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Abstract: This paper further develops a relaxed method to reduce conservatism in H∞ feedback
control for continuous-time T-S fuzzy systems via a generalized non-quadratic Lyapunov function.
Different from the results of some exisiting works, the generalized H∞ state feedback controller is
designed. The relaxed stabilization conditions are obtained by applying Finsler’s lemma with the
homogenous polynomial multipliers, and the H∞ performance is acquired by solving an optimization
problem. In addition, the proposed method could be expanded to handle other control problems for
fuzzy systems. Two examples are given to show the validity of the proposed results.
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1. Introduction

Owing to its better approximation properties, the Takagi–Sugeno (T-S) system [1] has
attracted much attention from different communities. The system comprises a set of linear
models and normalized membership functions (MFs).

The analysis and synthesis of fuzzy systems have been widely studied, such as stability
analysis [2–5], observer design [6,7], filter [8–10], etc. Due to some limitations of the
proposed methods in the existing results, researchers are seeking new methods to obtain
better results, such as larger domain of attraction or stability region, and better H∞ or
H2 performance. To reduce conservatism, many methods usually focus on the form of
Lyapunov functions (LFs), the structure of slack variables and analysis of MFs and its
derivatives.

Considering the drawbacks of common quadratic LFs, the complex LFs such as the fuzzy
Lyapunov functions (FLFs) [11], the non-quadratic Lyapunov functions (NQLFs) [12], the
line-integral FLFs [13], and homogeneous polynomial Lyapunov functions (HPLFs) [14], the
homogeneous polynomial non-quadratic Lyapunov functions (HPNQLFs) [15] were proposed
successively to further reduce the conservatism of stability conditions. For instance, Ref. [12]
proposed new relaxed linear matrix inequality (LMI) conditions based on NQLFs. Ref. [14]
first provided local asymptotic stability conditions and obtained different estimations of
the attraction domain by using HPLFs. Ref. [15] gave the asymptotically necessary and
sufficient stability conditions for discrete-time fuzzy systems via non-parallel distributed
compensation law (NPDCL) with HPNQLFs. In addition, Ref. [12] designed an NPDCL to
outperform previous results. By using the multi-indexed matrix approach, a homogeneous
polynomial nonparallel distribution compensator (HPNQDC) was designed in [16], but the
Lyapunov matrix used is linearly dependent on MFs. Ref. [17] further generalized previous
HPNQDC and enlarged the stabilization region. Based on congruence transformation and
Polya’s theorem, inner and outer slack variables were introduced in [18–21] to obtain a less
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conservative conclusion. Therefore, the design of a generalized control law for the local H∞
performance of continuous-time T-S fuzzy system is worthy of investigation.

On the other hand, due to the general dependence of LFs on MFs, the time derivative
of MFs (TDMFs) must be discussed in the proof process. Usually, there are several ways to
deal with the TDMFs: (1) Assuming the upper or lower bounds of TDMF; (2) Finding LMI
conditions to guarantee the upper bounds of TDMF hold; (3) Designing the line-integral
FLFs; (4) Using a switching idea for the TDMFs. By exploring the upper bounds and
properties of TDMFs, Ref. [22] proposed relaxed stability conditions. Considering the
lower bounds of TDMF, Ref. [3] provided sufficient conditions to minimize the peak-to-
peak level performance of the T-S fuzzy model. However, they overlooked the fact that
the TDMFs involved ẋ including the control law to be solved, which might be difficult
to support in practice. Refs. [23–25] proposed the LMI conditions that guaranteed that
the boundary of TDMF hold, but ignored disturbance. The line-integral FLFs designed
in [13] could abstain from TDMFs, but the Lyapnov matrix structure had to be limited,
which might bring about conservatism. Ref. [26] proposed a switching idea by discussing
the property of TDMFs, while designing robust methods to commendably incorporate
the boundary information of MFs is complex. Therefore, effective methods to manage the
TDMFs remain to be explored.

From the above discussions, this paper considers the design of a generalized control
law for local H∞ control of continuous-time T-S fuzzy systems to further reduce the
conservatism of existing results. The contributions of this paper are as follows:

(1) The generalized NQLFs and NPCL depending on multi-index MFs are designed,
including that found in [27] and double-fuzzy-summation in [20] as a special case,
and more variables are introduced to reduce the conservatism.

(2) The new LMIs conditions, which reduce the adjusted parameters to be calculated [7]
and avoid redundant restrictions such as LFs matrices, slack variables in [23,28], are
obtained to bound the time derivatives of MFs with disturbance.

(3) The extended stabilization conditions for H∞ performance are obtained by polyno-
mial technology. As q increases, conservatism of obtained conditions will reduce,
and the proposed method can be generalized to handle other cases, such as output
feedback controller design [5], finite-time annular domain stability [29],mean-square
strong stability [30].

2. Problem Statement and Preliminaries
2.1. The T-S Fuzzy System

The T-S fuzzy system (1) in Cx (Cx = {x : |xi| ≤ θxi, i = 1, 2, · · · , n}) can be obtained
by applying the local approximation method.

ẋ(t) =
r

∑
i=1

hi(x(t))(Aix(t) + B1iω(t) + B2iu(t))

= Ahx(t) + B1hω(t) + B2hu(t),

z(t) =
r

∑
i=1

hi(x(t))(C1ix(t) + D1iω(t) + D2iu(t))

= C1hx(t) + D1hω(t) + D2hu(t), (1)

y(t) =
r

∑
i=1

hi(x(t))C2ix(t) = C2hx(t).

where the state x(t) ∈ Rn×1, the measured output y(t) ∈ Rny×1, the external disturbance
ω(t) ∈ Rnw×1, the control input u(t) ∈ Rnu×1 and the controlled output z(t) ∈ Rnz×1. Ai ∈
Rn×n, B1i ∈ Rn×nω , B2i ∈ Rn×nu , C1i ∈ Rnz×n, C2i ∈ Rny×n, D1i ∈ Rnz×nω , D2i ∈ Rnz×nu

and D3i ∈ Rny×nω . hi(x) is the normalised MF satisfying ∑r
i=1 hi(x(t)) = 1.
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The objective of this paper is to design a controller u(t) such that the system (1) with
ω = 0 is locally asymptotically stable, and guarantees

∫ t
0 z(t)Tz(t)dt ≤ γ2

∫ t
0 ω(t)Tω(t)dt

(t > 0) under zero initial conditions.

2.2. Notations and Properties

N denotes the natural numbers set. n! denotes factorial, i.e., n! = n(n− 1) · · · (2)(1)
for n ∈ N with 0! = 1. For any Φ ∈ Rn×n, He(Φ) = Φ + ΦT . x(t), h(x(t)) are re-
placed, respectively, by x, h for convenience. Ωh = ∑r

i=1 hiΩi, Ωhh = ∑r
i=1 ∑r

j=1 hihjΩij.

diag{a1, . . . , an} =

 a1 · · · 0
...

. . .
...

0 · · · an

.

Based on the multi-index notations proposed in [19], that is, Iq = {iq = (i1, i2, . . . , iq) ∈
Nq | 1 ≤ ik ≤ r}, I+q = {iq ∈ Iq | i1 ≤ i2 ≤ . . . ≤ iq}.

The notation of iq/ik (iq ∈ I+q ,1 ≤ k ≤ r) in [31] is recommended as follows:

iq/ik =

{
i1 . . . ik−1ik+1 . . . ip, if ik ∈ iq;
0, otherwise.

(2)

For instance, if i1i2i2 ∈ I+3 , k ∈ {1, 2, 3, 4}, i1, i2 6= i3, i1, i2 6= i4, then i1i2i2/i1 = i2i2,
i1i2i2/i2 = i1i2, i1i2i2/i3 = 0, i1i2i2/i4 = 0.

The form of MFs for a product is expressed:

hiq =
q

∏
l=1

hil = hi1 hi2 · · · hiq = hq1
1 hq2

2 · · · h
qr
r , (3)

where ∑r
i=1 qi = q.

According to the convex sum property of MFs, one has

1 =
r

∑
i=1

hi = (
r

∑
i=1

hi)
q = ∑

iq∈I+q

giq hiq , (4)

where giq =
q!

q1!q2!···qr ! , ∑r
i=1 qi = q. For example, as r = 2, q = 4, if i1 = i2 = 1, i3 = i4 = 2,

h1h1h2h2 = h2
1h2

2 or i1 = 1, i2 = i3 = i4 = 2, h1h2h2h2 = h1h3
2, one gets g1122 = 4!

2!2! = 6
(q1 = 2, q2 = 2) or g1222 = 4!

1!3! = 4 ( q1 = 1, q2 = 3).
The q-dimensional fuzzy summations of matrices are defined as follows:

Ωh = ∑
iq∈Iq

hiq Ωiq =
r

∑
i1=1
· · ·

r

∑
iq=1

hi1 · · · hiq Ωi1 ...iq

Ωh+ = ∑
iq∈I+q

hiq Ωiq =
r

∑
i1=1
· · ·

r

∑
iq=iq−1

hi1 · · · hiq Ωi1 ...iq

To facilitate the formula derivation, the following lemma and several properties
are cited.

Lemma 1 (Finsler’s Lemma [18]). Let ζ ∈ Rn, Θ ∈ Rn×n, Φ ∈ Rm×n, rank(Φ) < n, then
ζTΘξ < 0, ∀ζ 6= 0, such that Φζ = 0, if and only if one of the following conditions holds:

(1) ΦT
⊥ΘΦ⊥ < 0, where Φ⊥ satisfies ΦΦ⊥ = 0, and ΦΦT + ΦT

⊥Φ⊥ > 0;
(2) ∃ µ ∈ R: Θ− µΦTΦ < 0;
(3) ∃ V ∈ Rm×n: Θ + VΦ + ΦTVT < 0.

Property 1 ([18]). The following inequalities are equivalent:

(1) Find symmetric matrix X = XT , such that T + ATXT + XA < 0.
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(2) Find symmetric matrix X = XT , R1, R2, such that[
T + AT RT

1 + R1 A (*)
X− RT

1 + XT A −R2 − RT
2

]
< 0. (5)

Property 2 ([32]). Considering matrices Φ = ΦT and Ψ = ΨT with suitable dimensions, if
Φ+ µΨ < 0 and Φ− µΨ < 0 , then Φ+ ḣΨ < 0 holds for any ḣ and µ satisfying |ḣ| ≤ µ(µ > 0).

Property 3 ([19]). Let Ωiq , iq ∈ I+q be the matrices of proper dimensions. Then, Ωhq < 0 holds if

Ωiq < 0. (6)

3. Main Results

Theorem 1. If given µj > 0, ‖ ∂hj
∂x ‖ ≤ σj, j ∈ I1, ‖ω‖ ≤ δ, there exist symmetric matrices

Piq > 0, (iq ∈ Iq) and Miq+1 (iq+1 ∈ I+q+1), matrices Fiq , Ll1l2
iq

and Gl1l2
iq

(iq ∈ I+q ) (l1, l2 = 1, 2, 3),
such that

Ω(1)
iq+1

=



Ω11 Ω12 Ω13 Ω14 Ω15 Ω16
∗ Ω22 Ω23 Ω24 Ω25 Ω26
∗ ∗ Ω33 Ω34 Ω35 Ω36
∗ ∗ ∗ Ω44 Ω45 Ω46
∗ ∗ ∗ ∗ Ω55 Ω56
∗ ∗ ∗ ∗ ∗ Ω66

 < 0, (7)

Ω(2)
iq+1

=


∑r

i=1 PP(iq+1/ik) 0 (∗)
0 I (∗)

∑
q
ik=1

(
εx Aik Pī + εxB2ik Fī

)
B1ik giq+1

α2µ2
j

ρσ2
j

 > 0, (8)

where ī = iq+1/ik,

Ω11 = ∑
q
ik=1 He

(
L11

ī AT
ik
+ B2ik Fī

)
±∑r

j=1 µjΩ̄
j
iq+1

,

Ω̄j
iq+1

= ∑r
j=1 ∑jq∈P(iq+1/j)

(
Pj...jq + · · ·+ Pj1 ...j

)
+Miq+1 ,

Ω12 = ∑
q
ik=1

(
gīB1ik + Aik L21T

ī

)
,

Ω13 = ∑
q
ik=1

(
FT

ī DT
2ik

+ L11
ī CT

1ik
+ Aik L31T

ī

)
,

Ω14 = ∑
q
ik=1

(
PP(ī) − L11

ī + Aik G11
īk

)
,

Ω15 = ∑
q
ik=1

(
−L12

ī + Aik G12
ī

)
, Ω16 = ∑

q
ik=1

(
−L13

ī + Aik G13
ī

)
,

Ω22 = −giq+1 γ2, Ω23 = ∑
q
ik=1

(
DT

1ik
+ L21

ī CT
1ik

)
,

Ω24 = −∑
q
ik=1 L21

ī , Ω25 = giq+1 I −∑
q
ik=1 L22

ī ,
Ω26 = −∑

q
ik=1 L23

ī , Ω33 = ∑
q
ik=1 He(L31

ī CT
1ik
)− giq+1 I,

Ω34 = ∑
q
ik=1

(
−L31

ī + C1ik G11
ī

)
,

Ω35 = ∑
q
ik=1

(
−L32

ī + C1ik G12
ī

)
,

Ω36 = giq+1 I −∑
q
ik=1

(
L33

ī + C1ik G13
ī

)
,

Ω44 = ∑
q
ik=1 He(−G11

ī ), Ω45 = ∑
q
ik=1

(
−G12

ī − G21T

ī

)
,

Ω46 = ∑
q
ik=1

(
−G13

ī − G31T

ī

)
, Ω55 = ∑

q
ik=1 He(−G22

ī ),

Ω56 = ∑
q
ik=1

(
−G23

ī − G32T

ī

)
, Ω66 = ∑

q
ik=1 He(−G33

ī ).

then, the closed-loop system (1) in Ωx(:= {x : xT P−1
hq

x ≤ ρ}) is locally asymptotically stable with
a disturbance attenuation level γ under the controller (9)

u(t) = Fh+
q

P−1
hq

x. (9)
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Proof. Designing the generalized NQLF candidate as

V(x) = xT P−1
hq

x, (10)

and letting Γ = V̇(x) + zTz− γ2ωTω, we get

Γ = ηT
[

Λ1 P−1B1h + C̄T D1h
(∗) −γ2 + DT

1hD1h

]
η, (11)

where Λ1 = He(P−1
hq

Ā) + Ṗ−1
hq

+ C̄TC̄, ηT =
[

xT ωT ]
, Ā = Ah + B2hFh+

q
P−1

hq
, C̄ =

C1h + D2hFh+
q

P−1
hq

.

On one hand, Γ ≤ 0 is guaranteed by the following formula: He(P−1
hq

Ā) + Ṗ−1
hq

P−1
hq

B1h C̄

BT
1hP−1

hq
−γ2 DT

1h
C̄ D1h −I

 < 0. (12)

Multiplying left and right by diag{Phq , I, I} and using the relation Ṗ−1
hq

= −P−1
hq

Ṗhq P−1
hq

,
Equation (12) is transformed into He(ĀPhq)− Ṗhq B1h Phq C̄

BT
1h −γ2 DT

1h
C̄Phq D1h −I

 < 0. (13)

Starting from the characteristics where ∑r
j=1 ḣj = 0, thus ∑r

j=1 ḣj Mh+
q+1

= 0 for any sym-

metric matrix Mh+
q+1

with suitable size, adding ∑r
j=1 ḣj Mh+

q+1
to (13) and using Property 2,

we get  He(ĀPhq)±Ωj B1h Phq C̄T

BT
1h −γ2 DT

1h
C̄Phq D1h −I

 < 0, (14)

where Ωj = ∑r
j=1 ḣj(Pj

hq
+ Mh+

q+1
).

Then, Equation (14) is transformed in to

Q + ΛT
2 P̂ + P̂Λ2 < 0 (15)

where

Q =

 He(B2hFh+
q
)−Ω B1h (Fh+

q
)T DT

2h

∗ −γ2 DT
1h

∗ ∗ −I

,

P̂ =

 Phq 0 0
0 I 0
0 0 I

, ΛT
2 =

 Ah 0 0
0 0 0

C1h 0 0

.
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Applying Property 1 to (15), one gets

Ωhq+1 =



Ω̄11 Ω̄12 Ω̄13 Ω̄14 Ω̄15 Ω̄16
∗ −γ2 Ω̄23 Ω̄24 Ω̄25 Ω̄26
∗ ∗ Ω̄33 Ω̄34 Ω̄35 Ω̄36
∗ ∗ ∗ Ω̄44 Ω̄45 Ω̄46
∗ ∗ ∗ ∗ Ω̄55 Ω̄56
∗ ∗ ∗ ∗ ∗ Ω̄66

 < 0, (16)

where

Ω̄11 = He(L11
h+

q
AT

h + B2hFh+
q
)±Ωj, Ω̄12 = B1h + AhL21T

h+
q

,

Ω̄13 = FT
h+

q
DT

2h + L11
h+

q
CT

1h + AhL31T

h+
q

, Ω̄14 = Phq − L11
h+

q
+ AhG11

h+
q

,

Ω̄15 = −L12
h+

q
+ AhG12

h+
q

, Ω̄16 = −L13
h+

q
+ AhG13

hq
,

Ω̄23 = DT
1h + L21

h+
q

CT
1h, Ω̄24 = −L21

h+
q

, Ω̄25 = I − L22
h+

q
,

Ω̄26 = −L23
h+

q
, Ω̄33 = −I + He(L31

h+
q

CT
1h),

Ω̄34 = −L31
h+

q
+ C1hG11

h+
q

, Ω̄35 = −L32
h+

q
+ C1hG12

h+
q

,

Ω̄36 = I − L33
h+

q
+ C1hG13

h+
q

, Ω̄44 = He(−G11
h+

q
),

Ω̄45 = −G12
h+

q
− G21T

h+
q

, Ω̄46 = −G13
h+

q
− G31T

h+
q

,

Ω̄55 = He(−G22
h+

q
), Ω̄56 = −G23

h+
q
− G32T

h+
q

.Ω̄66 = He(−G33
h+

q
),

According to Property 2, (16) is warranted by (7) with |ḣj| ≤ µj.
On the other hand, we discuss |ḣj| ≤ µj. Let

|ḣj| = |(
∂hj

∂x
)Tεx(Ahx + B2hFh+

q
P−1

hq
x + B1hω)| ≤ µj. (17)

Notation: If h contains all state x, then εx is the unit matrix. If h only contains a part of state,
for instance, x = [x1, x2, x3, x4]

T , h depends on x1, x3, then εx = diag{1, 0, 1, 0}.
For (17), one has

ηT∆T ∂hj

∂x
(

∂hj

∂x
)T∆η < µ2

j , (18)

where ∆ = εx[Ah + B2hFh+
q

P−1
hq

, B1h], η = [x; ω].

It is known that (
∂hj
∂x )

T ∂hj
∂x ≤ σ2

j ⇔
∂hj
∂x (

∂hj
∂x )

T ≤ σ2
j I and ηTdiag{P−1

hq
, I}η ≤ ρ + δ2.

Equation (18) is guaranteed by

(ρ + δ2)σ2
j

α2µ2
j

∆T∆− diag{P−1
hq

, I} < 0, (19)

Utilizing Schur complement to (19) and multiplying left and right by diag{Phq , I},
one has 

Phq ∗ ∗
0 I ∗

εx(AhPhq + B2hFh+
q
) B1h

α2µ2
j

ρσ2
j

 > 0. (20)

Therefore, if (7) and (8) hold, we have Γ < 0, which means
∫ ∞

0 zTzdt ≤ γ2
∫ ∞

0 ωTωdt.
The proof is completed.
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Remark 1. TDMFs in [20,23] were bounded without disturbance and some assumed conditions
such as matrix P (Pi >

λ2
x+λ2

k
2βk

I ) and the free variable S (Sh = Ph) in [28,33] were limited. This
paper eliminates these restrictions or assumptions.

Remark 2. Due to (
∂hj
∂x )

T ∂hj
∂x ≤ σ2

j being restricted, Theorem 1 means a local result. The Lyapunov

level Ωx(xT P−1
hq

x ≤ ρ) is an estimated region for H∞ performance, which must be contained in Θx.
Applying the Lagrange multiplier method, we get[

λ2
xi
ρ eiPhq

Phq eT
i Phq

]
≥ 0 (21)

Thus, according to Property 3, conditions (22) guarantee (21).[
giq

λ2
xi
ρ eiPP(iq)

∗ PP(iq)

]
≥ 0, i = 1, 2, . . . , n (22)

Remark 3. There are two parameters µj and ρ in Theorem 1 to be searched. By solving the following
optimization problem, one can get H∞ performance with given µj and ρ.

min
PP(iq)>0,Fiq ,Liq ,Giq ,µj ,α

γ

s.t. (7), (8), (22) (23)

Compared with the methods in [28,33], if |ḣj| ≤ µj is decomposed, that is,

|(
∂hj

∂x
)Tεx(Ah + B2hFh+

q
P−1

hq
)x| ≤ αµj (24)

|(
∂hj

∂x
)TεxB1hω| ≤ (1− α)µj (25)

then (8) will be substituted with (26), (27).

Corollary 1. Given µj > 0, ‖ ∂hj
∂x ‖ ≤ σj, j ∈ I1, ‖ω‖ ≤ δ, α ∈ (0, 1), if (7), (26), (27), (22) hold,

Ω(2)
iq+1

=

 ∑r
i=1 PP(iq+1/i) (∗)

Ω(2)
21 giq+1

α2µ2
j

ρσ2
j

 > 0, (26)

 (1−α)2µ2
j

δ2 (∗)
εxB1ik

1
σ2

j

 > 0, (27)

Then, the closed-loop system (1) in Ωx(:= {x : xT P−1
hq

x ≤ ρ}) is locally asymptotically stable with
a disturbance attenuation level γ under the controller (9).

Proof. The proof is similar to that of Theorem 1, and is thus omitted here.

4. Simulation Example

All the experiments were performed on a computer with an Intel(R) Core(TM)i5-7200U
CPU @ 2.50 GHz 2.70 GHz, 12 GB(RAM), using Matlab2017a.
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Example 1. Considering the following nonlinear system form [33].
ẋ1 = −6x1 − 4.33x2 + 7.59x1sin2(x1)− 2.96x2sin2(x1)

+ (sin2(x1)− 2.06cos2(x1))u + (0.1 + 0.01cos2(x1))ω

ẋ2 = x1sin2(x1) + 5x2 − 5sin2(x1)x2 − cos2(x1)u

+ (0.01sin2(x1) + 0.03)ω

(28)

The above system is expressed as a T-S fuzzy system with two rules in the Cx = {x :
|xi| ≤ π

2 , i = 1, 2}. One gets the system matrices:

A1 =

[
1.59 −7.29

1 0

]
, A2 =

[
−6 −4.33
0 5

]
, B11 =

[
0.01
0.04

]
, B12 =

[
0.011
0.03

]
,

B21 =

[
1
0

]
, B22 =

[
−2.06
−1

]
, C11 = C12 =

[
1 2

]
, D11 = D12 = D21 = D22 = 0,

h1 = sin2(x1), h2 = 1− h1.

Since ∂h1
∂x = 2sin(x1)cos(x1) and ∂h2

∂x = −2sin(x1)cos(x1), thus

(
∂h1

∂x
)T ∂h1

∂x
≤ 1, (

∂h2

∂x
)T ∂h2

∂x
≤ 1,

one has σ2
i = 1.

The external disturbance signal ω(t) = {sin(t), 5≤t≤15 s
0, else . The parameters required by

Theorem 1 in the region Ωx(xT P−1
hq

x ≤ ρ = 1) are as follows: σ2
i = 1, λ2

xi
= π2

4 , δ2 = 1,
µi = 1000 .

All results are solved by function minx in Matlab Toolbox. The minimal γ obtained
are shown in Table 1 under different methods. Notice, a line indicates that SeDuMi solver
is unable to converge to a solution.

Table 1. Minimum H∞ performance γ.

Methods γ Computational Time

[23] –
[34] (Theorem 1) 0.1896 0.2015 s
[33] (Theorem 1) 0.0483 1.4590 s
[27] (Theorem 1) 0.0434 0.3305 s

Corollary 1 (q = 1) 0.0511 0.4590 s
Corollary 1 (q = 2) 0.0409 0.9586 s
Corollary 1 (q = 3) 0.0345 1.6205 s
Theorem 1 (q = 1) 0.0506 0.5160 s
Theorem 1 (q = 2) 0.0407 1.0272 s
Theorem 1 (q = 3) 0.0338 2.2055 s

This clearly shows that the Theorem 1 proposed in this paper is less conservative than
other methods. Moreover, as q increases, better results are obtained.

On the other hand, when systems include unknown parameters, such as B22 =[
−2.06 + λ
−1

]
, we compare the minimal γ with the different λ shown in Table 2. Al-

though the minimal γ increases with the parameter λ, Theorem 1’s results are better than
other ones under the same parameter λ.
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Table 2. Minimum H∞ performance γ with different λ.

Methods λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.7 λ = 1

Corollary 1 (q = 1) 0.0538 0.0567 0.0598 0.0630 0.0742 0.0878
Corollary 1 (q = 2) 0.0391 0.0374 0.0359 0.344 0.0307 0.0281
Corollary 1 (q = 3) 0.0334 0.0323 0.0313 0.0304 0.0280 0.0260
Theorem 1 (q = 1) 0.0506 0.0480 0.0457 0.0414 0.0361 0.0332
Theorem 1 (q = 2) 0.0387 0.0368 0.0350 0.0334 0.0294 0.0271
Theorem 1 (q = 3) 0.0327 0.0317 0.0307 0.0298 0.0275 0.0259

When λ = 1 and q = 3, one gets γ = 0.0259 and the gain matrices as follow.

P111 =

[
1.4172 −1.3062
−1.3062 1.2039

]
, F111 =

[
−13.5716
10.4026

]T

,

P112 =

[
0.0001 −0.0044
−0.0044 1.4004

]
, F112 =

[
−48.4813
22.6372

]T

,

P122 =

[
7.0579 3.9604
3.9604 2.2224

]
, F122 =

[
51.1398
55.7751

]T

,

P222 =

[
2.4673 1.0802
1.0802 0.4736

]
, F222 =

[
−3.3849
5.5163

]T

.

Choosing the initial four points

x(1)0 =
[

0.1 0.01
]T , x(2)0 =

[
−0.1 −0.01

]T ,
x(3)0 =

[
0 −0.011

]T , x(4)0 =
[

0 0.011
]T ,

four trajectory curves in the domain of attraction Ωx are shown in Figure 1, which are
asymptotically driven to the origin under the controller. Therefore, this shows that the
designed controller is effective.
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10
-4

Figure 1. Trajectory curves start from Ωx.

Example 2. The state equation of motion for the inverted pendulum controlled by a separately
excited direct current (DC) motor from [35].

ẋ1(t) = x2(t),

ẋ2(t) =
g
l

sinx1(t) +
NK1

ml2 x3(t) + ω,

0 = −NK2x2(t)− R̄x3(t) + u,

(29)
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where x1 ∈ [−π π] denotes the angle, x2 denotes the angular velocity, x3 represents the current
of the DC motor, u is the control input voltage. The parameter values of the system are m = 1 kg,
l = 1 m, g = 9.8 m/s2, N = 10, K2 = 0.1 Vs/rad, K1 = 0.1 Nm/A and 0.6 Ω ≤ R̄ ≤ 3.5 Ω.

Equation (29) can be converted to
ẋ1(t) = x2(t),

ẋ2(t) =
g
l

sinx1(t)−
N2K1K2

ml2R̄
x2(t) +

NK1

ml2R̄
u + ω.

(30)

We consider z = x1 + x2. Applying local approximation method, the T-S fuzzy model (1)

is given with A1 =

[
0 1

9.8 − 5
3

]
, A2 =

[
0 1
0 − 5

3

]
, B21 =

[
0
5
3

]
, B22 =

[
0
5
3

]
, B11 =[

0
1

]
, B12 =

[
0
1

]
, C11 =

[
1 1

]
, C12 =

[
1 1

]
, D11 = D12 = D21 = D22 = 0.

h1 = sin(x1)+1
2 , h2 = 1− h1 defined in the compact set C = {x : |x1| ≤ π, |x2| ≤ π}.

Since ∂h1
∂x =

[
cos(x1)

2 0
]T

and ∂h2
∂x =

[
− cos(x1)

2 0
]T

, thus ( ∂h1
∂x )

T ∂h1
∂x ≤ 1

4 ,

( ∂h2
∂x )

T ∂h2
∂x ≤

1
4 , one has µ2

i = 1
4 . Selecting σ2

i = 1
4 , λ2

x = 2π2, ρ = 1.
Here, we consider that the derivative of MFs (µ1 = µ2) in Theorem 1 affects the

conservativeness of the different method. The results are shown in Table 3. It can be seen
that [23,27,33] cannot converge to a solution when µ = 1, but Theorem 1 can. Moreover,
as µi increases, γ decreases, and Theorem 1’s results with q = 2 are better than other ones
under the same parameter µ.

Table 3. Minimum H∞ performance γ with different µi.

Methods µ = 1 µ = 10 µ = 100 µ = 1000

[23] (Theorem 1) – 1.6751× 10−5 7.2367× 10−6 3.1836× 10−6

[33] (Theorem 1) – 1.7001× 10−5 8.7385× 10−6 4.0402× 10−6

[27] (Theorem 1) – 2.866× 10−5 2.7622× 10−5 2.7572× 10−5

Theorem 1 (q = 1) 1.5039× 10−5 2.1596× 10−5 2.1523× 10−5 2.1224× 10−5

Theorem 1 (q = 2) 2.5539× 10−5 1.5306× 10−5 6.3759× 10−6 2.6786× 10−6

Choosing q = 2, µ = 100, we get γ = 6.3759 × 10−6 and control gain matrixes
as follow:

P11 = 106 ×
[

6.8474 −6.7747
−6.7747 6.8257

]
, F11 = 105 ×

[
−5.6759
6.5064

]T

,

P12 = 106 ×
[

7.1174 −6.9996
−6.9996 7.0022

]
, F12 = 106 ×

[
0.5910
−9.8859

]T

,

P22 = 106 ×
[

6.9380 −6.8626
−6.8626 6.9128

]
, F22 = 106 ×

[
−0.0242
−7.6379

]T

.

From the starting point x0 = [3,−3]T , the response trajectories of the states, Lyapunov
function and control input are shown in Figures 2–4, respectively. Therefore, the closed-loop
system (30) is locally asymptotically stable with disturbance attenuation level γ under the
controller (9).
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Figure 2. States response for closed-loop systems.
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Figure 4. Control input curve for closed-loop systems.

5. Conclusions

This paper has presented the local H∞ control for continuous-time T-S fuzzy systems
via generalized nonquadratic Lyapunov functions. Using polynomial technology, relaxed
LMIs conditions satisfying H∞ performance are obtained, which are easily solved by
the optimization problem. The simulation examples provided show the validity of the
proposed method.

Furthermore, the method proposed in this paper could be generalized to handle
problems regarding output feedback controllers, filters or observers. Now, our group
is considering the output feedback controller design for nonlinear systems, finite-time
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boundedness, finite-time annular domain stability and mean-square strong stability for
stochastic systems using our method.
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