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Abstract: Let Σ+ be the set of all finite words over a finite alphabet Σ. A word u is called a strict
prefix of a word v, if u is a prefix of v and there is no other way to show that u is a subword of v. A
language L ⊆ Σ+ is said to be prefix-strict, if for any u, v ∈ L, u is a subword of v always implies that
u is a strict prefix of v. Denote the class of all prefix-strict languages in Σ+ by P(Σ+). This paper
characterizes P(Σ+) as a universe of a model of the free object for the ai-semiring variety satisfying
the additional identities x + yx ≈ x and x + yxz ≈ x. Furthermore, the analogous results for so-called
suffix-strict languages and infix-strict languages are introduced.
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1. Introduction

In algebraic theory of formal languages, there are two common methods to cluster
languages. One is constructing algebra structure for a given class of languages, the other
is collecting languages that satisfy a property with respect to a binary relation over the
free monoid Σ∗ (generated by a finite alphabet Σ). This paper aims at constructing an
algebra structure for a class of languages that is defined by a partial order. Furthermore,
we characterize the algebra structure as a model of a free object for a variety.

It is noted that algebraic and combinatorial properties of languages and words play a
role in both clustering methods mentioned above. This is the case for the regular languages
which can be defined by regular expressions. Let Reg(Σ∗) denote the class of regular lan-
guages over Σ and let ∪, ◦ and ∗ denote the well-known regular operations, i.e., set union,
catenation and Kleene closure, respectively. It can be obtained from the combinatorial
properties of regular languages that Reg(Σ∗) is closed under all these operations. Hence,
(Reg(Σ∗),∪, ◦,∗ ) forms an algebra structure [1], which contains all the regular expressions
as its elements. This algebra has been widely applied in theoretical computer and informa-
tion science. Another example is the semiring of finite languages. Let F (Σ+) denote the
class of all finite languages over Σ. It easy to see that F (Σ+) is closed under the operations
∪ and ◦, and so (F (Σ+),∪, ◦) forms an algebra structure. However, language classes are
not always closed under regular operations.

On the other hand, a partial order seems a more convenient tool for defining a language.
Generally, for a given partial order ≤ over Σ∗, three types of language might be proposed.
A language L ⊆ Σ∗ is said to be convex with respect to ≤, if for any u, w ∈ L with u ≤ w,
the inequalities u ≤ v and v ≤ w always imply that v ∈ L, where v ∈ Σ∗. Further, L is said
to be closed with respect to ≤, if u ∈ L and v ∈ u imply that v ∈ L. Furthermore, L is said to
be free with respect to ≤, if it is an independent set with respect to ≤.

Many convex and free languages with respect to various binary relations were in-
troduced by G. Thierrin, M. Ito and their co-researchers, and further studied by T. Ang
and J. Brzozowski. They established the algebraic properties, combinatorial structures and
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decision algorithms of these three types of languages with respect to prefix relation, suffix
relation, outfix relation, infix relation, factor relation, subword relation and so on. We refer
the reader to [2–5] for details. In particular, a hypercode is a free language with respect to the
embedding order (also known as a subword relation) also studied by L. Haines in [6]. Here,
an embedding order, denoted by ≤H, is a partial order over Σ∗ defined by: for any u, v ∈ Σ∗,
u ≤H v if and only if u = x1x2 · · · xn and v = y0x1y1 · · · xnyn, where n is a positive integer
and xi, yi ∈ Σ∗, i = 0, 1, · · · , n. A language L is a hypercode means that for any u, v ∈ L,
(u, v) 6∈≤H.

Since the definition of embedding order explicates directly the combination charac-
terization of words involved in it, the combinatorial properties of hypercodes are almost
certain to relate to them. L. Haines proved that every hypercode was finite. H. Shyr and G.
Thierrin [3] proved that the class of all hypercodes over Σ, denoted byH(Σ+), was closed
under the regular operation ◦. Further, Z. Wang et al. defined in [7] a binary operation +H
inH(Σ+) by picking out the minimal elements (in the sense of≤H) from the union A∪ B of
A, B ∈ H(Σ+). It was shown thatH(Σ+) was closed under +H and hence (H(Σ+),+H, ◦)
formed an algebra structure.

Moreover, to construct an algebra structure for a language class also makes some
sense in the effort to find a model of a free object for a variety. The well-known examples
are structures of free semigroups and free commutative (noncommutative) algebras. The
operation rules in these structures reflect the combinatorial properties among words and
commutative (noncommutative) polynomials, which represent, respectively, the combina-
torial properties of elements in a semigroup and commutative (noncommutative) algebra.
When it comes to an algebra structure of a class of languages, if its operation rules reflect
(or are defined by) the combinatorial characterizations of languages, then this structure has
a probability to be a model of a free object for a variety, just as a free semigroup does.

By an additively idempotent semiring (ai-semiring for short) we mean a semiring whose
additive reduct is a semilattice, i.e., a commutative idempotent semigroup. The variety of
all ai-semirings is denoted by AI. M. Kuřil and L. Polák initiated the studies in the field
of constructing a model of a free object for an ai-semiring variety by an algebra structure
of a class of languages. In [8], they proved that the structure (F (Σ+),∪, ◦) was freely
generated by Σ in the variety AI. We refer the reader to [9] for more detail on subvarieties
of semilattice ordered algebras.

In addition, the algebra (H(Σ+),+H, ◦) was also characterized as a model of a free
object for an ai-semiring variety satisfying the additional identities x + xy ≈ x and
x + yx ≈ x (see [7] for details). Undoubtedly, these two identities (named absorption
laws) reflect some special combinatorial properties of hypercodes, which are derived from
the embedding order.

Further, more ai-semiring varieties with absorption laws as additional identities were
studied in [10]. The authors established combinatorial properties of three classes of lan-
guages containing hypercodes and constructed algebra structures for these classes, respec-
tively. All these three structures were proved to be models of free objects for ai-semiring
varieties satisfying x + xy ≈ x, x + yx ≈ x and xz + xyz ≈ xz, respectively. For literature
on studying ai-semiring varieties by establishing combinatorial properties of words, we
refer the reader to [11–17].

Following the study in [10], this paper focuses on ai-semiring varieties with absorption
laws as additional identities. We define a class of so-called prefix-strict languages, denoted
by P(Σ+), and recall some notions in Section 2 as preliminary. In Section 3, we study a
subset of the embedding order, which might be proved a partial order, say ≤P . It is shown
that the class of free languages with respect to ≤P coincides with the class P(Σ+). Further,
we establish in Section 4 some combinatorial properties for languages in P(Σ+), which
are used to verify the operation properties of the algebra structure construct for P(Σ+).
In Section 5, the class P(Σ+) is characterized as a universe of an ai-semiring, which is
freely generated by Σ in the variety with additional identities x + yx ≈ x and x + yxz ≈ x.
Moreover, some parallel concepts and results are introduced in this paper, simultaneously.
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2. Preliminaries

Let Σ be a nonempty finite alphabet and Σ∗ the set of all finite words. Denote the
empty word by ε and let Σ+ = Σ∗ \ {ε}. Given two words u, v ∈ Σ∗, we say u is a prefix
(suffix) of v, if there exists x ∈ Σ∗ such that v = ux (v = xu). Furthermore, u is an infix of v,
if v = xuy for some x, y ∈ Σ∗. Clearly, a prefix or a suffix is also an infix.

Let u, v ∈ Σ+. u is called a subword of v, if u ≤H v. Further, if u ≤H v and u 6= v, then
u is a proper subword of v. Furthermore, u is said to be a factor of v, if there exist x, y ∈ Σ∗

such that v = xuy. Thus, a prefix (suffix) or an infix of a word v must be its subword and
factor as well.

Suppose that u is a subword of v. The following example shows that u, as a string of
letters, may be embedded letter by letter into a word for obtaining v in different ways.

Example 1. Let u = ab and v = ababab be two words in {a, b}∗. It is easy to see that ab is a
prefix (suffix) and an infix of v. Now, if we consider v = ababab as ay1by2, where y1 = ba and
y2 = ab, then we get another case to show that u is a subword of v.

We concern ourselves with the case that being a prefix (infix) is the unique way to
show that u is a subword v. Formally, we have the following definition.

Definition 1. Let u, v ∈ Σ+. For any x1, x2, · · · , xn ∈ Σ+ and any y0, y1, · · · , yn ∈ Σ∗, if
u = x1x2 · · · xn, together with v = y0x1y1x2y2 · · · xnyn, always implies that y0y1 · · · yn−1 = ε
(y1y2 · · · yn = ε, y1 · · · yn−1 = ε, respectively), then u is called a strict prefix (strict suffix, strict
infix, respectively) of v. In particular, if u ∈ Σ and there is only one occurrence of u in the word v,
then u is also a strict infix of v.

By this definition, we know that the word u = ab in Example 1 is neither a strict prefix
(strict suffix) nor a strict infix of v. Furthermore, it is easy to see that a strict prefix (strict
suffix) must be a strict infix. The following two propositions give necessary and sufficient
conditions for a prefix and infix to be strict, respectively.

Proposition 1. Let u = xσ and v = xσz be two words in Σ+, where σ ∈ Σ and x, z ∈ Σ∗. Then,
u is a strict prefix of v if and only if there is no occurrence of σ in the word z.

Proof. From the assumptions u = xσ and v = xσz, we know that u is a prefix of v.
Suppose that u is a strict prefix of v. Assume that σ is a factor of z. Then, z = aσb for

some a, b ∈ Σ∗. Thus, the equality v = xσz = xσaσb holds. If we write y0xy1σb as xσaσb,
where y0 = ε and y1 = σa, then y0y1 6= ε, a contradiction. Therefore, σ is not a factor of z,
as required.

Conversely, suppose that there is no occurrence of σ in the word z. Note that u is a
subword of v, since u is a prefix of v. Given x1, x2, · · · , xn ∈ Σ∗ and y0, y1, · · · , yn ∈ Σ∗, if
both u = xσ = x1x2 · · · xn and v = xσz = y0x1y1 · · · xnyn hold, then there exists x′n ∈ Σ∗

such that
u = xσ = x1x2 · · · x′nσ and v = xσz = y0x1y1 · · · x′nσyn,

since σ is the right-most letter of u. This means that x = x1x2 · · · x′n. In the following, we
show that σ is not a factor of yn. In fact, if assume that if σ is a factor of yn, then there exists
y′n ∈ Σ∗ such that yn = y′nσz. Hence, we have that v = xσz = y0x1y1 · · · x′nσy′nσz. It follows
that x = y0x1y1 · · · x′nσy′n. Therefore, x1x2 · · · x′n = y0x1y1 · · · x′nσy′n and so |x1x2 · · · x′n| =
|y0x1y1 · · · x′nσy′n|. Since σ 6= ε, we also have |x1x2 · · · x′n| < |y0x1y1 · · · x′nσy′n|,
a contradiction.

Now, we know that there is no occurrence of σ in the yn. Then, we have that yn = z
and so x1x2 · · · x′n = x = y0x1y1 · · · x′n. This implies that y0y1 · · · yn−1 = ε. Therefore, u is a
strict prefix of v, as required.

In an analogue fashion, we can verify the following proposition and we omit the proof.
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Proposition 2. Let u = θxσ and v = yθxσz be two words in Σ+, where θ, σ ∈ Σ, x, y, z ∈ Σ∗.
Then, u is a strict infix of v if and only if there is no occurrence of θ in y and there is no occurrence
of σ in z.

Definition 2. A language L ⊆ Σ+ is said to be prefix-strict (suffix-strict, infix-strict, respectively)
if and only if for any u, v ∈ L, u ≤H v implies that u is a strict prefix (strict suffix, strict infix,
respectively) of v. The class of all prefix-strict, suffix-strict and infix-strict languages in Σ+ are
denoted by P(Σ+), S(Σ+) and I(Σ+), respectively.

Let w = σ1σ2 · · · σn be a word with σi ∈ Σ, i = 1, 2, · · · , n. Then, n is called the length
of w and is denoted by |w|. Suppose that L is prefix-strict and that u, v ∈ L with |u| ≤ |v|.
Then, we know from Definition 2 that either u is a strict prefix of v or (u, v) 6∈≤H. Hence,
we have that a free language with respect to ≤H must be a strict prefix. This means that
H(Σ+) ⊆ P(Σ+). Similarly, we can get thatH(Σ+) ⊆ S(Σ+) andH(Σ+) ⊆ I(Σ+).

Example 2. Let Σ = {a, b, c}. Suppose that A = {a, ab}, B = {b, ac}. Then, C = {ac, abc}. It
is easy to see that A is prefix-strict and infix-strict but is not suffix-strict. B is prefix-strict (suffix-
strict) and infix-strict, since B ∈ H(Σ+). C is neither prefix-strict (suffix-stric) nor infix-strict,
since ab is neither a strict prefix (strict suffix) nor a strict infix of abc, even if it is a subword.

Now, recall the three subsets of the embedding order introduced in [10]. For any u, v ∈
Σ+, u ≤R (u ≤L) if and only if there exist some x1, x2, · · · , xn ∈ Σ+ and y1, y2, · · · , yn ∈ Σ∗

such that u = x1x2 · · · xn and v = y1x1y2x2 · · · ynxn (v = x1y1x2y2 · · · xnyn). In addition,
u ≤O v if and only if there exist some x0, x1, x2, · · · , xn ∈ Σ+ and y1, y2, · · · , yn ∈ Σ∗ such
that u = x0x1 · · · xn and v = x0y1x1y2 · · · xn−1ynxn.

All these binary relations prove to be partial orders over Σ+. They show different
manners to embed some string of words y1, y2, · · · , yn into the word u for obtaining v.
Denote the class of all free languages with respect to ≤L, ≤R and ≤O by L(Σ+), R(Σ+)
and O(Σ+), respectively. It is true thatH(Σ+) ⊆ X (Σ+), for all X ∈ {L,R,O}.

In the following, we recall the formal definitions of notions mentioned in the introduc-
tion section.

By a semiring, we mean an algebra (S,+, ·) such that:

• The additive reduct (S,+) is a commutative semigroup;
• The multiplicative reduct (S, ·) is a semigroup;
• (S,+, ·) satisfies the identities x(y + z) ≈ xy + xz and (y + z)x ≈ yx + zx.

A semiring (S,+, ·) is called an ai-semiring, if it satisfies the identity x + x ≈ x. An
algebra (S,+, ·) is called a (2, 2)-type algebra if there are two binary operations involved
in this algebra. In this manner, the additive reduct (S,+) of (S,+, ·) is a (2)-type algebra.
For the formal definition of a type of an algebra and more examples, we refer the reader to
Definition 1.2 in [18].

By a variety, we mean a class of algebras of the same type that is closed under subalge-
bras, homomorphic images and direct products. It is well known (Birkhoff’s theorem) that
a class of algebras of the same type is a variety if and only if it is an equational class, i.e., a
class of algebras that satisfies all the members in a given set of identities.

An ai-semiring identity over Σ is an expression of the form u ≈ v, where u, v ∈ F (Σ+).
For the free object (F (Σ+),∪, ◦) in AI, we write + as ∪ and write

u1 + u2 + · · ·+ uk ≈ v1 + v2 + · · ·+ vl

as the ai-semiring identity {ui|1 ≤ k} ≈ {vi|1 ≤ l}, for convenience. We give an example
in the following to show that a variety is an equational class.
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Example 3. Given a set of identities

E = {(x + y) + x ≈ x + (y + z), x + y ≈ y + x, (xy)z ≈ x(yz), x(y + z) ≈ xy + xz,

(y + z)x ≈ yx + zx, x + x ≈ x}.

Since all ai-semirings satisfy the identities in E, the variety AI is an equational class.

Furthermore, we denote an ai-semiring variety satisfying the additional identities
ui ≈ vi, by [u1 ≈ v1, u2 ≈ v2, · · · , un ≈ vn], where i = 1, 2, · · · , n and n is a positive
integer. Then, [u1 ≈ v1, u2 ≈ v2, · · · , un ≈ vn] is an equational class defined by the set
E ∪ {u1 ≈ v1, u2 ≈ v2, · · · , un ≈ vn}, where E is the set of identities given by Example 2.

Let V be an algebra variety of type F and let U(Σ) be an algebra of type F which is
generated by Σ. If for every K ∈ V and for every map

α : Σ→ K,

there is a unique homomorphism

β : U(Σ)→ K,

which extends α (i.e., α(Σ) = β(Σ) for σ ∈ Σ), then U(Σ) is said to be a free object in V
generated by Σ (or U(Σ) is freely generated by Σ in V). For more details on free algebra,
we refer the reader to [18].

In this paper, we take the following steps to show an algebra structure to be a model
of a free object for an ai-semiring variety. Firstly, we verify that this algebra structure is a
member of the given variety. Secondly, we prove that it is a free object in the variety.

In the sequel, u, v and w are words in Σ+, unless otherwise specified.

3. Partial Orders

In this section, we shall characterize the class P(Σ+) as a independent set of a certain
partial order, namely, to show that languages in P(Σ+) are free with respect to a partial
order. Similar results for S(Σ+) and I(Σ+) are obtained. Furthermore, we study the
inclusion relations among those classes of languages we mentioned in the last section.

Definition 3. Let ≤P be a binary relation over Σ+. For any u, v ∈ Σ+, u ≤P v if and only
if there exist x1, x2, · · · , xn ∈ Σ+ and y0, y1, · · · , yn ∈ Σ∗ such that u = x1x2 · · · xn and
v = y0x1y1x2 · · · yn−1xnyn and such that the implication y0y1 · · · yn−1 = ε ⇒ yn = ε holds as
well.

It is easy to see that ≤P⊆≤H. The following example shows that the implication in
the definition of ≤P may not always hold for every finite sequence y0, y1, · · · , yn to state
u ≤H v, even if u ≤P v.

Example 4. Let Σ = {x1, x2, y}. Suppose that u = x1x2, v = x1yx2 and w = x1x2y. By the
definition of ≤P , we have that u ≤P v but u 6≤P w. Further, assume that w′ = x1x2x2. Then,
u ≤P w′, since we can set w′ = y0x1y1x2y2, where y0 = y2 = ε and y1 = x2. From this, we
deduce that the implication holds. However, if we write y0x1y1x2y2 as w′, where y0 = y1 = ε and
y2 = x2, then the implication y0y1 = ε⇒ y2 = ε is not true.

Similar to the definition of ≤P , we have:

Definition 4. Let ≤S be a binary relation over Σ+. For any u, v ∈ Σ+, u ≤S v if and only
if there exist x1, x2, · · · , xn ∈ Σ+ and y0, y1, · · · , yn ∈ Σ∗ such that u = x1x2 · · · xn and
v = y0x1y1x2 · · · yn−1xnyn and such that the implication y1y2 · · · yn = ε ⇒ y0 = ε holds as
well.
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Let u be a proper subword of v. In the following, we present a necessary and sufficient
condition for u ≤P v to hold.

Assume that u ≤P v and u 6= v. Then, there must exist x1, x2, · · · , xn ∈ Σ+ and
y0, y1, · · · , yn ∈ Σ∗ such that u = x1x2 · · · xn and v = y0x1y1x2 · · · yn−1xnyn and scuh
that y0y1 · · · , yn−1 6= ε. In fact, if y0y1 · · · , yn−1 = ε, we know from the implication in
Definition 1 that yn = ε. This yields u = v, a contradiction.

Conversely, assume that u = x1x2 · · · xn and v = y0x1y1x2 · · · yn−1xnyn for some
x1, x2, · · · , xn ∈ Σ+ and y0, y1, · · · , yn ∈ Σ∗, where y0y1 · · · , yn−1 6= ε. In this case, the
implication in Definition 1 holds. We thus have that u is a proper subword of v, since
y0y1 · · · , yn−1 6= ε.

Summarizing the above discussion with a similar condition for u ≤S v to hold, we
give the following remark to interpret the relations ≤P and ≤S in detail.

Remark 1. Let u be a proper subword of v. Then, u ≤P v (u ≤S v) if and only if
u = x1x2 · · · xn and v = y0x1y1x2 · · · xnyn for some x1, x2, · · · , xn ∈ Σ+ and y0, y1 · · · , yn ∈
Σ∗, where y0y1 · · · , yn−1 6= ε (y1y2 · · · , yn 6= ε).

Let u be a proper subword of v. Suppose now that u is a strict prefix of v. Then, for any
x1, x2, · · · , xn ∈ Σ+ and y0, y1 · · · , yn ∈ Σ∗, u = x1x2 · · · xn together with
v = y0x1y1x2 · · · xnyn implies that y0y1 · · · , yn−1 = ε. This means that (u, v) 6∈≤P .

For any two words u and v, the following proposition gives the necessary and sufficient
condition for u ≤P v to hold, which may be used handily.

Proposition 3. Let u = xσ and v = yσz be two words in Σ∗, where σ ∈ Σ, x, y, z ∈ Σ∗ and there
is no occurrence of σ in the word z. Then, u ≤P v if and only if either x is a proper subword of y or
u = v.

Proof. Suppose that u ≤P v and so xσ ≤H yσz. Since there is no occurrence of σ in the
word z, we get that x ≤H y. If x is not a proper subword of y, then x = y. This deduce
that v = xσz and that xσ ≤H xσz. By Proposition 1, we get that xσ is a strict prefix of xσz.
Thus, we know from the discussion in Remark 1 that xσ = xσz and hence u = v.

Conversely, is it a trivial that u = v implies u ≤P v. Suppose now that x is a proper
subword of y. Then, there exist some x1, x2, · · · , xn ∈ Σ+ and y0, y1 · · · , yn ∈ Σ∗ such that
u = x1x2 · · · xnσ and v = y0x1y1x2 · · · xnynσz, where y0y1 · · · yn 6= ε. By Remark 1, u ≤P v,
as required.

In the following, we shall prove that ≤P and ≤S are partial orders. By Definition 4,
≤P and ≤S are reflexive. Furthermore, it is a routine matter to verify that they are antisym-
metric. Then, we have proved part of the following theorem.

Theorem 1. Both ≤P and ≤S are partial orders.

Proof. We only need to prove that ≤P and ≤S are transitive.
Assume that u ≤P v and v ≤P w. If u = v or v = w, it is easy to see that u ≤P w.

Otherwise, u is a proper subword of v and v is a proper subword of w. Thus, u is a proper
subword of w. Suppose now that u = xσ and v = yσz, where σ ∈ Σ, x, y, z ∈ Σ∗ and
there is no occurrence of σ in the word z. By Proposition 3, x is a proper subword of y.
Furthermore, there must exist b, c ∈ Σ∗ such that w = bσc (since σ is a factor of v an so
a factor of w), where there is no occurrence of σ in c. Associate this fact with the truth
yσz ≤H bσc, we can verify y ≤H b as a matter of routine. Hence, we get that x is a proper
subword of b. Therefore, we know from Proposition 3 that u ≤P w and so ≤P is transitive,
as required.

A similar result is also true for ≤S and we omit the proof.
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Definition 5. Let ≤I be a binary relation over Σ+. For any u, v ∈ Σ+, u ≤I v if and only
if there exist x1, x2, · · · , xn ∈ Σ+ and y0, y1, · · · , yn ∈ Σ∗ such that u = x1x2 · · · xn and
v = y0x1y1x2 · · · yn−1xnyn and that the implication y1y2 · · · yn−1 = ε⇒ y0yn = ε holds as well.
In particular, if |u| = 1, then u ≤I v if only if u = v.

The following example shows that the implication in Definition 5 may not always
hold for every finite sequence y0, y1, · · · , yn to state u ≤H v, even if u ≤I v.

Example 5. Let Σ = {x1, x2, a, b, c}. Suppose that u = x1x2, v = ax1bx2c and w = ax1x2b.
By the definition of ≤I , we have that u ≤I v but u 6≤I w. Further, assume that w′ = x1x1x2x2.
Then, u ≤I w′, since we can set w′ = y0x1y1x2y2, where y0 = ε, y1 = x1 and y2 = x2. Thus, we
deduce that the implication holds. However, if we write y0x1y1x2y2 as w′, where y0 = x1, y1 = ε
and y2 = x2, then the implication y1 = ε⇒ y0y2 = ε is not true.

Similar to Remark 1, the following remark give a further specification for Definition 5.

Remark 2. Let u (with |u| ≥ 2) be a proper subword of v. Then, u ≤I v if and only if u =
x1x2 · · · xn and v = y0x1y1x2 · · · xnyn for some x1, x2, · · · , xn ∈ Σ+ and y0, y1 · · · , yn ∈ Σ∗,
where y1y2 · · · yn−1 6= ε.

Let u be a proper subword of v. Suppose now that u is a strict infix of v. Then, for any
x1, x2, · · · , xn ∈ Σ+ and y0, y1 · · · , yn ∈ Σ∗, u = x1x2 · · · xn together with
v = y0x1y1x2 · · · xnyn implies that y1y2 · · · , yn−1 = ε. This means that (u, v) 6∈≤L.

From Remarks 1 and 2, we have ≤I⊆≤P and ≤I⊆≤S .
We give a necessary and sufficient condition for u ≤I v to hold. Since the proof

process is similar to Proposition 3, we omit the proof.

Proposition 4. Let u = θaσ and v = xθyσz, where θ, σ ∈ Σ, a, x, y, z ∈ Σ∗ and there is no
occurrence of θ and σ in the words x and z, respectively. Then, u ≤I v if and only if either a is a
proper subword of y or u = v.

Using this proposition, we can prove the following theorem.

Theorem 2. ≤I is a partial order.

Proof. It is a routine matter to verify that ≤I is reflexive and antisymmetric. Now, we
show that it is also transitive.

Assume that u ≤I v and v ≤I w. If u = v or v = w, it is easy to see that u ≤I w.
Otherwise, u is a proper subword of v and v is a proper subword of w. Thus, u is a proper
subword of w.

Suppose now that u = θaσ and v = xθyσz, where θ, σ ∈ Σ, a, x, y, z ∈ Σ∗ and there are
no occurrences of θ and σ in the words x and z, respectively. By Proposition 4, a is a proper
subword of y. Furthermore, there must exist b, c, d ∈ Σ∗ such that w = bθcσd (since both θ
and σ are factors of v and so are factors of w), where there are no occurrences of θ and σ
in the words b and d, respectively. Associate this fact with the truth xθyσz ≤H bθcσd, we
deduce that y ≤H c. Hence, we get that a is a proper subword of c. Therefore, we know
from Proposition 4 that u ≤P w and so ≤I is transitive. Then, we obtain that ≤I is a partial
order, as required.

Recall that the classes P(Σ+), S(Σ+) and I(Σ+) are collections of all prefix-strict,
suffix-strict and infix-strict languages in Σ+, respectively. In the following, we show that
for any X ∈ {P ,S , I}, X (Σ+) is exactly the collection of all free languages with respect to
the partial order ≤X .
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Proposition 5. P(Σ+) and S(Σ+) are the classes of all free languages with respect to ≤P and
≤S , respectively.

Proof. Let L ⊆ Σ+ be a prefix-strict language and u, v be distinct words in L. On one hand,
if u and v are incomparable under the relation ≤H, they are also incomparable under ≤P .
On the other hand, we suppose that u is a proper subword of v. Then, u is a strict prefix of
v. By Remark 1, (u, v) 6∈≤P and hence L is a free language with respect to ≤P .

Conversely, let L be a free language with respect to ≤P and u, v ∈ L. Suppose that
u ≤H v. For any x1, x2, · · · , xn ∈ Σ+ and y0, y1, · · · , yn ∈ Σ∗, if u = x1x2 · · · xn and
v = y0x1y1x2y2 · · · xnyn, then it is true that y0y1 · · · yn−1 = ε (in fact, if y0y1 · · · yn−1 6= ε,
we get that u ≤P v, contradict to the assumption) and it follows that u is a strict prefix of v.
Therefore, L is prefix-strict.

We can prove that S(Σ+) is the class of all free languages with respect to ≤S in a
similar way. Therefore, the proof is omitted.

Proposition 6. I(Σ+) is the class of all free languages with respect to ≤I ,

Proof. Let L ⊆ Σ+ be an infix-strict language and u, v be distinct words in L. If (u, v) 6∈≤H,
then (u, v) 6∈≤I . Otherwise, assume that u is a proper subword of v. Then, u is a strict infix
of v. By Remark 2, (u, v) 6∈≤I . Therefore, L is a free language with respect to ≤I .

Conversely, let L be a free language with respect to ≤I and u, v be two distinct words
in L. For any x1, x2, · · · , xn ∈ Σ+ and any y0, y1, · · · , yn ∈ Σ∗, if u = x1x2 · · · xn and
v = y0x1y1x2y2 · · · xnyn, then it is true that y1y2 · · · yn−1 = ε and it follows that u is a strict
infix of v. Therefore, L is infix-strict.

Recall that a binary relation ρ on Σ+ is said to be strict ([4]) if for all u, v ∈ Σ+,

(1) uρu;
(2) uρv⇒ |u| ≤ |v|;
(3) uρv, |u| = |v| ⇒ u = v.

It is can be easily verified that for any X ∈ {L,R,O,H,P ,S , I}, ≤X is strict. Based
on the following lemma, we can figure out the inclusion relation about all these strict
relations.

Lemma 1 ([4]). Let ρ1, ρ2 be two strict binary relations on Σ+ and Iρ1 and Iρ2 be the classes of all
independent sets with respect to ρ1 and ρ2, respectively. Then, ρ1 ⊆ ρ2 if and only if Iρ1 ⊇ Iρ2 .

Since ≤I⊆≤X⊆≤H for any X ∈ {P ,S}, we know form Lemma 1 that

H(Σ+) ⊆ X (Σ+) ⊆ I(Σ+).

Furthermore, it is routine to verify that ≤R⊆≤P , ≤L⊆≤S and ≤O⊆≤I . We then have that

P(Σ+) ⊆ R(Σ+), S(Σ+) ⊆ L(Σ+) and I(Σ+) ⊆ O(Σ+).

Inaddition, it is shown in [10] that

H(Σ+) ⊆ Y(Σ+) ⊆ O(Σ+),

where Y ∈ {L,R}. We illustrate all above inclusion relations by Figure 1.
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H(Σ+)

S(Σ+) P(Σ+)

L(Σ+) R(Σ+)

O(Σ+)

I(Σ+)

Figure 1. Inclusion relations among subsets of O(Σ+).

Since it was proved in [10] that every language in O(Σ+) is finite, we get that any
language in P(Σ+) ∪ S(Σ+) ∪ B(Σ+) is also finite.

4. Combinatorial Properties

In this section, we study the combinatorial properties of languages we defined in the
last section. Let A, B be languages of Σ∗. We write A ◦ B to mean

{ab | a ∈ A, b ∈ B}.

Shyr and Thierrin [3] proved that the class ofH(Σ+) was closed under the operation ◦ and
Ito et al. [2] showed a similar result for the class of outfix-free languages. However, for two
prefix-strict (suffix-strict, infix-strict, respectively) languages A and B, A ◦ B does not need
to be prefix-strict (suffix-strict, infix-strict, respectively), as the following example shows.

Example 6. Let Σ = {a, b, c}. Suppose that A = {a, ab}, B = {c}. Then, A ◦ B = {ac, abc}. It
is easy to see that A and B are prefix-strict, but A ◦ B is not prefix-strict, since ac ≤P abc.

Next, we give a necessary and sufficient condition for X (Σ+) to be closed under the
operation ◦, where X ∈ {P ,S , I}.

Proposition 7. Let A, B ∈ P(Σ+). Then, A ◦ B ∈ P(Σ+) if and only if A ∈ H(Σ+).

Proof. Let A, B ∈ P(Σ+). Then, for any a, a′ ∈ A with |a| < |a′|, we have that either
(a, a′) 6∈≤H or a is a strict prefix of a′.

Assume that A ◦ B ∈ P(Σ+). Then, it is a truth that a is not a strict prefix of a′. In
fact, if a′ = ac for some c ∈ Σ+, then for any b ∈ B, we have that ab, acb ∈ A ◦ B. Since
ab ≤P acb, we get A ◦ B 6∈ P(Σ+), a contradiction. This shows that (a, a′) 6∈≤H and hence
A ∈ H(Σ+).

Conversely, assume that A ∈ H(Σ+) and B ∈ P(Σ+). Given u, v ∈ A ◦ B. Suppose
that u is a subword of v. Then, u = x1x2 · · · xn and v = y0x1y1x2y2 · · · yn−1xnyn for some
x1, x2, · · · , xn ∈ Σ+ and y0, y1, y2, · · · , yn ∈ Σ∗. Now, we prove that u is a strict prefix of v.

Let i and j be two integers such that x1x2 · · · xi ∈ A, xi+1xi+2 · · · xn ∈ B and

y0x1y1 · · · yj−1xj ∈ A, yjxj+1 · · · xnyn ∈ B

( or y0x1y1 · · · yj−1xjyj ∈ A, xj+1yj+1 · · · xnyn ∈ B).
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It istrue that i ≤ j. In fact, if i > j, then we have from the fact xj+1 6= ε that

xi+1xi+2 · · · xn ≤P yjxj+1 · · · yixi+1 · · · xnyn or

xi+1xi+2 · · · xn ≤P xj+1 · · · yixi+1 · · · xnyn.

Bothof these two cases contradict to B ∈ P(Σ+). Furthermore, we have j ≤ i. In fact, if
j > i, then we have that

x1x2 · · · xi ≤H y0x1y1 · · · xiyi+1 · · · yj−1xj

or x1x2 · · · xi ≤H y0x1y1 · · · xiyi+1 · · · yj−1xjyj,

which contradicts A ∈ H(Σ+). Hence, we have i = j. It follows that y0y1 · · · yi−1 = ε (or
y0y1 · · · yi = ε) and that yiyi+1 · · · yn−1 = ε (or yi+1 · · · yn−1 = ε). This implies that u is a
strict prefix of v. Therefore, A ◦ B ∈ P(Σ+).

By a similar method, one can verify the following proposition.

Proposition 8. Let A, B ∈ S(Σ+). Then, A ◦ B ∈ S(Σ+) if and only if B ∈ H(Σ+).

Proposition 9. Let A, B ∈ I(Σ+). Then, A ◦ B ∈ I(Σ+) if and only if A ∈ S(Σ+) and
B ∈ P(Σ+).

Proof. Let A, B ∈ I(Σ+). Suppose that A ◦ B ∈ I(Σ+). If we assume that there exist
u, v ∈ A such that u ≤S v, then there exist x1, x2, · · · , xn ∈ Σ+ and y0, y1, · · · , yn ∈ Σ∗ such
that u = x1x2 · · · xn and v = y0x1y1x2 · · · xnyn with y1y2 · · · yn 6= ε. It follows that

x1x2 · · · xnb ≤I y0x1y1x2 · · · yn−1xnynb

for any b ∈ B, which is a contradiction with A ◦ B ∈ I(Σ+). Hence, we deduce that
A ∈ S(Σ+). In a similar way, we can prove that A ∈ P(Σ+).

Conversely, assume that A ∈ S(Σ+) and B ∈ P(Σ+). Given u, v ∈ A ◦ B. Suppose
that u is a subword of v. Then, u = x1x2 · · · xn and v = y0x1y1x2y2 · · · yn−1xnyn for some
x1, x2, · · · , xn ∈ Σ+ and y0, y1, y2, · · · , yn ∈ Σ∗. Now, we prove that u is a strict infix of v.

Let i and j be two integers such that x1x2 · · · xi ∈ A, xi+1xi+2 · · · xn ∈ B and

y0x1y1 · · · yj−1xj ∈ A, yjxj+1 · · · xnyn ∈ B

( or y0x1y1 · · · yj−1xjyj ∈ A, xj+1yj+1 · · · xnyn ∈ B).

It istrue that i ≤ j. In fact, if i > j, then we have from the fact xj+1 6= ε that

xi+1xi+2 · · · xn ≤P yjxj+1 · · · yixi+1 · · · xnyn or

xi+1xi+2 · · · xn ≤P xj+1 · · · yixi+1 · · · xnyn.

Bothof these two cases contradict B ∈ P(Σ+). Furthermore, we have j ≤ i. In fact, if j > i,
then we have that

x1x2 · · · xi ≤S y0x1y1 · · · xiyi+1 · · · yj−1xj

or x1x2 · · · xi ≤S y0x1y1 · · · xiyi+1 · · · yj−1xjyj,

which contradicts to A ∈ S(Σ+). Hence, we have i = j. If follows that x1x2 · · · xi and
y0x1y1 · · · yi−1xi (or y0x1y1 · · · yi−1xiyi) are elements in A. This implies that y0y1 · · · yi−1 =
ε (or y0y1 · · · yi = ε). Furthermore, from the fact that xi+1xi+2 · · · xn and yixi+1yi+1 · · · xnyn
(or xi+1yi+1 · · · xnyn) are elements in B, we have that yiyi+1 · · · yn−1 = ε (or yi+1 · · · yn−1 =
ε). Hence, u is a strict infix of v. Therefore, A ◦ B ∈ I(Σ+).
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Let A ∈ F (Σ+). For any X ∈ {P ,S , I}. We denote the set

{a ∈ A | (∀b ∈ A) b ≤X a⇒ b = a}

by AX , which is a free language with respect to ≤X . Thus, AX ∈ X (Σ+). It is easy to see
that A ∈ X (Σ+) if and only if AX = A. Then, we have (AX )X = AX . Further, we have:

Lemma 2. Both (AI )X = AX and (AX )H = AH hold for any A ∈ F (Σ+) and X ∈
{P ,S , I ,H}.

Proof. We only prove the equality (AI )P = AP . The other one can be proved in analogous
fashion.

Suppose that a ∈ AP . Then, a is a minimal element in A with respect to ≤P . Since
AP ⊆ AI ⊆ A, a is also a minimal element in AI with respect to ≤P . That is to say,
a ∈ (AI )P and so AP ⊆ (AI )P .

On the other hand, suppose that a ∈ (AI )P . We now show that a is a minimal element
in A with respect to≤P . Let b ≤P a for some b ∈ A. If b ∈ AI , then b = a, since a a minimal
element in AI with respect to ≤P ; otherwise, b ∈ A \ AI . Then, there exists c ∈ AI such
that c ≤I b and so c ≤P b, since ≤I⊆≤P . We thus have c ≤P b ≤P a. This implies that
c = a and so b = a. Therefore, a ∈ AP and hence (AI )P ⊆ AP , as required.

We conclude this section with the following results.

Proposition 10. Let A, B ∈ F (Σ+). Then

(1) (A ◦ B)I = AS ◦ BP ;
(2) (A ◦ B)P = AH ◦ BP ;
(3) (A ◦ B)S = AS ◦ BH.

Proof. (1) Since AS ∈ S(Σ+) and BP ∈ P(Σ+), we know from Proposition 9 that AS ◦
BP ∈ I(Σ+). It follows that (AS ◦ BP )I = AS ◦ BP . Notice that AS ⊆ A and BP ⊆ B.
Then, AS ◦ BP ⊆ A ◦ B. We thus have (AS ◦ BP )I ⊆ (A ◦ B)I and so AS ◦ BP ⊆ (A ◦ B)I

On the other hand, let a ∈ A \ AS . Then, a′ ≤S a for some a′ ∈ AS . Thus, a′b ≤I ab
for any b ∈ B. It follows that ab ∈ (A ◦ B) \ (A ◦ B)I . This shows that

ab ∈ (A ◦ B) \ (AS ◦ B)⇒ ab ∈ (A ◦ B) \ (A ◦ B)I .

Hence,we have that (A ◦ B)I ⊆ AS ◦ B. Further, if b ∈ B \ BP then b′ ≤P b for some
b ∈ BP . We thus have ab′ ≤I ab for any a ∈ AS and so ab 6∈ (A ◦ B)I . This shows that

ab ∈ (AS ◦ B) \ (AS ◦ BP )⇒ ab ∈ (AS ◦ B) \ (A ◦ B)I ,

which means that (A ◦ B)I ⊆ AS ◦ BP . Then, we obtain that (A ◦ B)I = AS ◦ BP , as
required.

In an analogous fashion, we can prove (2) and (3) by using Propositions 7 and 8,
respectively. So we omit the proof.

5. Algebraic Characterizations

In this section, for any X ∈ {S ,P , I}, we construct an algebra structure for the class
X (Σ+), by defining two binary operations. The operation properties of these algebra
structures are dominated by the combinatorial properties of languages discussed in the
last section. Further, we prove that these algebra structures are ai-semirings by showing
each of them is isomorphic to a quotient algebra of F (Σ+) over an ai-semiring congruence.
Furthermore, we show that the algebra X (Σ+) is free generated by Σ in a subvariety of AI.
This gives an algebraic characterization for the class X (Σ+).
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Let X ∈ {S ,P , I}. Define two operations on X (Σ+) as follows:

(∀A, B ∈ X (Σ+)) A +X B = (A ∪ B)X , A×X B = (A ◦ B)X .

In this section, we show that (X (Σ+),+X ,×X ) is free generated by Σ in some ai-semiring
variety.

5.1. Congruences

For every X ∈ {S ,P , I}, we define a binary relation ∼X on F (Σ+) by

A ∼X B⇔ AX = BX .

Lemma 3. For any A, B ∈ F (Σ+) and any X ∈ {S ,P , I}, we have that

(AX ∪ B)X = (A ∪ B)X = (A ∪ BX )X ,
(AX ◦ B)X = (A ◦ B)X = (A ◦ BX )X .

Proof. For any A, B ∈ F (Σ+), in order to pick out all the minimal elements with respect
to ≤X from A ∪ B, we firstly pick out the minimal elements from A and B, respectively.
Thus, it is true that (A ∪ B)X ⊆ AX ∪ BX . Next, we pick out the minimal elements from
AX ∪ BX , then we get all the minimal elements in A ∪ B. Hence, (A ∪ B)X = (AX ∪ BX )X .
Therefore, we have that

(AX ∪ B)X = ((AX )X ∪ BX )X = (AX ∪ BX )X ,
(A ∪ BX )X = (AX ∪ (BX )X )X = (AX ∪ BX )X .

These show that (AX ∪ B)X = (A ∪ B)X = (A ∪ BX )X .
To prove the remaining equalities, there are three cases to consider:

(1) X = I . By Proposition 10(1) and Lemma 2, we have that

(AI ◦ B)I = (AI )S ◦ BP = AS ◦ BP = (A ◦ B)I ,
(A ◦ BI )I = AS ◦ (BI )P = AS ◦ BP = (A ◦ B)I .

(2) X = P . By Proposition 10(2) and Lemma 2, we have that

(AP ◦ B)P = (AP )H ◦ BP = AH ◦ BP = (A ◦ B)P ,
(A ◦ BP )P = AH ◦ (BP )P = AH ◦ BP = (A ◦ B)P .

(3) X = S . By Proposition 10(3) and Lemma 2, we have that

(AS ◦ B)S = (AS )S ◦ BH = AS ◦ BH = (A ◦ B)S ,
(A ◦ BS )S = AS ◦ (BS )H = AS ◦ BH = (A ◦ B)S .

Therefore, (AX ◦ B)X = (A ◦ B)X = (A ◦ BX )X for every X ∈ {S ,P , I},
as required.

Proposition 11. For anyX ∈ {S ,P , I},∼X is a congruence on the free ai-semirng (F (Σ+),∪, ◦).

Proof. Let A, B, C ∈ F (Σ+) and A ∼X B. Then, AX = BX and consequently by Lemma 3,

(A ∪ C)X = (AX ∪ C)X = (BX ∪ C)X = (B ∪ C)X ,
(A ◦ C)X = (AX ◦ C)X = (BX ◦ C)X = (B ◦ C)X .

Thus, A ∪ C ∼X B ∪ C and A ◦ C ∼X B ◦ C. From this and its dual it follows that ∼X is a
congruence on the ai-semiring F (Σ+).
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LetX ∈ {S ,P , I}. We know from Proposition 11 that the quotient algebraF (Σ+)/ ∼X
is an ai-semiring. Furthermore, it is easy to see that F (Σ+)/ ∼X is isomorphic to the alge-
bra X (Σ+) and hence I(Σ+), S(Σ+) and P(Σ+) are ai-semirings.

5.2. Models for Free Objects in Three Subvarieties of AI

In the sequel, we denote the following ai-semiring varieties

[xz + xyz ≈ xz, xz + xyzw ≈ xz,xz + wxyz ≈ xz, xz + w1xyzw2 ≈ xz],

[x + yx ≈ x,x + yxz ≈ x], and

[x + xy ≈ x,x + yxz ≈ x]

by AII , AIP and AIS , respectively. We show that X (Σ+) is a member of AIX , for all
X ∈ {S ,P , I}, by verifying the algebra X (Σ+) satisfies the corresponding identities.

It is a routine matter to verify that for any A1, A2, B1, B2, B3 ∈ I(Σ+), the following
equalities are true.

A1 ×I A2 +I A1 ×I B1 ×I A2 = A1 ×I A2;

A1 ×I A2 +I A1 ×I B1 ×I A2 ×I B2 = A1 ×I A2;

A1 ×I A2 +I B1 ×I A1 ×I B2 ×I A2 = A1 ×I A2;

A1 ×I A2 +I B1 ×I A1 ×I B2 ×I A2 ×I B3 = A1 ×I A2.

This means that the ai-semiring I(Σ+) ∈ AII . Furthermore, it can be verified that for any
A, B, C ∈ P(Σ+),

A +P B×P A = A;

A +P B×P A×P C = A,

and for any A, B, C ∈ S(Σ+),

A +S A×P B = A;

A +S B×S A×S C = A.

Then, P(Σ+) and S(Σ+) belong to the subvarieties AIP and AIS , respectively.
It easy to see that AIP and AIS are subvarieties of [x + yx ≈ x] and [x + xy ≈ x],

respectively. By Lemma 16 in [10], we immediately have the following lemma.

Lemma 4. For any integer n ≥ 1, AIP and AIS satisfy

x1x2 · · · xn + y1x1y2x2 · · · ynxn ≈ x1x2 · · · xn and

x1x2 · · · xn + x1y1x2y2 · · · xnyn ≈ x1x2 · · · xn,

respectively.

Further, if we premultiply (postmultiply) both sides by x (z) to the identity z + yz ≈ z
(x + xy ≈ x) and apply the distribution law, we know that both AIP and AIS satisfy the
identity xz + xyz ≈ xz. Hence, by Lemma 15 in [10], we have:

Lemma 5. For any X ∈ {P ,S , I} and any integer n ≥ 2, AIX satisfies the identity

x1x2 · · · xn + x1y1x2 · · · yn−1xn ≈ x1x2 · · · xn.

The following two lemmas show more identities hold in AIP , AIS and AII .
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Lemma 6. For any integer n ≥ 1, AIP and AIS satisfy the identity

x1x2 · · · xn + y0x1y1 · · · xnyn ≈ x1x2 · · · xn.

Proof. It is clear that both AIP and AIS satisfy the identity x1 + y0x1y1 ≈ x1. From Lemma
4, we know that these two subvarieties satisfy

x1x2 · · · xn + x1y1x2 · · · yn−1xn ≈ x1x2 · · · xn

for any n ≥ 2. If we premultiply both sides by y0 and postmultiply both sides by yn and
apply the distribution law as well, we obtain

y0x1x2 · · · xnyn + y0x1y1x2 · · · yn−1xnyn ≈ y0x1x2 · · · xnyn.

Now, adding x1x2 · · · xn to the both side of this identity, we have that

x1x2 · · · xn + y0x1x2 · · · xnyn + y0x1y1x2 · · · yn−1xnyn ≈ x1x2 · · · xn + y0x1x2 · · · xnyn.

Notice that x1x2 · · · xn + y0x1x2 · · · xnyn ≈ x1x2 · · · xn, since AIP and AIS satisfy the iden-
tity x + yxz ≈ x. We hence have that

x1x2 · · · xn + y0x1y1 · · · xnyn ≈ x1x2 · · · xn,

as required.

Lemma 7. For any integer n ≥ 2, AII satisfies the following identities.

x1x2 · · · xn + y0x1y1x2 · · · yn−1xn ≈ x1x2 · · · xn, (1)

x1x2 · · · xn + x1y1x2y2 · · · xnyn ≈ x1x2 · · · xn, (2)

x1x2 · · · xn + y0x1y1x2y2 · · · xnyn ≈ x1x2 · · · xn. (3)

Proof. Firstly, we prove identity (1) is true for any n ≥ 2. Since AII satisfies the identity
xz + wxyz ≈ xz, the identity (1) is true when n = 2. Assume that AII satisfies

x1x2 · · · xk + y0x1y1x2 · · · yk−1xk ≈ x1x2 · · · xk,

where k ≥ 2 is an integer. We postmultiply both sides by ykxk+1 and apply the distribution
law. A routine calculation gives

x1x2 · · · xkykxk+1 + y0x1y2x2 · · · yk−1xkykxk+1 ≈ x1x2 · · · xkykxk+1.

If we add x1x2 · · · xkxk+1 to both sides of above equality, we get

x1x2 · · · xkxk+1 + x1x2 · · · xkykxk+1 + y0x1y1x2 · · · yk−1xkykxk+1
≈ x1x2 · · · xkxk+1 + x1x2 · · · xkykxk+1.

Since AII satisfies xz + xyz ≈ xz, we obtain

x1x2 · · · xkxk+1 + y0x1y1x2 · · · yk−1xkykxk+1 ≈ x1x2 · · · xkxk+1.

This means that AII satisfies (1) when n = k + 1, and hence it satisfies (1) for all integer
n ≥ 2, as required.

In an analogous fashion, we can prove that AII satisfies (2) for all n ≥ 2, so we omit
the details.
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Lastly, we prove that identity (3) is true for any n ≥ 2. Since AII satisfies the identity
xz + w1xyzw2 ≈ xz, (3) is true when n = 2. Assume that AII satisfies

x1x2 · · · xk + y0x1y1x2 · · · yk−1xk ≈ x1x2 · · · xk,

where k ≥ 2 is an integer. We postmultiply both sides by ykxk+1yk+1 and apply the
distribution law. Then, we get

x1x2 · · · xkykxk+1yk+1 + y0x1y2x2 · · · yk−1xkykxk+1yk+1 ≈ x1x2 · · · xkykxk+1yk+1.

If we add x1x2 · · · xkxk+1 to both sides of above equality, we get

x1x2 · · · xkxk+1 + x1x2 · · · xkykxk+1yk+1 + y0x1y1x2 · · · ykxk+1yk+1
≈ x1x2 · · · xkxk+1 + x1x2 · · · xkykxk+1yk+1.

Since AII satisfies xz + xyzw ≈ xz, we obtain

x1x2 · · · xkxk+1 + y0x1y1x2 · · · ykxk+1yk+1 ≈ x1x2 · · · xkxk+1.

This means that AII satisfies (3) when n = k + 1, and hence it satisfies (3) for all integer
n ≥ 2, as required.

For a nonempty finite set Σ and σ ∈ Σ, we have {σ} ∈ X (Σ+). Then the mapping
ιX : Σ → X (Σ+), σ 7→ {σ} is one-to-one. We set out to prove that the algebra X (Σ+) is
freely generated by Σ in AIX for every X ∈ {P ,S , I}.

Let K ∈ AIX and ψX : Σ → K a mapping. Suppose that θX : Σ+ → K is the
multiplicative homomorphism which extends ψX . From Lemmas 3–6, we immediately
have the following lemma.

Lemma 8. For any A ∈ F (Σ+) and any X ∈ {P ,S , I},

∑
w∈A

θX (w) = ∑
w∈AX

θX (w).

Now we can formulate and prove the main result of this paper.

Theorem 3. Let Σ be a nonempty set. Then, for any X ∈ {P ,S , I}, the algebra X (Σ+) is freely
generated by Σ in AIX .

Proof. Let (K,+, ·) ∈ AIX and ψX : Σ→ S a mapping. Suppose that θX : Σ+ → K is the
multiplicative homomorphism which extends ψX . Define the mapping

ϕX : X (Σ+)→ K, A 7→ ∑
w∈A

θX (w).

For every σ ∈ Σ, we then have

ϕX (ιX (σ)) = ϕ({σ}) = θX (σ) = ψX (σ).

Therefore,
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Σ

K

X (Σ+)

ψX

ιX

ϕX

is a commutative diagram. We need to prove that ϕX is an ai-semigring homomorphism.
Let A, B ∈ X (Σ+). Then, by Lemma 8,

ϕX (A) + ϕX (B) = ∑
w∈A

θX (w) + ∑
w∈B

θX (w)

= ∑
w∈A∪B

θX (w) = ∑
w∈(A∪B)X

θX (w)

= ∑
w∈A+X B

θX (w) = ϕX (A +X B),

ϕX (A)ϕX (B) = ( ∑
w∈A

θX (w))( ∑
w∈B

θX (w))

= ∑
u∈A,v∈B

θX (u)θX (v) = ∑
u∈A,v∈B

θX (uv)

= ∑
w∈A◦B

θX (w) = ∑
w∈(A◦B)X

θX (w)

= ϕX (A ◦ B)X = ϕX (A×X B).

Therefore, ϕX is a homomorphism for any X ∈ {P ,S , I}.

6. Discussion

In this paper, we introduced three classes of formal languages over a finite alphabet,
and we described them as independent sets with respect to partial orders contained in the
embedding order. Then, we discussed the combinatorial properties of words involved in
these partial orders. Furthermore, we established combinatorial properties of languages
of interest, in the sense of set catenation and partial order. In addition, we constructed
algebra structures for these three classes of languages, by defining two binary operations
on each class. At last, we characterized these algebra structures as free objects of ai-
semiring varieties.

We developed in this paper a method to decompose (or compose) free languages with
respect to a particular partial order, which is useful for clustering languages in the sense
of algebra structure. However, we are not sure whether this method can be extended to
a more general case. Furthermore, it is still unknown how to cluster languages with an
algebra structure, which is a free object in the variety [x + yxz ≈ x].
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