congestion or adequate preventive
actions adopted by susceptible and spreader persons to limit the spread of rumor, the
number of effective connections between susceptible and spreaders might saturate at
high propagation levels, making this a critical consideration.
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(A3) However, the transmission requires some time for individuals to pass from hearing
the rumor to the spreader state, and we assume that a susceptible individual first goes
through a latent period τ.

(A4) When a spreader touches another spreader or a removal individual, only the first
spreader turns into a removal individual at a rate γ, which is called the stifling rate.
This is different from the epidemiological model.

The initial condition for the above system is

S(θ) = φ1(θ), I(θ) = φ2(θ), R(θ) = φ3(θ), θ ∈ [−τ, 0], (2)

where φ = (φ1, φ2, φ3) ∈ (C+)3, S(0) = φ1(0) > 0, I(0) = φ2(0) > 0, and R(0) = φ3(0) >
0. C denotes the Banach space C([−τ, 0],R) of continuous functions mapping the interval
[−τ, 0] into R. The nonnegative cone of C is defined as C+ = C([−τ, 0],R+).

The organization of this paper is as follows. In Section 2, the non-negative and
boundedness of the proposed system are studied. In Section 3, the existence of the equilibria
of the model is discussed. In Section 4, local stability and Hopf bifurcation of rumor-free
equilibrium and rumor-endemic equilibrium are studied. In Section 5, the global asymptotic
stability of the equilibria is investigated. In Section 6, we introduce two control variables
in the rumor-spreading model with time delay, and find the optimal solution by the
optimization techniques. Finally, in Section 7, numerical simulations are given to verify the
theoretical results.

2. Preliminaries

For the sake of discussion, first, we denote

S f (S, I, R) = rS(1− S
K
)− βSI

(1 + α1S)(1 + α2 I)
,

Ig(S, I, R) =
βS(t− τ)I(t− τ)

(1 + α1S(t− τ))(1 + α2 I(t− τ))
− γI(I + R)− µI,

h(S, I, R) = γI(I + R)− µR.

Thus, F = ( f , g, h) is locally Lipschitz on R3
+ = {(S, I, R) : S ≥ 0, I ≥ 0, R ≥ 0}. Hence, the

fundamental theorem of existence and uniqueness assures the existence and uniqueness of a
solution of system (1) with the given initial condition (2). The state space of the system is the
non-negative cone, R3

+ = {(S, I, R) : S ≥ 0, I ≥ 0, R ≥ 0}. For the rumor-spreading model,
the positive and boundedness show that the system is well-behaved. The following studies
establish that the solutions to the non-delayed model system (1) are positive, bounded,
dissipative, and permanent.

Theorem 1. Under the initial condition (2), any solution (S(t), I(t), R(t)) of system (1) is non-
negative on t ∈ [0,+∞) and ultimately bounded.

Proof. We claim that (S(t), I(t), R(t)) ≥ (0, 0, 0) for all t ∈ [0, T). Otherwise, there must
exist a t1, 0 < t1 < T, for ∀t ∈ [0, t1], (S(t), I(t), R(t)) ≥ (0, 0, 0) and at least one S(t1), one
I(t1), and one R(t1) must vanish. Now, from system (1), we have

S(t) = S(0) exp
(∫ t

0
f (S(θ), I(θ), R(θ))dθ

)
,

I(t) = I(0) exp
(∫ t

0
g(S(θ), I(θ), R(θ))dθ

)
,

R(t) = R(0)e−µt +
∫ t

0
γI(θ)(I(θ) + R(θ))dθ.
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Since (S, I, R) are defined and continuous on [0, t1], there exists a δ ≥ 0 such that ∀t ∈ [0, t1]:

S(t) = S(0) exp
(∫ t

0
f (S(θ), I(θ), R(θ))dθ

)
≥ S(0) exp(−t1δ),

I(t) = I(0) exp
(∫ t

0
g(S(θ), I(θ), R(θ))dθ

)
≥ I(0) exp(−t1δ),

R(t) = R(0)e−µt +
∫ t

0
γI(θ)(I(θ) + R(θ))dθ ≥ R(0) exp(−t1δ).

It is clear that if t→ t1, then we have

S(t1) ≥ S(0) exp(−t1δ),

I(t1) ≥ I(0) exp(−t1δ),

R(t1) ≥ R(0) exp(−t1δ),

which contradicts the fact that at least one of S(t1), I(t1), and R(t1) must vanish. Thus,
∀t ∈ [0, T], (S(t), I(t), R(t)) ≥ (0, 0, 0).

For t ∈ [0, T), we have from (1) that S′(t) ≤ rS(1− S
K ). It follows from the comparison

principle that S(t) is bounded on [0, T); i.e., M1 = supt∈[0,T) S(t) < +∞. Therefore, form
the second equation of (1), we have

I′(t) ≤ βM1

(1 + α1M1)α2
− µI.

Again, form the comparison principle, we know that M2 = supt∈[0,T) I(t) < +∞. From the
third equation of (1), one has that R′(t) ≤ γ2M2

2 − (µ− γ2)R. The comparison principle
ensures that R(t) is bounded on [0, T). The boundedness of the solution (S(t), I(t), R(t))
implies that the local existence interval [0, T) can be continued to T = +∞. Therefore, we
have proved that the solution (S(t), I(t), R(t)) is existent and non-negative on [0,+∞).

Define F(t) = S(t) + I(t + τ) + R(t + τ). By the non-negativity of the solution, it
follows that

F′(t) = RS(1− S
K
)− γI(t + τ)(I(t + τ) + R(t + τ))− µ(R(t + τ) + I(t + τ))

≤ K(r− µ)2

4r
− F(t),

which implies that F(t) is ultimately bounded. This completes the proof.

In the following, we analyze the dissipativeness, persistence, and permanence behavior
of system (1).

Lemma 1. Consider the following equation

du(t)
dt

= Au(t− τ)− Bu(t)− Cu2(t),

where A, B, C, τ > 0, and u(t) > 0 for t ∈ [−τ, 0]; then, we have the following two results:

lim
t→+∞

u(t) =
A− B

C
, if A > B; lim

t→+∞
u(t) = 0, if A < B.
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Theorem 2. If the following conditions

µ− γ
βK

µ(1 + α1K)α2
> 0, (3)

β
K(α2r− β)

α2r
− γ(1 + α1K)(1 + α2M2) > 0, (4)

µ− γ
β

K(α2r−β)
α2r − γ(1 + α1K)(1 + α2M2)

(µ + γ2M2
2)(1 + α1K)(1 + α2M2)

> 0 (5)

hold, then there exist mi and Mi(i = 1, 2, 3) such that any solution of system (1) satisfies

m1 ≤ lim inf
t→+∞

S(t) ≤ lim sup
t→+∞

S(t) ≤ M1,

m2 ≤ lim inf
t→+∞

I(t) ≤ lim sup
t→+∞

I(t) ≤ M3,

m3 ≤ lim inf
t→+∞

R(t) ≤ lim sup
t→+∞

R(t) ≤ M3.

Proof. From the first equation of system (1), we have

dS
dt
≤ rS(1− S

K
).

By the comparison principle, we get

lim sup
t→+∞

S(t) ≤ K := M1.

Thus, for ∀ε1 > 0, there exists a T1 > 0 such that

S(t) ≤ K + ε1 := S̄.

From the second equation of (1), we have

dI
dt
≤ βS̄

(1 + α1S̄)α2
− µI,

which leads to lim sup
t→+∞

I(t) ≤ βK
µ(1+α1K)α2

:= M2 for a sufficiently large t > T1. Thus, for

∀ε2 > 0, there exists a T2 > T1 such that

I(t) ≤ βK
µ(1 + α1K)α2

+ ε2 := Ī, t > T2.

From the third equation of (1), we have that R′(t) ≤ γ Ī( Ī + R) − µR, for t > T2.

Therefore, lim sup
t→+∞

R(t) ≤ γM2
2

µ−γM2
:= M3 provides µ > γM2. Thus, for ∀ε3 > 0, there exists

a T3 > T2 such that

R(t) ≤
γM2

2
µ− γM2

+ ε3 := R̄(t), t > T3.

On the other-hand, from the first equation of (1), we have

dS
dt
≥ S(r− β

α2
− rS

K
),

which implies that lim inf
t→+∞

S(t) ≥ K(α2r−β)
α2r := m1 provided α2r > β.
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From the second equation of (1), we get

dI
dt
≥ βm1(I(t− τ))

(1 + α1K)(1 + α2M2)
− γI2 − (µ + γ2M2

2)I.

According to Lemma 1, we have

lim inf
t→+∞

I(t) ≥ βm1 − γ(1 + α1K)(1 + α2M2)

(µ + γ2M2
2)(1 + α1K)(1 + α2M2)

:= m2.

From the third equation of (1), we have

dR
dt
≥ γm2

2 − (µ− γm2)R,

which leads to lim inf
t→+∞

R(t) ≥ γm2
2

µ−γm2
:= m3.

Remark 1. Theorem 2 shows that if the conditions (3)–(5) hold, then the rumor will keep spreading.
Obviously, these conditions are all related to the parameter γ. As we stated in the introduction,
the infectious disease compartment model is unlikely to contain the term γI(I + R). Therefore, the
results of Theorem 2 are closely related to the rumor spreading.

3. The Existence of Equilibria

For the rumor-endemic equilibrium, we have the following results.

Theorem 3. Assume that

βK > µ(1 + Kα1), (6)

rα2 < max{β, Kβα1} (7)

hold. Then system (1) has at least one rumor-endemic equilibrium, denoted by

E∗ = (S∗, I∗, R∗) =
(

µ2(1 + α2 I∗)
β(µ− γI∗)− α1µ2(1 + α2 I∗)

, I∗,
I2γ

µ− I∗γ

)
Proof. Obviously, the rumor-endemic equilibrium satisfies the following equation:

rS(1− S
K )−

βSI
(1 + α1S)(1 + α2 I)

= 0,

βSI
(1 + α1S)(1 + α2 I)

− γI(I + R)− µI = 0,

γI(I + R)− µR = 0.

(8)

From the third equation of (8), we have R = I2γ
µ−I∗γ , and by substituting it into the second

equation of (8), we have

S =
µ2(1 + α2 I)

β(µ− γI)− α1µ2(1 + α2 I)
. (9)

By substituting (9) into the first equation of (8), we obtain that I∗ is a root of the following
equation:

A1 I3 + A2 I2 + A3 I + A4 = 0, (10)
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where

A1 =Kα2
1α2

2µ4 − Krα1α2
2γµ2 + 2Kα1α2βγµ2 − rα2

2γµ2 − Krα2βγ2 + Kβ2γ2,

A2 =2Kα2
1α2µ4 + Krα1α2

2µ3 − 2Kα1α2βµ3 − 2Krα1α2γµ2 + 2Kα1βγµ2 + rα2
2µ3

+ 2Krα2βγµ− 2rα2γµ2 − 2Kβ2γµ− Krβγ2,

A3 =Kα2
1µ4 − 2Kα1βµ3 + 2Kα2rα1µ3 − Kγrα1µ2 + Kβ2µ2 − Kα2rβµ2

+ 2Kγrβµ + 2α2rµ3 − γrµ2,

A4 =µ2r(µ(1 + Kα1)− Kβ).

(11)

If the conditions (6) and (7) hold, then A1 > 0 and A4 < 0. Thus, system (1) has at least
one rumor-endemic equilibrium.

4. Local Stability and Hopf Bifurcation

In this section, we consider the local stability and bifurcation of system (1).
The Jacobian matrix of system (1) at E0 = (K, 0, 0) is as follows:

J(E0)
=

 −r − Kβ
Kα1+1 0

0 Kβ
Kα1+1 e−λτ − µ 0

0 0 −µ

.

Clearly, we have the following results.

Theorem 4. The rumor free equilibrium E0 = (K, 0, 0) is locally asymptotically stable if the
condition (6) holds and it is unstable if the condition (6) does not hold.

In the following, we discuss the stability of the rumor-endemic equilibrium E∗ =
(S∗, I∗, R∗). The Jacobian matrix of system (1) at E∗ is as follows.

J((u∗ ,v∗)) =

 a11 −a12 0
a21e−λτ a12e−λτ − b −a23

0 a32 −a33

,

where

a11 =
βα1S∗ I∗

(1 + α2 I∗)(1 + α1S∗)2 −
rS∗

K
, a12 =

βS∗

(1 + α1S∗)(1 + α2 I∗)2 ,

a21 =
βI∗

(1 + α2 I∗)(1 + α1S∗)2 , b = 2γI∗ + γR∗ + µ,

a23 = γI∗, a32 = b− µ, a33 = µ− I∗γ.

(12)

Then, the characteristic equation is

λ3 + B1λ2 + B2λ + B3 + (B4λ2 + B5λ + B6)e−λτ = 0, (13)

where

B1 = a33 + b− a11, B2 = a23a32 − a11a33 − a11b + a33b,

B3 = −a11(ba33 + a32a23),

B4 = −a12, B5 = a11a12 + a12a21 − a33a12, B6 = a33a12(a11 + a21).

When τ = 0, we have the following result.
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Theorem 5. Assume that

0 <
r
K
− βα1 I∗

(1 + α2 I∗)(1 + α1S∗)2 <
β

(1 + α2 I∗)2(1 + α1S∗)
, (14)

R∗γ− βα2S∗ I∗

(1 + α2 I∗)2(1 + α1S∗)
< 0 (15)

hold; then, the rumor-spreading equilibrium is locally asymptotically stable for τ = 0.

Proof. When τ = 0, the characteristic equation becomes

λ3 + (B1 + B4)λ
2 + (B2 + B5)λ + B3 + B6 = 0. (16)

A direct calculation shows that

B1 + B4 =
rS∗

K
− βα1S∗ I∗

(1 + α2 I∗)(1 + α1S∗)2 + µ− I∗γ,

B3 + B6 = µ(a12a21 − a11a′22)− 2a11γ2 I∗
2 − I∗R∗a11γ2 + I∗a11a′22γ− I∗a12a21γ

= (µ− I∗γ)a12a21 − a11γI∗(2γI∗ + R∗γ− a′22),

where a′22 = −a12 + b = βα2S∗ I∗

(1+α2 I∗)2(1+α1S∗) > 0. Clearly, If the conditions (14) and (15) hold,
then B1 + B4 > 0 and B3 + B6 > 0. Moreover,

(B1 + B4)(B2 + B5)− (B3 + B6) = (µ− I∗γ− a11)(a12a21 − a11a′22 − a11µ + a′22µ + 2I∗
2
γ2

+ I∗a11γ− I∗a′22γ + I∗R∗γ2)− [µ(a12a21 − a11a′22)− 2a11γ2 I∗
2 − I∗R∗a11γ2

+ I∗a11a′22γ− I∗a12a21γ]

=(µ− I∗γ)[(µ− I∗γ)(a′22 − a11) + 2I∗
2
γ2 + I∗R∗γ2]− a11[a12a′22 − a11a′22

+ (µ− I∗γ)(a′22 − a11) + 2I∗
2
γ2 + I∗R∗γ2] + I∗γa12a21 + a11γI∗(2γI∗ + R∗γ)

=(µ− I∗γ)[(µ− I∗γ)(a′22 − a11) + 2I∗
2
γ2 + I∗R∗γ2]− a11[a12a′22 − a11a′22

+ (µ− I∗γ)(a′22 − a11)] + I∗γa12a21.

Under the conditions (14) and (15),

(B1 + B4)(B2 + B5)− (B3 + B6) > 0.

Therefore, according to Routh–Hurwitz criterion, we obtain that if the conditions hold,
then the rumor-spreading equilibrium is locally asymptotically stable for τ = 0.

Now, we discuss the effect of τ. Assume that Equation (13) has a pair of purely
imaginary roots λ = ±iω (ω > 0). Then, ω satisfies the following equation:

− iω3 − B1ω2 + iωB2 + B3 + (−B4ω2 + iωB5 + B6)(cos(ωτ)− i sin(ωτ)) = 0. (17)

It is easily obtained that{
B1ω2 − B3 = B5ω sin(ωτ) + (B6 − B4ω2) cos(ωτ),
ω3 − B2ω = −(B6 − B4ω2) sin(ωτ) + B5ω cos(ωτ).

(18)

Then, we have

ω6 + P1ω4 + P2ω2 + P3 = 0, (19)
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where

P1 = B2
1 − 2B2 − B2

4, P2 = B2
2 − 2B1B3 + 2B6B4 − B2

5, P3 = B2
3 − B2

6.

Let z = ω2. Then, (19) is transformed into

h(z) = z3 + P1z2 + P2z + P3 = 0. (20)

Thus, we have
h′(z) = 3z2 + 2P1z + P2. (21)

Obviously,

h(0) = P3 = B2
3 − B2

6, h′(0) = P2 = B2
2 − 2B1B3 + 2B6B4 − B2

5.

Denote ∆ = P2
1 − 3P2. Then, the roots of h′(z) = 0 are

zmin =
−P1 −

√
P2

1 − 3P2

3
, zmax =

−P1 +
√

P2
1 − 3P2

3
,

We give the following conditions:

h′(0) > 0, h(0) > 0; (22)

h′(0) < 0, h(zmin) > 0; (23)

h′(0) > 0, h(0) < 0; (24)

h′(0) < 0, h(0) < 0; (25)

h′(0) < 0, h(0) > 0, h(zmin) < 0. (26)

Lemma 2. Assume that the conditions (6), (7), and (14) hold. Furthermore, if (22) or (23) holds,
then Equation (20) has none positive root; if (24) or (25) holds, then Equation (20) has one positive
root; if (26) holds, then Equation (20) has two positive roots.

Proof. First, we claim that P1 > 0 under the condition (14). In fact, if the condition (14)
holds, we have

P1 =B2
1 − 2B2 − B2

4 = a2
33 + b2 + a2

11 − 2a23a32 − a2
12

=(u− I∗γ)2 + (2γI∗ + γR∗ + µ)2 − 2γI∗(2γI∗ + γR∗) + a2
11 − a2

12

=(u− I∗γ)2 + γ2R∗
2
+ 2µ(2γI∗ + γR∗) + µ2 + (a11 − a12)(a11 + a12) > 0.

Case 1: (h′(0) > 0, h(0) > 0). h′(0) > 0, so h(z) is a monotonously increasing
function for z ∈ [0,+∞). Combining with h(0) > 0, we obtain that Equation (20) has no
any positive root.

Case 2: (h′(0) < 0, h(zmin) > 0). h′(0) < 0, so there exists a zmin, which satisfies
h′(z) > 0 when z ∈ (zmin,+∞), h′(z) < 0 when z ∈ (0, zmin). h(zmin) > 0, so h(z) > 0 for
∀z > 0; i.e., Equation (20) has no positive root.

Case 3: (h′(0) > 0, h(0) < 0). h(z) is a monotonouosly increasing function for
z ∈ [0,+∞) with h′(0) > 0. Combining with h(0) < 0 and h(+∞) > 0, we have that
Equation (20) has one unique positive root.

Case 4: (h′(0) < 0, h(0) > 0, h(zmin) < 0). Obviously, in this case we can find a zmin
satisfying h′(z) > 0 when z ∈ (zmin,+∞), and h′(z) < 0 when z ∈ (0, zmin). Moreover,
h(0) > 0 and h(zmin) < 0 imply that there exists a z1 satisfying h(z1) = 0; h(zmin) < 0 and
h(+∞) = +∞ imply that there exists z2 satisfying h(z2) = 0. Therefore, Equation (20) has
two positive roots in this case.
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Without loss of generality, we assume that Equation (20) has two positive roots,
denoted by z1 and z2, respectively. Accordingly, Equation (19) has two positive roots,
ω1 =

√
z1, ω2 =

√
z2.

From Equation (18), we have

τ
j
k =

1
ωk

{
arccos

(
B5ω(ω2 − B2ω) + (B6 − B4ω2)(B1ω2 − B3)

B2
5ω2 + (B6 − B4ω2)2

)

+ 2jπ

}
, k = 1, 2, j = 0, 1, 2, · · · . (27)

It is worth noting that the sequence {τ j
k}

∞
j=0 grows monotonically and

lim
j→+∞

τ
j
k = +∞. (28)

Thus, we define
τ0 = τ0

k0
= min

k=1,2
{τ0

k }, ω0 = ωk0 . (29)

Lemma 3. Let us suppose that λ(τ) = η(τ) ± iω(τ) is a root of Equation (13) that equals
α(τ

j
k0
) = 0 and ω(τ

j
k0
) = ωk0 . Assume also that h′(zk0) 6= 0. The transversality condition is then

satisfied. That is,
d(Reλ(τ))

dτ

∣∣∣∣
τ=τ

j
0

6= 0 (30)

holds, and the sign of d(Reλ(τ))
dτ

∣∣∣
τ=τ

j
k0

is consistent with that of h′(zk0).

Proof. Denote R(λ) and Q(λ) by

R(λ) = λ3 + B1λ2 + B2λ + B3 (31)

and
Q(λ) = B4λ2 + B5λ + B6, (32)

respectively. Rewrite Equation (13) as

R(λ) + Q(λ)e−λτ = 0, (33)

and change (19) into
R(iω)R̄(iω)−Q(iω)Q̄(iω) = 0. (34)

By (20) and (21), we get

h(ω2) = R(iω)R̄(iω)−Q(iω)Q̄(iω). (35)

Differentiating both sides of Equation (35) with respect to ω yields

2ωh′(ω2) = i[R′(iω)R̄(iω) + R(iω)R̄′(iω)−Q′(iω)Q̄(iω) + Q(iω)Q̄′(iω). (36)

If iωk0 is not simple, then ωk0 must satisfy

d
dλ

[
R(λ) + Q(λ)e−λτ0

]∣∣∣∣
λ=iωk0

= 0. (37)

That is,
R′(iωk0) + Q′(iωk0)e

−iωk0
τ0 − τ0Q(iωk0)e

−iωk0
τ0 = 0. (38)
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From Equation (33), we find

τ0 =
Q′(iωk0)

Q(iωk0)
−

R′(iωk0)

R(iωk0)
.

Making use of (34) and (35), we deduce that

Im(τ0) =Im
[

Q′(iωk0)

Q(iωk0)
−

R′(iωk0)

R(iωk0)

]
=Im

[
Q′(iωk0)Q̄(iωk0)

Q(iωk0)Q̄(iωk0)
−

R′(iωk0)R̄(iωk0)

R(iωk0)R̄(iωk0)

]

=Im

[
Q′(iωk0)Q̄(iωk0)− R′(iωk0)R̄(iωk0)

R(iωk0)R̄(iωk0)

]

=
−i[Q′(iωk0)Q̄(iωk0)− R′(iωk0)R̄(iωk0)− Q̄′(iωk0)Q(iωk0) + R̄′(iωk0)R(iωk0)]

2R(iωk0)R̄(iωk0)

=
ωk0 h′(ω2

k0
)∣∣R(iωk0)
∣∣2 .

Since τ0 is real, i.e., Im(τ0) = 0, h′(ω2
k0
) = 0. As a result, the assumption that h′(ω2

k0
) 6= 0 is

contradicted.
Equation (33) can be solved by first differentiating each side with regard to τ, giving[

R′(λ) + Q′(λ)e−λτ − τQ(λ)e−λτ
]dλ

dτ
− λQ(λ)e−λτ = 0. (39)

This means that

dλ

dτ
=

λQ(λ)

R′(λ)eλτ + Q′(λ)− τQ(λ)
=

λQ(λ)
[
R̄′(λ)eλτ + Q̄′(λ)− τQ̄(λ)

]∣∣R′(λ)eλτ + Q′(λ)− τQ(λ)
∣∣2

=
λ
[
−R(λ)R̄′(λ)eλτ + Q(λ)Q̄′(λ)− τ|Q(λ)|2

]
∣∣R′(λ)eλτ + Q′(λ)− τQ(λ)

∣∣2 .

It follows from (36) that

d(Reλ(τ))

dτ

∣∣∣∣
τ=τ0,λ=iωk0

=

Re
{

λ
[
−R(λ)R̄′(λ)eλτ + Q(λ)Q̄′(λ)− τ|Q(λ)|2

]}
τ=τ0,λ=iωk0∣∣R′(λ)eλτ + Q′(λ)− τQ(λ)

∣∣2
=

iωk0

[
−R(iωk0)R̄′(iωk0) + Q(iωk0)Q̄

′(iωk0)
]∣∣R′(λ)eλτ + Q′(λ)− τQ(λ)

∣∣2
+

iωk0

[
R′(iωk0)R̄(iωk0)−Q′(iωk0)Q̄(iωk0)

]∣∣R′(λ)eλτ + Q′(λ)− τQ(λ)
∣∣2

=
ω2

k0
ψ′(ω2

k0
)∣∣R′(λ)eλτ + Q′(λ)− τQ(λ)

∣∣2
=

ω2
k0

ψ′(zk0)∣∣R′(λ)eλτ + Q′(λ)− τQ(λ)
∣∣2 6= 0.

Therefore, the sign of d(Reλ(τ))
dτ

∣∣∣
τ=τ0

depends on the sign of h′(zk0).
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Summarizing the above discussions, we have the following results:

Theorem 6. If the conditions (6)–(15) and one of the conditions (24)–(26) holds, and h′(zk0) > 0,
then we have the following results.

(i) When τ ∈ [0, τ0), the rumor-endemic equilibrium of system (1) is locally asymptotically
stable;

(ii) When τ > τ0, the rumor-endemic equilibrium of system (1) is unstable, and in system (1)
occurs the Hopf bifurcation at τ = τ0.

5. Global Dynamics

Theorem 7. If the condition (6) holds, then the rumor-free equilibrium E0 = (K, 0, 0) is globally
asymptotically stable.

Proof.

V(t) = S(t)− K− K ln
S(t)

K
+ I(t) + R(t) +

∫ t

t−τ

βS(u)I(u)
(1 + α1S(u))(1 + α2 I(u))

du. (40)

Then, the time derivative of V computed along the solutions of system (1) is

dV
dt

=(S(t)− K)
(

r(1− S(t)
K

)− βI(t)
(1 + α1S(t))(1 + α2 I(t)

)
+

βS(t− τ)I(t− τ)

(1 + α2 I(t− τ))(1 + α1S(t− τ))

− µI − µR +
βS(t)I(t)

(1 + α2 I(t))(1 + α1S(t))
− βS(t− τ)I(t− τ)

(1 + α2 I(t− τ))(1 + α1S(t− τ))

=− r
K
(S− K)2 + I(

βK
(1 + α1S(t))(1 + α2 I(t))

− µ)− µR

≤− r
K
(S− K(r− u)

r
)2 + I(

βK
α2
− µ)− µR.

(41)

By LaSalle’s invariance principle, we obtain that if βK
α2

< µ, then E0 is globally asymp-
totically stable.

Theorem 8. Suppose that the conditions (3)–(5) hold, and assume further that the following
conditions

r
K

>
βα1 I∗

1 + α1m
(42)(

r
K
− βα1 I∗

1 + α1m

)(
γ(m + I∗) + 2R∗ + µ

M
− β

M(1 + α2 I∗) + S∗(1 + α1S∗)
2mp(m, m)

− γ(M + I∗)
2m

)
>

β2(1 + α1S∗)2

4p2(m, m)
(43)

hold. Then the rumor-endemic equilibrium E∗ = (S∗, I∗, R∗) is globally asymptotically stable; i.e.,
rumors will always spread.

Proof. Assume that (S(t), I(t), R(t)) is any positive solution of system (1) with initial
conditions (2). From Theorem 2, we know that there exist m, M, and T > 0, such that
m < S(t), I(t), R(t) < M for all t ≥ T.

To discuss simplicity, we denote

p(S, I) = (1 + α1 I + α2S)(1 + α1 I∗ + α2S∗).
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Define a Lyapunov functional as follows.

W(t) =(S(t)− S∗ − S∗ ln
S(t)
S∗

) + (I(t)− I∗ − I∗ ln
I(t)
I∗

) + k1

∫ t

t−τ
(S(θ)− S∗)2dθ

+ k2

∫ t

t−τ
(I(θ)− I)2dθ,

(44)

where

k1 =
βM(1 + α2 I∗)

2mp(m, m)
, k2 =

βM(1 + α2 I∗) + βS∗(1 + α1M)

2mp(m, m)
.

Now, we obtain the derivative of W(t) along the solutions of system (1) as

dW
dt

=

(
1− S∗

S(t)

)(
rS(t)(1− K

S(t)
)− βS(t)I(t)

(1 + α1S(t))(1 + α2 I(t))

)
+

(
1− I∗

I

)(
βS(t)I(t)

(1 + α1S(t))(1 + α2 I(t))
− γI(t)(I(t) + R(t))− µI(t)

)

+

(
1− R∗

R(t)

)
( γI(t)(I(t) + R(t))− µR(t)) + k1(S(t)− S∗)2 − k1(S(t− τ)− S∗)2

+ k2(I(t)− I∗)2 − k2(I(t− τ)− I∗)2.

=−
(

r
K
− βα1 I∗(1 + α2 I)

p(S, I)

)
(S(t)− S∗)2 − β(1 + α1S∗)

p(S(t), I(t))
(S(t)− S∗)(I − I∗)

− γ(I(t) + I∗) + µ + γR∗

I
(I(t)− I∗)2 − γ(R− R∗)(I(t)− I∗)

+
βI(t− τ)(1 + α2 I∗)

Ip(S(t− τ), I(t− τ))
(S(t− τ)− S∗)(I(t)− I∗)

+
βS∗(1 + α1S(t− τ))

Ip(S(t− τ), I(t− τ))
(I(t− τ)− I∗)(I(t)− I∗)− µ− γI∗

R(t)
(R(t)− R∗)2

+

(
γ(I(t) + I∗)

R(t)
+ γ

)
(R(t)− R∗)(I(t)− I∗).

Using the inequality ab ≤ a2+b2

2 on the right-hand side of the above expression, for all
t ≥ T, we derive that

dW
dt
≤−

(
r
K
− βα1 I∗(1 + α2 I(t))

p(S(t), I(t))

)
(S(t)− S∗)2 − β(1 + α1S∗)

p(S(t), I(t))
(S(t)− S∗)(I − I∗)

−
(

γ(I(t) + I∗) + µ + γR∗

I(t)
− βM(1 + α2 I∗) + βS∗(1 + α1S∗)

2mp(m, m)

− γ(I(t) + I∗)
2R(t)

)
(I(t)− I∗)2 −

(
µ− γI∗

R(t)
− γ(I + I∗)

2R(t)

)
(R(t)− R∗)2

=−UQUT −
(

µ− γI∗

R(t)
− γ(I + I∗)

2R(t)

)
(R(t)− R∗)2.

Here U = (S, I) and Q is the symmetric quadratic form given by

Q =

[
A B
B C

]
,
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where

A =
r
K
− βα1 I∗(1 + α2 I(t))

p(S(t), I(t))
, B =

β(1 + α1S∗)
2p(S(t), I(t))

,

C =
γ(I(t) + I∗) + µ + γR∗

I(t)
− βM(1 + α2 I∗) + βS∗(1 + α1S∗)

2mp(m, m)
− γ(I(t) + I∗)

2R(t)
.

The conditions (42) and (43) hold, so the matrix Q is positive definite, which leads to
dW
dt ≤ 0. Therefore, dW

dt = 0 if and only if S = S∗, I = I∗, and R = R∗. By the LaSalle’s
invariance principle, E∗ is globally asymptotically stable.

6. Optimal Control

The propagation of rumors has caused widespread panic and unrest, resulting in
massive incidents and social devastation. For example, during a nuclear leakage event in
Japan, thousands of Chinese crazily bought iodized salt which was mistaken for preventing
nuclear radiation, resulting in social panics and the shortage of table salt. Controlling
rumors is therefore vitally important. This section focuses on implementing effective
control strategies to reduce the spreading scale while keeping control costs low. To this
end, we introduce two time-varying control variables, u1(t) and u2(t), which represent
the cost control of reducing the probability of rumor transmission and the strength of
avoiding/deleting posts of spreaders through sensitization and punishment, respectively.

Therefore, the optimal control model is as follows.

dS(t)
dt

= rS(t)(1− S(t)
K )− (1− u1(t))βS(t)I(t)

(1 + α1S(t))(1 + α2 I(t))
,

dI(t)
dt

=
(1− u1(t− τ))βS(t− τ)I(t− τ)

(1 + α1S(t− τ))(1 + α2 I(t− τ))
− γI(t)(I(t) + R(t))− (µ + u2(t))I(t),

dR(t)
dt

= γI(t)(I(t) + R(t))− µR(t),

(45)

with the initial conditions

S(θ) = ϕ1(θ) ≥ 0, I(θ) = ϕ2(θ) ≥ 0,

R(θ) = ϕ3(θ) ≥ 0, θ ∈ [−τ, 0], ϕi(0) > 0, (i = 1, 2, 3).
(46)

To begin, we suggest the following symbolic norms for establishing an optimal control
issue. Assign a constant t f to the final time a control strategy is implemented and define
control sets U :

U =
{

u = (u1, u2)|ui(t) is Lebesgue measuralbe , 0 ≤ ui ≤ umax
i , 0 ≤ t ≤ t f , i = 1, 2

}
(47)

The objective of optimum control is to minimize not only the expense of control, but
also the negative impacts of rumors, in order to maximize societal benefit. Reduce the
amount of infected media on the one hand; on the other hand, educate the uninformed as
much as possible and transform them into removal individuals, incapable of believing or
spreading rumors. The objective of our model is to minimize the cost functional given by

J(S, I, R, u1(t), u2(t)) =
∫ t f

0

[
A1S(t) + A2 I(t) +

B1

2
u2

1(t) +
B2

2
u2

2(t)
]

dt (48)

where A1 and A2 are the weight parameters that balance the susceptible and the spreaders,
and B1 and B2 represent the weight parameters which are associated with the control u1
and u2.

In the following, we focus on finding out a pair of optimal controls to minimize the
objective functional.
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We first define the Lagrangian function as follows:

L(S, I, R, u1, u2) = A1S(t) + A2 I(t) +
B1

2
u2

1(t) +
B2

2
u2

2(t), (49)

and the augmented Hamiltonian function H involving the inequality constraints Hamilto-
nian for the control problem by

H(S, I, R, u1, u2, λ1, λ2, λ3, t) = L(S, I, R, u1, u2) + λ1
dS(t)

dt
+ λ2

dI(t)
dt

+ λ3
dR(t)

dt
(50)

Lemma 4. There exists an optimal pair u∗ = (u∗1(t), u∗2(t)) ∈ U which minimizes the objective
functional J(S, I, R, u1(t), u2(t)).

Theorem 9. Let (S∗, I∗, R∗) be optimal state solution associated with the optimal control variables
u∗1(t) and u∗2(t)). Then, there must exist adjoint variables λ1, λ2, and λ3, satisfying

dλ1(t)
dt = −A1 − λ1(t)

(
r− 2rS∗

K −Λ1

)
−X[0,t f−τ]λ2(t + τ)Λ1,

dλ2(t)
dt = −A2 + λ1(t)Λ2 + λ2(t)(γ(2I∗ + R∗) + µ + u∗2)− λ3(t)(γ(2I∗ + R∗))
−X[0,t f−τ]λ2(t + τ)Λ2,
dλ3(t)

dt = λ2(t)γI∗ + λ3(t)(µ− γI∗),

(51)

where Λ1 = (1−u1(t))βI∗

(1+α1S∗)2(1+α2 I∗) and Λ2 = (1−u1(t))βS∗

(1+α1S∗)(1+α2 I∗)2 , and with boundary conditions
λi(t f ) = 0, (i = 1, 2, 3). Moreover, the optimal control u∗ is given by

u∗1 =

{
max

(
min

(
βS∗ I∗(λ2(t+τ)−λ1(t))
B1(1+α1S∗)(1+α2 I∗) , umax

1

)
, 0
)

, 0 ≤ t ≤ t f − τ,
0, otherwise.

(52)

u∗2 = max
(

min
(

λ2(t)I∗

B2
, umax

2

)
, 0
)

. (53)

Proof. We define a Hamiltonian function as the following:

H(t) =L(S, I, R, u1, u2) + λ1
dS(t)

dt
+ λ2

dI(t)
dt

+ λ3
dR(t)

dt

=A1S(t) + A2(t) +
B1

2
u2

1(t) +
B2

2
u2

2(t)

+ λ1(t)
(

rS(t)(1− S(t)
K

)− (1− u1(t))βS(t)I(t)
(1 + α1S(t))(1 + α2 I(t))

)
+ λ2(t)

(
(1− u1(t− τ))βS(t− τ)I(t− τ)

(1 + α1S(t− τ))(1 + α2 I(t− τ))
− γI(t)(I(t) + R(t))− (µ + u2(t))I(t)

)
+ λ3(t)(γI(t)(I(t) + R(t))− µR(t))

(54)

Let (S∗, I∗, R∗) be the optimal state variables of the system (45) associated with the optimal
control variables u∗1 and u∗2 . According to Pontryagin’s maximum principle, by calculating
the partial derivative of the Hamiltonian function for each state, there exist adjoint variables
λ1(t), λ2(t) and λ3(t) that satisfy the following equations:

dλ1(t)
dt

= −∂H
∂S
−X[0,t f−τ]

∂H
∂S(t− τ)

, λ1(t f ) = 0,

dλ2(t)
dt

= −∂H
∂I
−X[0,t f−τ]

∂H
∂I(t− τ)

, λ2(t f ) = 0,

dλ3(t)
dt

= −∂H
∂R
−X[0,t f−τ]

∂H
∂R(t− τ)

, λ3(t f ) = 0.
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Then, by using the optimality conditions, we find

∂H
∂u1

=B1u∗1 + λ1(t)
βS∗ I∗

(1 + α1S∗)(1 + α2 I∗)

−X[0,t f−τ]λ2(t + τ)
βS∗ I∗

(1 + α1S∗)(1 + α2 I∗)
= 0, at u1 = u∗1(t),

∂H
∂u2

=B2u∗2 − λ2(t)I∗ = 0, at u2 = u∗2(t),

(55)

Thus, we have

u∗1 =
βS∗ I∗(X[0,t f−τ]λ2(t + τ)− λ1(t))

B1(1 + α1S∗)(1 + α2 I∗)
, u∗2 =

λ2(t)I∗

B2
.

Therefore, combining with the properties of the control set (47), we obtain Equation (52)
and (53).

The optimal control pair and the state are found by solving the following optiamlity,
which consists of the state system (45), the adjoint system (9), boundary conditions (46),
and the characterization of the optimal control pair (u∗1 , u∗2) (52) and (53):

dS(t)
dt

= rS(t)(1− S(t)
K )− (1− u1(t))βS(t)I(t)

(1 + α1S(t))(1 + α2 I(t))
,

dI(t)
dt

=
(1− u1(t))βS(t− τ)I(t− τ)

(1 + α1S(t− τ))(1 + α2 I(t− τ))
− γI(t)(I(t) + R(t))− (µ + u2(t))I(t),

dR(t)
dt

= γI(t)(I(t) + R(t))− µR(t),
dλ1(t)

dt
= −A1 − λ1(t)

(
r− 2rS∗

K −Λ1

)
−X[0,t f−τ]λ2(t + τ)Λ1,

dλ2(t)
dt

= −A2 + λ1(t)Λ2 + λ2(t)(γ(2I∗ + R∗) + µ + u∗2)− λ3(t)(γ(2I∗ + R∗))

−X[0,t f−τ]λ2(t + τ)Λ2

dλ3(t)
dt

= λ2(t)γI∗ + λ3(t)(µ− γI∗),

(56)

with the transversality conditions λi(t f ) = 0(i = 1, 2, 3).

7. Numerical Simulation

In this section, we present numerical simulations using the fourth-order Runge–Kutta
methods in Matlab, to demonstrate the viability of our conclusions.

7.1. The Effect of the Parameter β

In the system (1), we take the parameters that are summarized in Table 1. In order
to investigate the effect of parameter β on the spreaders, we selected different values of
β. We first selected β = 0.0005, β = 0.0006, β = 0.0007, and β = 0.0008, respectively. A
direct calculation shows that the parameters satisfy the conditions of Theorem 4. Thus, the
rumor-free equilibrium E0 is global asymptotically stable. Figure 1a shows that rumors
will eventually disappear. In addition, we also obtained that the stable time increases
significantly as β goes up. Then, we selected β = 0.003, β = 0.004, and β = 0.006,
respectively. By calculations, we obtained that system (1) has a unique rumor-endemic
equilibrium which is globally asymptotically stable. It can be seen from Figure 1b that the
larger the β, the larger the peak value of the spreaders. However, with a further increase in
β, due to the nonlinear functional response, it is shown that the peak value of the spreaders
decreases (see Figure 1c), which is different with a linear functional response.
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Table 1. The descriptions and values of the parameters used in model (1).

Parameters Descriptions Values

r The population growth rate 0.8
K The environmental population capacity 100
β The spreading rate
α1 Parameter that measure the inhibitory effect 0.008
α2 Parameter that measure the inhibitory effect 0.002
µ The emigration rate 0.05
γ The stifling rate 0.002

τ
The time delay for individuals to pass from
hearing the rumor to the spread state 0

(a) (b) (c)

Figure 1. The path of I(t) under different β.

7.2. The Effect of the Delay τ

Now, we explore the effect of delay on the numbers of spreaders. Let the parameters be
same as in Section 7.1. First, we let the parameter β = 0.0002. From the above discussions,
we know that the rumor-free equilibrium E0 is globally asymptotically stable. We consider
that the delay τ takes different values τ = 10, τ = 20, and τ = 30, respectively. From
Figure 2, we observe that as the delay τ increases, the stable time increases.

Figure 2. The rumor-free equilibrium E0 is globally asymptotically stable with different delays τ.

Then, we fix the parameter β = 0.008 and change the parameter γ to 0.0002. Through
a direct calculation, we obtain that system (1) has a unique rumor-endemic equilibrium
E∗ = (16.3428, 116.6669, 102.0839). According to Theorem 6, we obtain that the critical value
τ0 = 2.6165, which means that the rumor-endemic equilibrium E∗ is locally asymptotically
stable when τ ∈ [0, τ0), and unstable when τ > τ0. We selected τ = 0.2, τ = 1, and τ = 2.
Figure 3a shows that when the time delay τ increases, it will take more time for the number
of spreaders to reach the positive constant. Finally, if the delay τ is large enough, the
spreaders will lose their stability (see Figure 3b), where τ = 3, τ = 4, and τ = 5. This
shows that with the increase in time delay, the amplitude increases.
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(a) (b)

Figure 3. (a) The rumor-endemic equilibrium E∗ of system (1) is locally asymptotically stable when
τ = 0.2, τ = 1, and τ = 2 ∈ [0, τ0). (b) The rumor-endemic equilibrium E∗ of system (1) is unstable
when τ = 3, τ = 4, and τ = 5 > τ0.

However, with increasing time delay, we can see that the system has a chaotic solution
(see Figure 4). Let τ vary in [0, 120]. We computed the largest Lyapunov exponent and drew
the bifurcation map of system (1). Figure 5 shows that the changing process of the system
from the period-doubling bifurcation into chaos. Figure 6 shows that the largest Lyapunov
exponent is greater than zero when τ is greater than some threshold value, which is in
accordance with the bifurcation map. In reality, the emergence of chaos makes rumors
more difficult to control.

Figure 4. System (1) is chaotic with τ = 100.

Figure 5. Bifurcation map with τ ∈ [0, 120].
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Figure 6. The largest Lyapunov exponent.

Remark 2. In this part, we report our use of the classical Runge–Kutta method to simulate Hopf
bifurcation and chaos, which can reflect the inherent characteristic of the system.

7.3. Numerical Simulation for Optimal Control

In this section, we present some numerical simulations to illustrate the effects of
optimal control. The parameters of system (45) were chosen to be those in Table 2.

Table 2. The descriptions and values of the parameters used in model (1). In this table, DY represents
the unit of time that can be stated as a day or an entire year.

Parameters Descriptions Values

r The population growth rate 0.8 DY−1

K The environmental population capacity 100 People
β The spreading rate 0.003 People−1 DY−1

α1 Parameter that measure the inhibitory effect 0.002 People−1

α2 Parameter that measure the inhibitory effect 0.002 People−1

µ The emigration rate 0.05 DY−1

γ The stifling rate 0.0002 People−1 DY−1

τ
The time delay for individuals to pass from
hearing the rumor to the spread state 8 DY

A1 The weight constant values in the objective functional 2
A2 The weight constant values in the objective functional 2
B1 The weight constant values in the objective functional 10
B2 The weight constant values in the objective functional 10

In the simulation, we studied and compared numerical findings in the following three
different ways for controlling the propagation of rumors. The impacts of various delays in
control variables are also discussed.

7.4. Only Reducing the Probability of Rumor Transmission (u2 = 0)

We assume that the government controls rumors only through the promotion of
scientific knowledge. The objective function J is optimized using only the control variable
u1, and the control variable u2 is set to zero.

Figure 7 shows that, in the presence of a control u1(t), the number of spreaders
decreases fast compared to "without control," under the effect of scientific knowledge.
Figure 8 shows the optimal control u1(t). the curve initially rises quickly to the maximal
due to the high spreader level, but then quickly declines due to the rumor’s persistent and
steady eradication.
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Figure 7. Numbers of spreaders I(t) with and without control.

Figure 8. The path of control u1.

We introduce two time-varying control variables u1(t) and u2(t), which represent the
cost of reducing the probability of rumor transmission and the strength of deleting posts
with spreaders through the sensitization and punishment, respectively.

7.5. Only Deleting Posts with Spreaders (u1 = 0)

We suppose that the government only deletes posts with spreaders through the sensi-
tization and punishment, which means that the control variable u1 is set to zero, and only
the control variable u2 is used to optimize the objective function J.

Figure 9 shows that, in the presence of u2(t), the number of spreaders quickly decreases
to zero compared to “without control.” Figure 10 shows the optimal control of u2(t).
The curve is highest at the beginning because punishment is critical in the event of a
high uninformed level. It then gradually decreases because of the constant and steady
eradication of the rumor.

Figure 9. Numbers of spreaders I(t) with and without control.
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Figure 10. The path of control u1 and u2.

7.6. Combining the Two Strategies

In Figure 11, when comparing the controlled case u1 6= 0 and u2 6= 0 with the
uncontrolled case u1 = 0, u2 = 0, we can detect a noticeable decline in the number of
spreaders. Thus, the comparison demonstrates that combining two control measures is
successful in suppressing rumors; not only can the number of spreaders be decreased
significantly, but the costs of two control strategies may also be significantly lowered.
Figure 12 represents the optimal u1(t) and u2(t).

Figure 11. Numbers of spreaders I(t) with and without control.

Figure 12. The path of control u1 and u2.

To verify the effectiveness of the control strategy, we chose the parameter β as β =
0.0024, 0.0026, 0.0028, 0.003, 0.0032, 0.0034, or 0.0036. The control effects are shown in
Figure 13, and the changes in the control u1 and u2 are shown in Figures 14 and 15. The
results show that as the parameter β changes, so does the corresponding controller, and the
system control still achieves very good results.
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Figure 13. Control effect of the system with various values of the parameter β.

Figure 14. The control u1 with different values of the parameter β.

Figure 15. The control u2 with different values of the parameter β.

Similarly, we set the parameter γ = 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, or
0.008. The control effects are shown in Figure 16, and the changes in the control u1 and u2
are shown in Figures 17 and 18. The results show that as the parameter γ changes, so does
the corresponding controller, and the system control still achieves very good results.
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Figure 16. Control effect of the system with various values of the parameter γ.

Figure 17. The control u1 with different values of the parameter γ.

Figure 18. The control u2 with different values of the parameter γ.

7.7. The Impact of Delay on Control Variables

In order to investigate the effect of delay τ, let the parameters be same as above, and
fix the other parameters. Then, the control variables u1(t) and u2(t) for two different values
of time delays, τ = 4 and τ = 8, are represented in Figure 19.

The figure shows that u1 and u2 are bigger when the delay is bigger. There are many
people who get vaccinated when the delay is long. We also treat many people who spread it.
Thus, with a longer time delay, the cost of controlling things will keep going up. Figure 20
shows that the cost of controlling something increases if someone is not paying attention
to the rumor for a long time before trying to get rid of it. This is because the person is not
paying attention. A spreader who thinks about spreading the rumor for more time becomes
more and more important when he or she does.
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Figure 19. The control functions u1 and u2 for two different τ = 4 and τ = 8.

Figure 20. The cost function J with τ varies in [2, 10].

8. Discussions and Conclusions

In this work, we considered a rumor-spreading model with delay. We proved the
existence, non-negativeness, and boundedness of the solution of the model. We established
the conditions for the existence of the rumor-endemic equilibrium. The local stability and
the Hopf bifurcation induced by the delay τ were analyzed. By constructing Lyapunov
functions, we studied the global stability of the rumor-free equilibrium and rumor-endemic
equilibrium. Numerical simulations showed that the delay τ is a sensitive factor for the
system. It can lead to not only Hopf bifurcation but also chaos.

To reduce the number of the spreaders, we introduced two control strategies to the
delayed model to study the optimal control of the system. One is that by removing
posts from the infected website, we can eliminate rumor-related content and decrease the
proportion of infected media. The other is that by teaching popular science to people
who do not know much about it, revealing the real information, and making it easier for
people who do not know much about something to tell the difference, the spreaders will
immediately become removal individuals.

No matter which technique the government picks, they are all beneficial in minimizing
the spread of misinformation. However, when combined, not only can the number of
spreaders be decreased to a greater level, but so can the cost of two control measures. In
response to rumors, it is realistically significant. On the one hand, the government should
initially push scientific information to the people via telephone, television, and the Internet,
and then prevent the turning of ignoramuses into disseminators. Alternatively, given the
prevalence of rumors, officials should release some official information to steer public
opinion and quell popular outrage, so facilitating the transition from rumor spreader to
removal individuals. The findings also demonstrated that the government should not
ignore the impact of time delay while dealing with the rumors, as missing the window of
opportunity to dispel bad public perception would come at a great cost. Consequently, the
government’s response needs to be lightning fast so that it may seize the initiative and gain
the backing of network public opinion.

These findings contribute to the establishment of rumor-control policies. The work
has crucial implications for efficiently anticipating and limiting rumor transmission.
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