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Abstract: In this paper, we study the joint optimization problem of the spectrum and power allocation
for multiple vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) users in cellular vehicle-to-
everything (C-V2X) communication, aiming to maximize the sum rate of V2I links while satisfying
the low latency requirements of V2V links. However, channel state information (CSI) is hard to obtain
accurately due to the mobility of vehicles. In addition, the effective sensing of state information
among vehicles becomes difficult in an environment with complex and diverse information, which
is detrimental to vehicles collaborating for resource allocation. Thus, we propose a framework of
multi-agent deep reinforcement learning based on attention mechanism (AMARL) to improve the
V2X communication performance. Specifically, for vehicle mobility, we model the problem as a multi-
agent reinforcement learning process, where each V2V link is regarded an agent and all agents jointly
intercommunicate with the environment. Each agent allocates spectrum and power through its deep
Q network (DQN). To enhance effective intercommunication and the sense of collaboration among
vehicles, we introduce an attention mechanism to focus on more relevant information, which in turn
reduces the signaling overhead and optimizes their communication performance more explicitly.
Experimental results show that the proposed AMARL-based approach can satisfy the requirements
of a high rate for V2I links and low latency for V2V links. It also has an excellent adaptability to
environmental change.

Keywords: vehicle-to-everything; resource allocation; attention mechanism; multi-agent reinforce-
ment learning; low latency

MSC: 94-05

1. Introduction

Vehicle-to-everything (V2X) communications is one of the key technologies in future
autonomous driving and intelligent transport systems, aiming to enhance user experience,
improve road safety, and adapt to complex and diverse transmission environments [1,2].
Among them, vehicle-to-infrastructure (V2I) mainly satisfies the requirements of vehicle
users for high throughput, such as video traffic offloading [3]. Vehicle-to-vehicle (V2V),
which focuses on the requirements of low latency and high reliability between vehicles, has
become a key technology for cooperative driving and improved road safety [4,5].

V2X communication supports various use cases by exchanging information between
infrastructure, vehicles, and pedestrians through various wireless technologies. Some
candidate wireless technologies have been proposed, including dedicated short-range
communication (DSRC), cellular vehicular communication, and 5G vehicular communica-
tion. DSRC technology is based on the IEEE 802.11p standard [6], which supports short
exchanges between DSRC devices. To implement DSRC technology, the US Federal Com-
munications Commission (FCC) has allocated 75 MHz of spectrum in the 5.9 GHz band.
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DSRC technology can be used to improve road safety, e.g., collision warning [7]. However,
it faces problems such as a limited communication range, large channel access delay, and
high deployment costs. The cellular network has the advantages of high coverage, high
network capacity, and supports high mobility. It helps to solve the drawbacks of DSRC.
The 3rd Generation Partnership Project (3GPP) has completed Releases 14 [8] and 15 [9],
where LTE-based V2X services are one of the main features. In Rel-14, V2X mainly provides
data transmission services for road safety. Rel-15 supports advanced V2X scenarios, such as
vehicle platooning and remote driving. However, one of the main challenges of LET-V2X is
the requirement that the resources used by vehicular users should not conflict with cellular
users in dense vehicular traffic scenarios requires. To further enhance V2X communication
services, 3GPP has been formulated in Release 16 [10] for 5G-based V2X communication
(5G-V2X). The 5G wireless system incorporates various emerging technologies, such as
massive MIMO and millimeter-wave communication. Each of these technologies will bring
various challenges to 5G-V2X [11]. In order to satisfy the stringent requirement in V2X
communication, the V2X technology is required to provide both V2I and V2V communica-
tion using a shared resource pool. In addition, there is an increasing number of vehicular
communication users, which will lead to a severe shortage of wireless resources. Therefore,
how to coordinate interference and optimize resource allocation are important challenges
in V2X communication.

1.1. Related Work

Currently, approaches to solve V2X resource allocation fall into two main categories:
traditional optimization theory [12–17] and machine learning [18–29]. In traditional meth-
ods, the design objectives and corresponding constraints are built into an optimization
problem for resource allocation and interference coordination. In [12], a delay expression
was obtained by queuing analysis of packets and then resource allocation was performed
using slowly varying large-scale fading channel information to satisfy the requirements of
V2X for high capacity and low delay. Similarly, the author in [13] introduced the latency
violation probability (LVP) as a constraint, which was accurately characterized by utilizing
effective capacity theory. In [14], a novel scheme was proposed to reduce the delay of
V2V links, which equated the original problem to the maximum weighted independent set
problem with associated weights (MWIS-AW), and suggested a greedy cellular V2V link
selection algorithm to solve the MWIS-AW problem. To allocate wireless resources more
intelligently and rationally, [15] proposed an adaptive strategy based on fuzzy logic, which
can dynamically adjust the parameters in the fuzzy system to ensure the full utilization
of resources and quality-of-service (QoS) according to the network state. In [16], an inter-
ference hypergraph (IHG) was constructed to model the interference relationship among
different vehicle users, and a cluster coloring algorithm was used to achieve effective
and efficient resource allocation. In [17], a graph partitioning approach was developed
to partition the high interference V2V links into different clusters and modeled the spec-
trum sharing problem as a weighted three-dimensional matching problem to solve the
performance–complexity tradeoffs. However, in these schemes, it is difficult to build an
accurate model to obtain accurate channel state information (CSI) due to the mobility of
the vehicles. In particular, traditional methods are hard to adapt the network environment
when it becomes more complex.

Recently, machine learning methods have been extensively applied to wireless com-
munications to address the challenges faced by traditional optimization methods [18,19].
Especially, reinforcement learning has made significant progress in wireless resource man-
agement by interfacing with the environment and sensing environment changes to make
decisions accordingly. In [20], a hybrid architecture of centralized decision-making and
distributed resource sharing is proposed. A neural network first compressed CSI to reduce
the signaling overhead and feedback to the central processor at the base station (BS). Then,
a deep Q-network was used to allocate resources and sent the decision results to all vehicles.
In [21], a dual time-scale federal deep reinforcement learning algorithm was proposed to
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solve the joint optimization problem of C-V2X transmission mode selection and resource al-
location. In [22], the age of information (AoI) was considered to study the delay problem of
V2V links. To cope with the variation of vehicle mobility and information arrival time, the
original MDP was decomposed into a series of MDPs for V2V pairs. An LSTM-based DRL
algorithm was proposed to solve the local observability and high-dimensional disasters of
V2V pairs. The authors of [23] introduced a centralized resource allocation architecture, and
the base station uses a double deep Q network (DDQN) to allocation resources intelligently
based on partial CSI to reduce the signaling overhead. Unlike [20–23], Refs. [24–29] mod-
eled the V2X resource allocation problem as a multi-agent reinforcement learning (MARL)
problem, where each V2V link was considered as an agent. In [24], a fingerprint-based
deep Q-network was proposed to handle the non-smoothness problem in multi-agent rein-
forcement learning [25]. A centralized training and distributed execution framework were
constructed for resource allocation. In the literature [26], both V2I link and V2V link laten-
cies were considered in order to reduce the overall V2X latency. Moreover, proximal policy
optimization (PPO)-based multi-agent reinforcement learning was proposed to optimize
the objectives. To adapt to the changing environment more effectively, [27] proposed meta-
reinforcement learning for V2X resource allocation. Firstly, spectrum resources and power
are allocated using DQN and deep deterministic policy gradient (DDPG), respectively.
Then, meta-learning was introduced to enhance the adaptability of the allocation algorithm
to the dynamic environment. In [28], the congestion problem of wireless resources was
under consideration, multi-agent reinforcement learning (DIRAL) based on unique state
representation was proposed, and the nonstationary problem was solved by designing
a view-based location. In addition, considering the topological relationship of vehicle
users, [29] proposed a graph neural network (GNN)-based reinforcement learning method
to learn the low-dimensional features of V2V link states by GNN and use RL for spectrum
allocation. Although, the RL method has achieved satisfactory results in the problem of
V2X resource allocation. It still faces two problems: firstly, there are difficulties in making
effective sensing between each agent; secondly, the process of interfacing the agent with the
environment will indiscriminately receive state information from all other agents, which
will lead to a high computational overhead and signaling overhead.

1.2. Contribution and Organization

In this paper, we consider the resource management in partial CSI cases to match the
realistic situation. In addition, a multi-agent reinforcement learning algorithm is utilized
for adaption to the dynamic vehicle environment. We regard the V2V link as an agent and
make corresponding decisions based on local observations. Furthermore, the agents have
competitive and cooperative relationships in a multi-agent environment. In the case of
competitive relationships, the V2V links tend to be egoistic, which ultimately affects the
communication performance of the whole system. Hence, under the cooperative relation-
ship setting, we build a reinforcement learning architecture and design the reward function
to be a common reward for all agents. Considering the information exchange between
agents, inspired by [30,31], we introduce an attention mechanism [32] for information
exchange between V2V links. Through the attention mechanism, each agent can focus on
more relevant information and optimize itself more explicitly. The main contributions of
this paper are summarized as follows:

• Due to the mobility of vehicular users, it is not easy to obtain CSI accurately. We
propose the framework of MARL to adapt to the changing environment and use only
partial CSI for wireless resource allocation to ensure the high rate of V2I links and low
latency of V2V links.

• To make each agent more effective in acquiring the state information of other agents in
the environment and to establish collaborative relationships, we propose an algorithm
of multi-agent deep reinforcement learning with attention mechanism (AMARL) to
enhance the sense of collaboration among agents. It also enables agents to obtain more
useful information, reduce the signaling overhead, and allocate resources more clearly.
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• Experimental results demonstrate that, compared to other baseline schemes, the
proposed AMARL-based algorithm can satisfy the requirement of low latency for V2V
links and significantly increase the total rate of V2I links. It also has better adaptability
to environmental changes.

The remainder of this paper is organized as follows. Section 2 presents the system
model and problem formulation. Section 3 presents the details of the proposed attention
mechanism-based MARL algorithm for solving V2X resource allocation. The simulation
results and analysis are presented in Section 4. Section 5 presents the conclusions.

2. System Model

As shown in Figure 1, we consider cellular V2X communications in an urban road
traffic scenario, including a base station and multiple vehicle users. In particular, we
focus on mode 4 in the cellular V2X architecture [33], in which each vehicle can choose
its communication resources without relying on the base station for resource allocation.
According to the different service requirements of V2X communications, the vehicle users
are divided into V2I and V2V links. Specifically, V2I links support higher-throughput
tasks while V2V links can provide secure and reliable information to vehicle users through
information sharing. In this paper, we consider the uplink for V2I communication and
assume that all vehicle users have a single antenna for their transceivers. Meanwhile, to
improve spectrum utilization and to guarantee the high-rate requirements of the V2I link,
we assume that each V2I is pre-allocated an orthogonal sub-band with a fixed transmit
power and shares this sub-band resource with multiple V2V links. In addition, each V2V
pair can only select one sub-band for communication.
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We denote the V2I links and V2V links as the setsM = {1, · · · , M} andN = {1, · · · , N},
respectively, where M and N denote the number of V2I and V2V, respectively. In addition,
we assume that the number of sub-bands equals to the number of V2I links.

In this paper, the channel power gain considered includes the large-scale fading
component and the small scale-fading component. The channel gain can be expressed as
g = αβ, where α and β denote the large-scale fading and the small-scale fading, including
the path loss and shadowing for each communication link, respectively. We define the
channel power gains of the m-th. V2I link and the n-th V2V link on the m-th sub-band as
ĝm,B and gn[m], respectively. The interfering channel gains received at the receiver of the
n-th V2V link from the transmitter of the m-th V2I link and the n′-th V2V link over the
m-th sub-band are given by ĝm,n and gn′ ,n. The interfering channel gain for the m-th V2I
link from the n-th V2V link over the m-th sub-band is gn,B[m]. For simplicity, the notations
adopted in this paper are listed in Table 1.
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Table 1. Key mathematical symbols.

Symbols Definition

M,N Set of V2I links and V2V links
M, N Numbers of V2I links and V2V links
ĝm,B Channel gain from the m-th V2I link to BS

gn[m] Channel gain between the n-th V2V link
ĝm,n The interfering channel gain from m-th V2I link to n-th V2V link
gn′ ,n The interfering channel gain from n′-th V2V link to n-th V2V link

gn,B[m] The interfering channel gain from n-th V2V link to m-th V2V link
xn[m] Indicator of the n-th V2V link reuse the spectrum of the m-th V2I link

γV2I
m [m] The SINR of m-th V2I link

γV2V
n [m] The SINR of n-th V2V link
σ2, W Noise power and bandwidth

pV2I
m , pV2V

n [m] Transmit power of the m-th V2I link and the n-th V2V link
∆T The coherence time of the channel
ωi,j The attention weight of V2Vi to V2Vj
Rt Reward function

Qn(s, a, θ) Q-network of the n-th V2V link
θ Parameter of the Q-network

Qn
(
o′, a′; θtar) Target Q-network of n-th V2V link

Dn Mini-batch of experiences
ε Exploration rate
γ Discount factor

The received signal to interference plus noise (SINR) of the m-th V2I link and the n-th
V2V link over the m-th sub-band can be expressed as:

γV2I
m [m] =

ĝm,B ·pV2I
m

∑N
n=1 xn [m]·gn,B [m]·pV2V

n [m]+σ2 (1)

and:
γV2V

n [m] = gn [m]·pV2V
n [m]

In [m]+σ2 (2)

where pV2I
m and pV2V

n [m] denote the transmit power of the m-th V2I link and the n-th V2V
link at the m-th sub-band, σ2 denotes the noise power, and:

In[m] = ĝm,n·pV2I
m +

N
∑

n′ 6=n
xn′ [m]·gn′ ,n[m]·pV2V

n′ [m] (3)

denotes the total interference power of the n-th V2V link in the m-th sub-band. The binary
variable xn[m] ∈ {0, 1} denotes the spectrum allocation indicator, if xn[m] = 1 means the
n-th V2V link uses the m-th sub-band. Otherwise, xn[m] = 0. We assume that a V2V link
only accesses one sub-band, ∑M

m=1 xn[m] ≤ 1 is satisfied. Then, the capacity of the m-th V2I
link and the n-th V2V link is:

RV2I
m = W log

(
1 + γV2I

m [m]
)

(4)

and:

RV2V
n [m] =

M
∑

m=1
xn[m]·W log

(
1 + γV2V

n [m]
)

(5)

where W is the bandwidth of the sub-band.
This paper aims to maximize the V2I link capacity to provide high-quality entertain-

ment services while satisfying the low latency and high reliability requirements of V2V
links to provide realistic and reliable information to vehicle users in road traffic. To satisfy
the first requirement, the sum rate of V2I links needs to be maximized. To satisfy the second
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requirement, we require V2V users to successfully transmit packets of size B in finite time
Tmax with the following probabilistic model:

Pr
{

Tmax
∑

t=1
RV2V

n [m, t] ≥ B
∆T

}
(6)

where ∆T is the coherence time of the channel, and the index t is added in RV2V
n [m, t] to

indicate the capacity of the n-th V2V link at different coherence time slots. Thus, the problem
of V2X resource allocation can be formulated as an optimization problem as follows:

max
x,PV2V

M
∑

m=1
RV2I

m (7)

s.t.
M
∑

m=1
xn[m] ≤ 1 (8)

pV2V
n [m] ∈ P, ∀n, m (9)

where P denotes the discrete power set of V2V link. Constraint (8) denotes that each
V2V pair can occupy only one sub-band, and constraint (9) denotes the power condition
is satisfied.

Problem (7) is a combinatorial optimization problem, and a limitation of traditional
optimization methods is the high requirement for model accuracy. However, due to vehicle
mobility, the environment is constantly changing, leading to uncertainty in the model
parameters, and the complete CSI is difficult to obtain and solve by traditional methods.
Therefore, we propose to address this problem through a deep reinforcement learning
approach. In Section 4, we validate the effectiveness of the proposed method.

3. Resource Allocation Based on Multi-Agent Reinforcement Learning with Attention
Mechanism Algorithm

In this section, we briefly introduce the basic concepts of attentional mechanism and
multi-agent reinforcement learning and then describe how the algorithmic framework can
be used to solve the problem of V2X resource allocation. Before presenting the algorithm
in detail, we first introduce the three elements in reinforcement learning: the observation
space, the action space, and the reward function.

3.1. Design of Three Elements
3.1.1. Observation Space

Due to the existence of vehicle mobility, it is more difficult to obtain a complete CSI.
Therefore, we consider partial CSI as part of the observation space, which, on the one hand,
is more in line with the real scenario; on the other hand, it is also beneficial to reduce the
signaling overhead of CSI feedback. In mode 4, the vehicle performs wireless resource
allocation by sensing channel measurements, in which it will inevitably receive interference
information. Considering the need for low latency in V2V links, the state observation space
of the V2V agent should also contain the remaining payload and time. Thus, the state of
the V2V agent at the time t includes the received interference information, the remaining
payload, and the remaining time.

We denote the observation space as: O =
{

o1
t , · · · , on

t , · · · , oN
t
}

, which is the set of all
agents’ states at moment t. on

t is the observation of the n-th agent at each time slot t. The
remaining payload and remaining time are defined as Ln

t , Un
t , respectively. Therefore, on

t
can be expressed as:

on
t =

{{
In
t−1[m]

}
m∈M, Ln

t , Un
t

}
(10)
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3.1.2. Action Space

Based on the observed state, each V2V agent will make a decision on sub-band selection
and power allocation. We define the action space for all V2V agents as A = {an}N

n=1, where
an = {xn, pn} is the action space of the n-th V2V agent. xn and pn denote the set of possible
sub-band selection and power allocation for the n-th V2V agent. Thus, the set of possible
sub-band assignment decisions for the n-th V2V agent at the time slot t can be defined as:

xn
t = {xn

t [1], · · · , xn
t [m], · · · , xn

t [M]} (11)

In problem (7), we carry out a discrete power allocation scheme [34]. The set of
possible power selection of the n-th V2V agent at time slot t can be expressed as:

pn
t ∈

{
0, 1

N−1 Pmax, 2
N−1 Pmax, · · · , Pmax

}
(12)

where N is the number of power levels.

3.1.3. Rewards Function

The design of the rewards function is closely related to the problem (7). Our objective is
to maximize the total throughput of the V2I links while satisfying the latency and reliability
requirements of the V2V links. In order to satisfy the requirement of the low latency of the
V2V links, we set the following reward function:

Gn
t =

{
RV2V

n (t), Ln
t ≥ 0

c, Ln
t < 0

(13)

This means that we want the V2V link to complete the data transfer as quickly as
possible. When there is a remaining load, the transmission is carried out at the effective rate
of the V2V link until the load is fully transmitted. c is a hyperparameter, which is greater
than the maximum possible V2V links rate, and the faster the remaining load is sent, the
greater the reward. In addition, we want the transmission time to be as short as possible,
which means that the probability of successful packet transmission within a given time
constraint will increase. Therefore, the final reward function is set as follows:

Rt = c1
M
∑

m=1
RV2I

m (t) + c2
N
∑

n=1
Gn

t − c3(Tmax −Un
t ) (14)

where {ci}i=1,2,3 is a weighting factor, which reflects the degree of requirement for different QoS.

3.2. Algorithmic Framework
3.2.1. Overview of Attentional Mechanism

We consider that in the problem of V2X resource allocation, the interaction between
V2V pairs affects their respective communication performance. If each V2V pair receives the
state information of all other V2V pairs, it will lead to two problems. Firstly, mixing valuable
and useless information would lead to problematic performance optimization; secondly,
processing global information by V2V pair would require a large number of computational
resources and a high signaling overhead, which is unacceptable. Therefore, to solve the
above two problems, we introduced the attention mechanism based on reinforcement
learning, which evaluates the importance of state information through attention weights
and enables V2V pairs to obtain helpful information better.

We define the state information of the i-th V2V pair as si(i ∈ N ), and the corresponding
query Qi, key Ki, and value Vi, and then define several basic parameter matrices used to
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describe the attention mechanism, namely the query matrix WQ, the key matrix WK, and
the value matrix WV . Thus, the attention weight of V2Vi to V2Vj is:

ωi,j = so f tmax
(

Qi ·KT
j√

dk

)
(15)

where dk denotes the key dimension of each component.
The state information after passing the attention mechanism is then obtained by

calculating a weighted sum of the values of the other V2V pairs, which is represented as:

sA
i = ∑

i 6=j
ωi,j·Vi (16)

3.2.2. Multi-Agent Reinforcement Learning

In multi-agent reinforcement learning, multiple agents are in the same environment.
Each agent independently intersects with the environment to motivate it and uses the
reward of feedback to improve its policy for higher rewards continuously. Furthermore, an
agent’s policy not only depends on its state and actions but also considers the states and
actions of other agents, as shown in Figure 2.
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3.2.3. AMARL Algorithm

In this section, we develop an attentional DRL-based algorithmic framework to solve
the problem (7). As shown in Figure 3, we consider each V2V link as an agent body and
model the resource management problem as an MDP, where all vehicles are in the same
wireless environment. Each agent independently intersects with the environment to obtain
its local observations and obtains information from other agents through the attention
mechanism to allocate spectrum and power based on its observations.

To achieve the goal of maximizing the rate of V2I links and satisfying the low latency
of V2V links, we construct an algorithmic framework with a Deep Q Network (DQN) as the
backbone network and use a distributed architecture to solve the problem (7), where each
agent has its Q network and optimizes its policy in this way. We consider the allocation of
wireless resources within time and the introduction of an attention mechanism to sense
changes in vehicle state information due to environmental changes.

With the introduction of the attention mechanism, the V2V links pay more attention to
helpful information and integrate this information into its action value estimation function,
i.e., the Q function, which can be expressed as:

Qn(s, a, θ) = fn
(
add
(
sA

n , sn
))

(17)

The calculation process is shown in Figure 4, where add
(
sA

n , sn
)
= sA

n + sn, fn is a three-
layer multi-layer perceptron (MLP), sA is the output state of the agent after the attention
network, and θ is a parameter of the network.
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To obtain the optimal policy π, the optimal action value function is defined:

Q∗(s, a) = max
π

Qπ(s, a) (18)

From the Bellman optimality equation [35], Equation (16) can be written as

Q∗(st, at) = Est+1∼p(·|st ,at)

[
Rt + γmax

aεA
Q∗(st+1, a)

∣∣∣∣st = s, at = a
]

(19)

where γ is the discount factor. From the Monte Carlo approximation, (17) can be trans-
formed into:

Q∗(st, at) ≈ rt + γmax
a∈A

Q∗(st+1, a) (20)

approximating the value of Q in (20) with the Q network yields:

Q(st, at; θ) ≈ rt + γmax
a∈A

Q(st+1, a; θ) (21)

where the left-hand side of Equation (19) is the prediction of the Q network at moment t
and the TD target [36] on the right-hand side is the prediction of the Q network at moment
t + 1, denoted as yt = rt + γmax

a∈A
Q(st+1, a; θ). Thus, the loss function can be defined as:

loss = [Q(st, at; θ)− yt]
2 (22)

The training of DQN can be divided into two parts: collecting the training data and
updating the parameters θ.

(1) Collecting training data:

The n-th V2V link needs to intersect with the environment using some kind of strategy
π, which we for call a behavioral policy. The ε-greed policy is generally used [37]:

a =

{
argmax

a∈A
Qn(o′, a; θ), with probability 1− ε

random action, with probability ε
(23)
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the V2V link performs an action that leads to a change in the environment, which we refer
to as a the trajectory of episode, is written as: on

1 , an
1 , rn

1 , · · · , on
t , an

t , rn
t · · · , and is stored in

an array as a four-tuple (on
t , an

t , rn
t , on

t+1), called the experience replay array D.

(2) Updating parameters:

A mini-batch of experiences Dn are uniformly sampled from the experience replay
array D to update parameter θ using stochastic gradient descent. The TD algorithm is
used to train the DQN network; however, maximization in the TD algorithm leads to an
overestimation problem, where the TD target overestimates the true value. To alleviate this
problem, a target network [38] is used to calculate the TD target, i.e.,

yt
′ = rt + γmax

a′
Qn
(
o′, a′; θtar) (24)

Therefore, the loss function is:

Ln(θ) =
1

2Dn
∑

t∈Dn

[yt
′ −Qn(o, a, θ)]2 (25)

Notation:
δt = yt

′ −Qn(o, a, θ) (26)

is the TD error. Perform gradient descent to update the network parameters:

θ ← θ − α· ∑
t∈Dn

δt·∇θ Qπ
n (o, a, θ) (27)

where θtar is the target network parameter, which is periodically updated by the Q-network
parameter θ to improve the stability of the network. The training process is summarized in
Algorithm 1.

Algorithm 1 Training Process

1: Input: V2X environment simulator, Attention network model, DQN model, payload size, and
maximum tolerant latency
2: Output: AMARL network’s weight
3: Initialize: experience replay array, the parameters of DQN and target DQN
4: for each episode i = 1, 2, · · · do
5: Update environment;
6: Reset remaining payload Ln

t and remaining time Un
t ;

7: for each step t = 1, 2, · · · do
8: Observed state of all V2V agents: ot = {on

t }n=1,···;

9: Through the attention network: oA
t =

{
oA,n

t

}
n=1,···

;

10: for each V2V agent n = 1, 2, · · · do
11: Based on add

(
oA,n

t , ot

)
select action an

t according to the ε-greed policy;
12: end for
13: All agents take actions and gain shared reward Rt;
14: Update environment;
15: for each V2V agent n = 1, 2, · · · do
16: Gain the next moment of observation: on

t+1;
17: Store

(
on

t , an
t , rn

t , on
t+1
)

in the experience replay array;
18: end for
19: end for
20: for each V2V agent n = 1, 2, · · · do
21: Sample a mini-batch experiences Dn from experience replay array D;
22: Update DQN parameter θ according to (25);
23: Update the target DQN every k steps: θtar = θ;
24: end for
25: end for
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In the test phase, at each time step t, each V2V agent compiles the observed states.
Then, it selects an action with the maximum Q value based on the trained Q-network. After
that, all V2V links determine the power and sub-band for transmission by the selected
actions. The testing procedure is summarized in Algorithm 2.

Algorithm 2 Testing Process

1: Input: V2X environment simulator, AMARL network model
2: Output: All V2V agents actions
3: Start: Load AMARL network model, Start V2X environment simulator
4: for each episode i = 1, 2, · · · do
5: Update environment;
6: Reset remaining payload Ln

t and remaining time Un
t ;

7: for each step t = 1, 2, · · · do
8: Observed state of all V2V agents: ot = {on

t }n=1,···;

9: Through the attention network: oA
t =

{
oA,n

t

}
n=1,···

;

10: for each V2V agent n = 1, 2, · · · do
11: Compile the state observation space oA,n

t and select the action with the
maximum Q value based on the trained Q network;
12: end for
13: end for
14: end for

4. Simulation Results

In this section, we verify the feasibility of the proposed algorithm in V2X resource
allocation through simulation experiments. We follow the city case simulation in 3GPP
TR36.885 [39] (including density, speed, vehicle channel, V2V data traffic, etc.) and follow
the set values of the main parameters in [24] to train the model. According to [39,40], we
generate V2X communication scenarios and datasets by Python. The main simulation
parameters are given in Table 2, and the channel models for the V2V link and V2I link are
given in Table 3.

Table 2. The main simulation parameters.

Parameters Values

Carrier frequency 2 GHz
Sub-channel bandwidth 1 MHz

BS antenna height 25 m
BS antenna gain 8 dBi

BS receiver noise figure 5 dB
Vehicle antenna height 1.5 m
Vehicle receiver gain 3 dBi

Vehicle receiver noise figure 9 dB
Vehicle speed [10, 15] m/s

V2I transmission power 35 dBm
V2V Maximum transmission power 33 dBm

Noise power σ2 −114 dBm
Maximum tolerant latency of V2V links 100 ms

V2V payload size B [1, 2, · · · ,6] × 1060 bytes
Number of V2I links 4
Number of V2V links 4

Discount factor γ 0.9
Reward weights {ci}i=1,2,3 {0.1, 0.9, 1.0}

Power levels Np 5
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Table 3. The channel models for the V2V link and V2I link.

Parameters V2I Link V2V Link

Path loss model 128.1 + 37 log10 d, d in km LOS in WINNER + B1 Manhattan [40]
Shadowing distribute Log-normal Log-normal

Shadowing standard deviation 8 dB 3 dB
Decorrelation distance 50 m 10 m

Fast fading Rayleigh fading Rayleigh fading
Fast fading updata Every 1 ms Every 1 ms

In building the DQN for each agent, we constructed three fully connected layers
containing 250, 180, and 100 neurons, respectively. The activation function of the hidden
layer in the DQN used the ReLu f (x) = max(0, x), the RMSProp optimizer was used to
update the network parameters, and the learning rate α = 0.001. In the training phase,
similar to [24], we fix the payload of V2V pairs to be 2 × 1060 bytes, train a total of
3000 episodes of Q-network for each agent, and the exploration rate ε is linearly annealed
from 1 to 0.2. In the testing phase, we vary the payload and speed of V2V pairs to verify
the adaptability of the proposed scheme to the environment.

In order to verify the validity of the proposed method, we compared it with the
following four methods:

(1) Meta-reinforcement learning [27]: In this scheme, DQN is used to solve the problem
of spectrum allocation, deep deterministic policy gradient (DDPG) is used to solve
the problem of continuous power allocation, and meta-learning is introduced to make
the agent adapt to the changes in the environment.

(2) Proposed RL (no attention): This scheme does not incorporate an attention mechanism,
and the agent will obtain the state information of other agents without any difference
and then allocate wireless resources.

(3) Brute-Force: This scheme is implemented in a centralized manner and requires accu-
rate CSI. It focuses only on improving the performance of V2Vs, ignoring the need for
V2I links, and performs an exhaustive search of the action space of all V2V pairs to
maximize V2Vs and rates.

(4) Random: randomizes spectrum and power allocation.

4.1. Impact of Payload Size on Network Performance

Figure 5 shows the change in the sum rate of the V2I links, and the probability of
successful transmission of the V2V links as the payload changes. In particular, based on
the maximum V2V links transmission power of 23 dBm set in [24], we use this power as
a lower limit for this paper’s transmission power. As can be seen from Figure 5, the sum
rate of the V2I link and the probability of successful transmission of the V2V link decrease
for all schemes (except Brute-Force) as the V2V links payload increases. This is because,
when the payload increases, the V2V links require more transmission time and higher
transmission power, which causes more interference in the V2I and V2V links, resulting in
a decreased communication performance. Compared to the meta-reinforcement learning
scheme, Figure 5a shows that the proposed scheme maintains the higher sum rate of the
V2I links as the payload increases and is close to the Brute-Force scheme. Even when
the transmission power of the V2V links is set to a minimum of 23 dBm, the proposed
scheme still has a much better V2I links sum rate than the meta-reinforcement learning
scheme. In Figure 5b, the successful transmission probability of V2V links for different
methods are compared. The performance of the proposed method is close to that of the
meta-reinforcement learning method using full CSI when partial CSI is utilized. This
indicates that the proposed algorithm can achieve the expected requirements of V2V link
delay with a low signaling overhead. Figure 5 also shows the robustness of the proposed
algorithm to the variation of the payload of V2V links.
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transmission probability of V2V links.

Furthermore, we observe the proposed algorithm’s performance before and after the
introduction of the attention mechanism. The communication performance is substantially
improved after the attention mechanism’s introduction. Before the attention mechanism,
V2V links indiscriminately obtained the state information of other V2V links, enhancing the
interference level and increasing the signaling overhead. Moreover, with the introduction of
the attention mechanism, a collaborative relationship is built between V2V links, allowing
better use of information from other V2V links for more effective interference coordination,
thus improving the communication performance.

4.2. Impact of V2V Links Transmission Power on Network Performance

In this subsection, we investigate the impact of the V2V links’ power variations on the
network performance to find a low-power design solution that satisfies the performance
requirements. As shown in Figure 6, we set the maximum transmission power of the V2V
links to {23, 25, 27, 29, 31, 33, 35} dBm. As the payload increases, the performance at all set
powers decreases. Figure 6a shows that with the same load, the sum rate of the V2I links
increases as the transmission power of the V2V links increases, and the performance at all
powers is relatively similar. Similarly, Figure 6b shows that the probability of successful
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transmission of the V2V links also increases with increasing power, which is due to the fact
that as the power of the V2V link increases, the rate of the V2V links becomes larger as the
transmission time decreases. In addition, we found that when the power of the V2V links is
set to 35 dB, the probability of successful transmission of the V2V links decreases by 5.25%
with the payload increase, although the network performance will still improve. Moreover,
when the maximum power is 33 dBm, the decline in the successful transmission probability
is 4.25% and approaches the performance of a maximum power of 35 dBm. Compared
with other power settings, the performance of a maximum power of 33 dBm still has an
advantage. This provides some reference for practical engineering design. If only the high
throughput of the V2I link is required, setting the maximum power of the V2V links to
23 dBm is sufficient and reduces power consumption.
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4.3. Impact of Vehicle Velocity on Network Performance

To further investigate the adaptability of the proposed algorithm to environmental
changes, we investigate the effect of different vehicle speeds on the network performance.
In the training phase, the speed was fixed at [10, 15] m/s to verify the robustness of the
proposed algorithm. As shown in Figure 7, the performance of the proposed algorithm
decreases with increasing speed for the same payload. This is because the environment
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changes more significantly as the vehicle speed increases, increasing the difficulty of
obtaining state information and the uncertainty of the state information. However, the
proposed scheme can still maintain a high throughput of the V2I links, and the probability
of successful transmission of the V2V links, which indicates that the proposed algorithm
can adapt to the changes in the environment.
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Further, we investigated the effectiveness of the proposed AMARL algorithm. As
shown in Figure 8, we fixed a payload of 2 × 1060 Bytes and compared the network
performance of the AMARL algorithm with the MARL algorithm (no attention). Figure 8a
shows that the sum rate of the V2I links using the AMARL algorithm is higher than that of
the MARL algorithm in a low-speed environment. As the speed increases, the proposed
algorithm is slightly higher than the MARL algorithm. For practical design reasons, the
proposed algorithm will be chosen over the MARL algorithm in low-speed environments
where higher throughput of the V2I links is required. In high-speed environments, the
MARL algorithm may be better; its network performance can satisfy the throughput
requirements of some V2I links with a lower computational overhead than the proposed
algorithm. Overall, the network performance of the proposed algorithm is better than the
MARL algorithm.
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Figure 8. The performance comparison between AMARL and MARL: (a) Sum rate of V2I links.
(b) Successful transmission probability of V2V links.

Figure 8b shows the effect of the vehicle speed variation on the successful transmission
probability of the V2V link. It can be seen from the figure that the proposed algorithm
outperforms the MARL algorithm. Even at the highest vehicle speed, the minimum suc-
cessful transmission probability of the proposed algorithm is close to the highest successful
transmission probability of the MARL algorithm. This is due to the introduction of the
attention mechanism. Specifically, introducing the attention mechanism will promote the
cooperative relationship of V2V links and reduce unnecessary communication interference
by obtaining valid information, thus improving the throughput of V2V links and reducing
the data transmission time.

The demonstration of the network performance metrics in Figure 8 verifies that the
proposed approach can adapt to environmental changes and demonstrates the attention
mechanism’s effectiveness.

5. Conclusions

In this paper, we propose an attention-based multi-agent reinforcement learning algo-
rithm for spectrum and power allocation of V2X, aiming to satisfy the requirements of high
throughput for V2I links and low latency for V2V links. Meanwhile, we used partial CSI for
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training to reduce the signaling overhead. The attention mechanism’s introduction enables
more efficient information exchange between V2V links and more explicit optimization of
their own policies. The simulation results demonstrate the effectiveness of the proposed
scheme, and our model can achieve the expected network performance and adapt better
to environmental changes. We also explored the impact of power variation on network
performance, which provides a reference for practical engineering design. However, our
work also has shortcomings. We did not further consider effective interactions between
vehicles and the environment. In this way, it may be impossible to ensure that the strategies
trained by reinforcement learning satisfy the practical needs. Therefore, in future work, it
is hoped that the process of vehicle–environment intercommunication will consider the
expert knowledge of the environment (e.g., Channel Knowledge Map (CKM) [41]). CKM
is a site-specific database tagged with the transmitter/receiver locations, which contains
useful CSI to help enhance environmental awareness and avoid complex real-time CSI
acquisition. In addition, the use of the proposed scheme for MIMO-V2X is a worthwhile
research direction in order to further satisfy the high spectral efficiency gain and high data
rate requirements.
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