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Abstract: Mental fatigue is a major public health issue worldwide that is common among both
healthy and sick people. In the literature, various modern technologies, together with artificial
intelligence techniques, have been proposed. Most techniques consider complex biosignals, such as
electroencephalogram, electro-oculogram or classification of basic heart rate variability parameters.
Additionally, most studies focus on a particular area, such as driving, surgery, etc. In this paper,
a novel approach is presented that combines electrocardiogram (ECG) signal feature extraction,
principal component analysis (PCA), and classification using machine learning algorithms. With
the aim of daily mental fatigue recognition, an experiment was designed wherein ECG signals were
recorded twice a day: in the morning, i.e., a state without fatigue, and in the evening, i.e., a fatigued
state. PCA analysis results show that ECG signal parameters, such as Q and R wave amplitude
values, as well as QT and T intervals, presented with the largest differences between states compared
to other ECG signal parameters. Furthermore, the random forest classifier achieved more than 94.5%
accuracy. This work demonstrates the feasibility of ECG signal feature extraction for automatic
mental fatigue detection.
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1. Introduction

Fatigue is a phenomenon that has not been conventionally defined and relates, in
particular, to reactions to various loads and conditions, including experiences and states
of mind. Fatigue is also defined as a subjective lack of physical and/or mental energy
perceived by an individual to interfere with their usual or desired activities [1].

Usually, fatigue is a state associated with a weakening or depletion of an individual’s
physical and/or mental resources, ranging from a general state of lethargy to a specific
burning sensation in a particular muscle. Physical fatigue leads to an inability to continue
functioning at a normal level of activity. Mental fatigue is a state of tiredness that sets in
when brain energy levels are depleted. In the literature, fatigue is differentiated into six
types: social, emotional, physical, pain, mental, and chronic illnesses; furthermore, these
types are often distinguished in terms of physical and mental fatigue [2].

Many people experience mental fatigue (MF) in daily life or work activities that re-
quire sustained mental efficiency [3]. MF can be defined as a psychobiological state caused
by prolonged episodes of cognitive exertion [4]. Overwork-related disorders, such as
cerebrovascular/cardiovascular diseases, diabetes, and cancer, are major health issues
worldwide [5,6]. However, fatigue is a common symptom in both sick and healthy peo-
ple [7]. Fatigue is one of the most crucial factors contributing to decreased performance
among aircraft pilots; car drivers [8]; individual athletes [9]; and team sport athletes, such
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as soccer players [10]; among other professions. Furthermore, mental fatigue may reduce
cognitive resources and impair balance performance [11]. In some literature reports, cog-
nitive fatigue (CF) is considered the main component of mental fatigue. CF is known to
cause attention deficits, leading to poor situational awareness and impaired vigilance [12].
Various cognitive tests are used to detect mental fatigue, such as the psychomotor vigi-
lance task, the Stroop task, the AX-continuous performance test, and the TloadDback test;
however, such tasks takes time and require additional performance [13].

In the literature, electroencephalographic (EEG) signal features are studied and ana-
lyzed as a relevant tool for the detection of mental fatigue [14,15]. However, it is not always
possible to record EEG signals and conduct measurements in real-life environments due to
electric line noise or noise from electronic equipment [16]. In other research, electromyo-
graphy (EMG) and electro-oculography (EOG) signals, as well as inertial measurement
unit (IMU) sensors, 3D optical tracking techniques, infrared cameras, and accelerometer
signals, have been analyzed [17,18]. Scientists have proposed artificial intelligence and
expert system-based solutions that combine several sensors and devices [19]. EEG, together
with ECG signal recordings, are very common in fatigue detection tasks for drivers, for
whom exhaustion and distraction may lead to serious accidents [20]. In the literature,
real-time monitoring systems are used to detect heart anomalies [21]. In such cases, ECG
signals are classified for in an alert configuration to notify designated healthcare providers.
However, most systems are designed to detect various heart anomalies and might not be
applicable to fatigue recognition.

When the sympathetic nervous system is active to a heightened degree, the heart
regularly beats at a faster pace, whereas the opposite occurs when the parasympathetic
nervous system is active to a heightened degree. Therefore, during mental fatigue or
stress, heart rate variability (HRV) is lower than normal. This parameter is a convenient
tool to monitor personal health using simple smart devices, such as watches; however,
the results are consistently inaccurate and depend on individual human characteristics.
Furthermore, to acquire accurate results, the non-linear characteristics of heart rate (HR)
must be investigated [22].

Usually, a classification algorithm consists of two main parts: primary signal transfor-
mation and classification. The primary transformation process is based on feature analysis
to extract the raw signal and reduce its dimensions [23]. Classifying ECG signals into
pathologies or health stages is a complicated task that requires recognition of the signal
structure. Generally, a combination of several classification algorithms is used to solve this
problem [24]. A similar classification problem is considered in the fatigue identification
process. In this article, the research object is not a continuous ECG signal or its segments
but separate signals that were recorded at different times of the day (in the morning and
the evening). Usually, fatigue occurs after intensive physical or mental activity, mostly at
the end of the working day. Instant physical fatigue detection after an intensive training
session is a simple task because the heart is loaded and works faster. However, mental
fatigue detection is a more complicated task because there is no clear difference in terms of
ECG signal parameters.

Another technique used in medicine is principal component analysis (PCA). This
method of analysis is used to detect early stages of diseases and to diagnose the cardiac
health of patients [25–30]. This technique was used in the present study to evaluate the
differences between ECG features in different states and to detect mental fatigue symptoms.

This research focuses on mental fatigue recognition in healthy individuals based on
their health condition at different times of the day. All data are split into two datasets.
Data gathered in the first subset corresponds to a normal state without fatigue, whereas
the second subset consists of data recorded in the evening, representing a fatigued state.
The main purpose of this paper is to determine whether ECG signal features reveal differ-
ences in mental states. However, the proposed framework is not designed for diagnostic
purposes and should be tested on clinical patients for use as a specific criterion for mental
fatigue diagnosis.
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The structure of this article is as follows: Section 2 highlights the recent literature on
mental fatigue detection using various biosignal classification methods and other techniques.
The experimental design, data description, and applied methods are presented in Section 3.
Section 4 consists of data analysis using the PCA method, and analysis of the performance of
ML algorithms. Finally, a discussion and conclusions are presented in Section 5.

2. Related Work

Modern wearable devices, such as eye-tracking technologies, are becoming increas-
ingly popular. Li et al. [31] demonstrated the feasibility of applying wearable eye-tracking
technology to identify and classify mental fatigue in construction equipment operators.
The Toeplitz inverse covariance-based clustering (TICC) method was used to determine
multiple levels of mental fatigue, and the classification task was performed using support
vector machine (SVM) methods. However, this study consisted of a narrow target group
and might not be applicable in other fields.

In [32], EEG and HRV signals were observed and analyzed to detect the impacts of
prolonged cognitive activity on the central nervous system and the autonomic nervous
system. EEG signal wavelet packet parameters and HRV spectral indices were combined to
measure changes in mental fatigue. Although 91% classification accuracy was achieved,
two separate devices for EEG and HRV recordings are not efficient and barely usable in
daily life activities. Furthermore, EEG signals are most likely contaminated by muscle
artifacts, which may lead to incorrect interpretation. For this reason, various filtering and
feature extraction methods have been proposed [33,34]. Preprocessed EEG signals can be
used in multilevel fatigue recognition tasks. In [35], EEG signals were classified using a
K-nearest neighbor (KNN) classifier, achieving 100% accuracy. These results demonstrate
the feasibility of using EEG signals and extracted features to successfully detect mental
fatigue. However, in this case, the data were collected using a driving simulator and a
brain cap with 32 electrodes placed on the skin surface, which may not be applicable in
real-world environments.

Portable single-channel electrocardiogram equipment (“LaPatch”) was used in [5]
to record and analyze ECG signals. Eight heart rate variability (HRV) indicators were
considered and classified using SVM, KNN, naïve Bayes (NB), and logistic regression (LR)
models. Although the technique is promising, due to the small sample size, only 75.5%
accuracy was achieved. In another study, researchers developed an automatic mental
stress detection system based on ECG signals recorded from T-shirts and analyzed using
machine learning (ML) classifiers: decision tree (DT), random forest (RF), NB, and LR [6].
The best-performing model achieved an accuracy of 94.1%. However, in this research only
mental stress detection was considered, and the same technique may not be applicable to
mental fatigue recognition.

Wearable devices for HRV recordings are usually user-friendly and convenient. Fur-
thermore, they do not require electrodes to be attached directly to the skin surface. Many
studies have focused on heart rate (HR) and time- or spectral-domain HRV analysis. For
example, in [36], mental and physical fatigue detection methods were applied based on
HR, HRV, skin temperature, and pulse. Causal convolutional neural networks (cCNN)
and RF models were used to detect and distinguish between mental and physical fatigue.
However, only 66.2% accuracy was achieved in the mental fatigue recognition task. Other
similar research used a polar H10 chest strap and photoplethysmography (PPG) technol-
ogy for HRV detection [37]. Results were compared with those obtained with a Bittium
FarosTM 360 device, which records a single ECG lead. Furthermore, the study included
several watches, such as the Actigraph wGT3X-BT, Garmin, and Polar Vantage V. Various
time- and spectral-domain HRV parameters were estimated and compared. However, no
decision-making or fatigue recognition techniques were applied.

Modern wearable electronics have been developed in recent years, such as epidermal
electronics systems (EES) and electronic tattoos (E-tattoos), with which ECG signals, res-
piration rate, and galvanic skin responses (GSR) can be recorded [38]. Comparing three
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ML models (SVM, KNN, and DT) the obtained signals were classified with 89% accuracy.
Although these technologies are promising, the equipment has not been fully tested and
prepared for production. A transparent eye detection system can also be considered a
modern wearable device [39]. Such a system can acquire movement in the pupil and detect
blinking based on the light that is reflected from the eye. A summary of these and similar
wearable devices and corresponding research in recent literature is presented in Table 1.

Table 1. Wearable devices used to detect mental fatigue in recent literature.

Wearable Device Target Group Sensor Method

Neuroscan system Synamps Scan 4.3 [3] Drivers EEG, ECG, HRV Spectral and statistical analysis,
entropy

“LaPatch” [5] Healthy adults ECG, HRV SVM, KNN, NB, LR

Wearable eye-tracking technology [31] Construction equipment
operators TICC SVM

T-shirt [6] Healthy adults ECG DT, RF, NB, LR
32-electrode ActiCapTM and BrainAmpTM

systems [17] - EEG, EOG, ECG SVM, ANOVA

Medtronic PL-Winsor 2.35 EEG system [16] - EEG SVM
IMU sensors [18] Young healthy adults IMU, HRV RF, SVM, LR

Neuroscan 32-channel system [32] Healthy adults EEG, ECG, HRV Spectral analysis, SVM
Everion device [36] Healthy adults HRV, skin temperature Statistical analysis, CNN, RF

Polar H10 chest strap [37] Military members HRV, ECG Statistical analysis
Neuroscan Scan 4.3 [15] Drivers (men) EEG SVM, DT, RF, KNN, and others

[20] Train drivers EOG, EEG, ECG Correlation analysis, ANOVA,
SVM, PCA

Driving simulator and brain cap [35] Drivers EEG KNN
E-tattoos [38] Healthy adults ECG, respiration, GSR SVM, KNN, DT

Transparent eye detection system [39] National Aeronautics Eye blinks Statistical analysis

Because HRV analysis cannot achieve high accuracy in mental fatigue recognition
and EEG signals are not reliable in daily life activities, in this paper, a novel framework
is proposed for mental fatigue detection that involves analysis and classification of ECG
signal features. Furthermore, principal component analysis (PCA) is applied to distinguish
between ECG signal parameters in two different states (in the morning, i.e., a non-fatigued
state, and in the evening, i.e., fatigue condition). The classification task is performed using
several models: KNN, LDA, DT, and RF.

3. Materials and Methods

In this section, we describe the proposed data analysis and classification processes
that are essential for mental fatigue recognition. The whole process flow consists of five
main parts: ECG signal recording, ECG signal preprocessing, feature extraction, PCA
analysis, and ML performance (see Figure 1). The experiment was designed with ECG
signal registration twice a day (in the morning and in the evening). HRV analysis or whole
ECG signal classification techniques failed on the mental fatigue recognition task, so we
proposed the extraction of ECG signal features only when applying classification algo-
rithms, such as KNN, DT, RF, etc. Before implementation of a machine learning technique,
PCA analysis was applied to make sure that there were significant differences between
ECG signal features in separate states. This research was conducted with the approval
of the Kaunas Regional Research Ethics Committee of our institution under the project
name, “Various directionalities on physical exercise effects that are based on differential
learning methodology, and impact on heart and cardiovascular system” (biomedical ethics
permission number BE-2–38, Lithuania).
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Figure 1. Proposed framework for mental fatigue detection.

3.1. ECG Signal Characteristics and Data Analysis

In this study, various ECG signal features were analyzed and classified. The protocol
consisted of two 60 sec recordings of each participant. These recordings enabled the detection
of differences in ECG signal parameters, which were estimated at the beginning of the day
and in the evening. V5 lead was selected in this research (see an example in Figure 2), with
each parameter representing a separate component of heart activity (see Table 2).

Figure 2. ECG signal features in the V5 lead.

All ECG signal features are visible in the properly filtered data. Numerous methods
can be applied to ECG signal preprocessing, such as moving average (MA), exponential
smoothing, or linear Fourier transformation. Usually, biological signals are contaminated
with various environmental disturbances. The main purpose of signal filtering algorithms is
to divide separate components into informative parts and undesirable noise. Furthermore,
biological signals that are recorded during movement are highly contaminated by various
disturbances, and sometimes, noise overlaps the signal itself. The main problem associated
with movement-contaminated signals is non-stationary, low-frequency noise (a trend
resulting from movement artifacts). In such cases, ordinary filtering methods for signal
processing are insufficient or unreliable. In this research, ECG signals were recorded while
each participant was standing so that only small movement artifacts might affect the signal.
Therefore, a Butterworth filter was used for noise reduction [40].
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Table 2. ECG signal features and causes of electrical impulses in the heart (based on [41]).

Wave Type and Parameter Heart Activity

Q wave The anteroseptal part of the myocardial ventricle is activated
R wave Depolarization of myocardial ventricles
S wave The posterior diaphragmatic part of the ventricles is activated
T wave Rapid ventricular repolarization

QT interval Time required for the electrical system to fire an impulse
through the ventricles and then recharge

ST interval The initial, slow phase of ventricular repolarization

RR interval

Time elapsed between two successive R waves of the QRS
signal on an electrocardiogram (and its reciprocal, the HR); a
function of intrinsic properties of the sinus node, as well as

autonomic influence

QRS complex A combination of the Q wave, R wave, and S wave; the “QRS
complex” represents ventricular depolarization

ECG signal preprocessing continues with feature extraction (ECG parameter estima-
tion). ECG feature extraction starts with R peak detection and QRS complex identification.
All other parameters, such as Q and S peaks, RR interval, and T wave, are based on R peaks
or QRS complex positions. In this research, 9 ECG parameters were estimated: Q, R, S, and
T amplitudes; QT, ST, RR, and QRS intervals; and T-wave intervals. All ECG features were
estimated using the NeuroKit2 toolbox in Python programming language [42].

3.2. Research Design and Data Acquisition

In this research, a CardioScout Multi-device was used to record ECG signals and
transmit them to mobile devices or tablets. The signal recording frequency was 500 Hz,
and each segment was 60 s long. In this article, the analyzed experiments comprise data
recorded twice a day (in the morning and in the evening) for signal parameter classification
and fatigue recognition. In Table 3, two different states are defined: A1 in the morning and
A2 in the evening.

Table 3. ECG signal recordings in different states.

State Description Recording Duration

A1 In the morning, i.e., a state without fatigue 60 s
A2 In the evening, i.e., fatigued condition 60 s

In total, 60 healthy adults were recruited (aged between 24 and 34 years) without a di-
agnosis of health pathologies or overwork-related problems. In this research, 8271 measure-
ments were estimated from 60 participants via ECG signal recordings: 4195 corresponding
to state A1 and 4076 corresponding to state A2.

3.3. Data Description and Visualization

As mentioned in the previous section, two states were analyzed in this study (A1 in
the morning and A2 in the evening). All parameter data were normalized by subtracting
means and dividing by the standard deviation. This type of data normalization is needed
to eliminate differences in individual heart rate characteristics of each person. For example,
some participants may have higher (or lower) ECG signal amplitude values compared to
others in both states (in the morning and in the evening), which may affect classification
results, indicating fatigued state in both datasets. Furthermore, normalization increases
data integrity without distorting differences in the ranges of values. The distribution
and scatter plots are shown in Figure 3. Pearson correlation coefficients are presented in
Figure 4 (Y represents the state: a value of 1 corresponds to the fatigued condition or state
(A2), and a value of 0 corresponds to the fatigue-free condition of state (A1)). Comparing
data from different states, clear differences could be noticed. For example, histograms of
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the Sa parameter look similar, but A2 data are shifted, with higher values compared to
state A1 values (see Figure 3). Furthermore, some ECG signal parameter values overlap.
For example, there is no significant difference between states A1 and A2 in terms of RR
interval values. Therefore, typical HRV analysis fails in mental fatigue detection, with low
classification accuracies.

Figure 3. Histograms and scatter plots of ECG signal parameters in different states.

Figure 4. Pearson correlation coefficients between ECG signal parameters.

Figure 3 shows linear dependences between several parameters (for example, between
parameters QT and ST). Similar results are shown in Figure 4 (for example, the Pearson
correlation coefficient for ST and QT reaches 0.98). Additionally, a strong dependence
(Pearson correlation coefficient > 0.8) is evident between Tint and QT or ST. Although some
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parameters may be eliminated in the classification step, it is not clear which parameters
have a greater impact on classification accuracy. In the initial stage of the classification
process, all ECG signal features were included (all 9 ECG parameters).

3.4. Principal Component Analysis

Principal component analysis (PCA) was applied to distinguish between ECG features
in the morning and in the evening. The general idea behind this technique is to obtain new
latent variables based on the original data. The newly defined principal components reflect
directions of maximal variance of the projected data and form a new orthonormal basis of
the original vector space.

PCA is commonly used to reduce the dimensions of the collected data matrix by
choosing k principal components (PC1, PC2, . . . , PCk) and evaluating the amount of
information explained by the chosen components as follows:

∑k
i=1

λi
Tr(C)

, (1)

where λi is the i-th eigenvalue of the covariance matrix (C), and Tr(C) is its trace, i.e., the
sum of all entries on the main diagonal. Furthermore, the original data are projected to the
low-dimension hyperplane spanned by components PC1, PC2, . . . , PCk, thus extracting the
essential information from the initial data cloud. In this study, three principal components
were considered, and the obtained results were visualized via 3D plots to emphasize the
desired differences in mental states.

3.5. Machine Learning Technique

The use of social media, smartphones, smartwatches, computers, and even portable
devices provides big data about various mental and physical health disorders. Effective
algorithms for big data processing are usually based on machine learning (ML) techniques.

Various ML algorithms have been created for data classification and prognosis. There
are three main categories: Supervised learning: examples of such methods include support
vector machine (SVM), k-nearest neighbors (KNN), decision tree (DT), and random forest
(RF); Unsupervised learning: these methods include neural networks (NN) and clustering;
Semi-supervised learning: this category includes methods such as semi-supervised SVM,
mixed models, etc. [43].

Supervised learning is used to analyze the labeled data and make predictions or
classify data into different categories, whereas unsupervised learning methods can learn
from unlabeled data and extract similar patterns. The third group is semi-supervised
learning, which involves the analysis of data with and without labels; such methods are
used when there is not enough labeled data for classification or prognosis.

One way to evaluate the potential accuracy of predictions is to use a confusion ma-
trix [44]. The entries in this matrix indicate the correctness of the prediction or classification
of distinct fault categories compared to actual observed values. To evaluate the quality of
the selected predictions or data classifications, additional measurements can be considered.
Two widely used standard statistics are accuracy (acc) and F1 score. These are estimated
using Equation (2).

acc =
TP + TN

TP + TN + FP + FN
, F1 =

2 · TP
2 · TP + FP + FN

; (2)

where TN corresponds to true-negative elements after prediction (correctly predicted
as not correct), TP represents true-positive elements (correctly predicted as correct), FP
represents false-positive elements, and FN represents false-negative elements. Although
popular in ML analysis, both acc and F1 ignore the size of each category in the confusion
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matrix. Therefore, the additional statistic called Matthew’s correlation coefficient (MCC)
was measured [45]. This coefficient is calculated as follows:

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
, (3)

The value of this coefficient is in the range [−1; 1], where −1 is interpreted as the
worst-case scenario, whereas 1 is the best possible value.

Additionally, in 1960 J. Cohen revealed that there is a level of algorithm precision
when the algorithm is no longer capable of predicting correctly, i.e., the prediction becomes
as accurate as a simple guess. This level is called Cohen’s Kappa (κ) statistic and can be
expressed as follows:

κ =
accuracy− d

1− d
, where d =

TP + FN
TP + TN + FP + FN

. (4)

Three main intervals are considered: if κ > 0.75, then the value is viewed as perfect; if
κ is in the range of [0.4, 0.75] the value is sufficient; and if κ < 0.4, it is considered weak [46].

In this research, we compared multiple ML methods, revealing that the RF algorithm
classifies signal parameters with the highest accuracy. For RF algorithms in the feature
extraction process, the Gini coefficient needs to be estimated. If n is defined as the number
of samples in node t and each node has c classes, then the number of samples belonging to
class i is ni. The ratio (p(i|t)) is expressed as:

p(i|t) = ni
n

. (5)

In this case, the Gini coefficient G for each node is defined as [47]:

Gc(t) = 1−∑c
i=1 p(i|t)2. (6)

Generally, the RF classifier is based on DT and consists of three main steps: input
all data into root nodes for every DT; minimize the Gini coefficient by dividing data into
separate nodes; recursively repeat all steps at each node that needs to be split until the
root mean square error (RMSE) value for the node falls below a threshold value or the tree
reaches a defined depth.

RF may consist of many separate decision trees that train each model concurrently
using random data samples. This type of RF is also called a bagged tree algorithm. Con-
sistent DT models that are trained consecutively are called boosted trees. In this case,
every DT model learns from previous model errors. Usually, this type of RF has more
nodes [48]. Like any other classifier, the random forest algorithm requires two datasets:
one for training and one for testing. In ML techniques, the more data provided, the higher
the classification accuracy. Additionally, in every ML technique, overfitting of training data
should be considered, which may negatively affect algorithm performance, thereby reduc-
ing prediction accuracy. Cross validation can be applied to avoid overfitting. This method
involves splitting data into different groups and estimating the classification accuracy for
each group. In this case, the training dataset is divided into two groups: a training set and
a validation set. If cross validation is performed several times, in each iteration, different
data samples are assigned to the testing data subset [49].

4. Experimental Results
4.1. PCA Implementation

In this research, PCA was applied in two ways. First, all collected data were considered
at once. Then, the data were factored into morning and evening subsets, and PCA was
performed on each subset separately.

Considering all collected data, the main parameters of Tint, QT, and ST, which reflect
the first principal component, have an interval, whereas the second principal component
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mainly covers amplitude parameters, i.e., Qa and Ra. These results are consequential,
as during casual daytime activity, the amplitude of the heart rate changes less than the
intervals between two waves. A summary of the PCA results for the whole dataset is
presented in Table 4. A 3D plot of the obtained results was drawn using RStudio tools
(see Figure 5). A significant difference was observed between the two groups: yellow dots
represent the morning state, and e blue pyramids represent the evening state. The change
in parameters is more noticeable in the evening subset. Moreover, the evening data can be
further grouped into several clusters, whereas the morning data are mainly concentrated in
the center.

Table 4. Summary of principal components using factored data.

Data PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Qa 0.241 −0.581 0.033 −0.219 0.138 −0.107 0.443 −0.573
Ra 0.026 −0.568 0.026 0.552 0.280 0.459 −0.203 0.202
Sa −0.131 −0.232 −0.608 −0.625 0.164 0.212 −0.238 0.200
Ta −0.311 −0.230 −0.367 0.243 −0.787 0.035 0.024 −0.189
RR −0.365 −0.150 −0.295 0.280 0.341 −0.722 0.104 0.173

QRS −0.279 0.421 −0.355 0.217 0.333 0.414 0.387 −0.345
Tint −0.417 −0.153 0.326 −0.211 −0.099 0.185 0.606 0.489
QT −0.483 −0.012 0.246 −0.089 0.123 0.060 −0.244 −0.314
ST −0.456 −0.102 0.337 −0.141 0.061 −0.023 −0.342 −0.261

To explore the visible difference between the two investigated states, the data were
split into two separate subsets. The obtained PCA results for each of the individual states
show that the interval parameters are considerably represented in the first component. This
influence remains consistent, regardless of the considered state. On the other hand, the
influence of the amplitude parameters changed significantly. This difference is even more
obvious in the second principal component, where these parameters outshine most other
parameters in the case of the morning data subset. The explicit expressions of the first three
principal components are presented for each of the states, along with the percentage of data
explained by these components in parentheses (see Table 5).

Figure 5. 3D plot of PCA results for both data subsets: yellow dots represent the morning state; blue
pyramids—evening state.
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Table 5. Summary of the first three principal components using factored data (morning data (M):
73.6%; evening data (E): 79.5%).

Data PC1M PC2M PC3M PC1E PC2E PC3E

Qa 0.083 0.651 0.181 0.313 −0.482 −0.187
Ra 0.102 −0.614 0.251 0.060 −0.585 −0.303
Sa −0.341 0.217 −0.443 0.118 0.241 −0.518
Ta −0.279 −0.384 −0.266 −0.328 −0.050 −0.426
RR −0.371 0.019 −0.121 −0.341 −0.069 −0.537

QRS −0.245 −0.034 −0.529 −0.287 0.480 −0.185
Tint −0.402 −0.024 0.388 −0.402 −0.253 0.194
QT −0.469 0.036 0.269 −0.472 −0.108 0.148
ST −0.458 0.041 0.346 −0.440 −0.232 0.204

Based on the PCA results for the two considered states, we assume that the fatigue
factor is represented by the significant changes in the influence of the amplitude parameters
on the first and second principal components. Moreover, substantial changes occurred in
the distribution of points in 3D plots obtained for the first three principal components for
each of the states (see Figure 6).

Figure 6. 3D plots of the PCA performed on factorial data: (a) morning; (b) evening.

4.2. Machine Learning Performance

At the beginning of this research, multiple ML algorithms were compared (see Table 6
and Figure 7) using all 9 ECG parameters. In this case, the input dataset was split into
training with validation (70%) and testing (30%) subsets. Analysis of data shows that a
lower allocation of data to the testing subset slightly reduces the overall accuracy of the
KNN, DT, and RF algorithms. For example, reducing the testing dataset to 20% of the total
data for the RF model resulted in a reduction in accuracy of 2%. This may also result in
lower quality and feasibility of selected classifiers. To ensure that the model did not overfit
the training data, 10-fold cross validation was applied for all ML methods. In Figure 7
shows the validation accuracy results following 100 calculations. Table 6 shows averaged,
F1, and MCC values for a better comparison of the analyzed ML algorithms.
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Figure 7. Boxplots of ML algorithm accuracies.

According to the results presented in Table 6 and Figure 7, the best algorithm for
physiological fatigue recognition is the random forest model, which classified states A1 and
A2 with a validation accuracy of more than 95%. Multiple hyperparameter values were
analyzed for all compared ML techniques. The best results were obtained when DT had
100 maximum splits and 9 maximum surrogates in each node. In this case, the selected RF
algorithm consisted of 30 DTs, with a maximum of 20 splits for every tree. Based on these
results (see Table 6), a random forest algorithm was selected for further analysis.

Table 6. Average accuracy of ML algorithms.

Method Accuracy F1 MCC

KNN 94.19% 0.94 0.87
LDA 76.82% 0.75 0.46
SVM 90.89% 0.91 0.82
DT 92.31% 0.92 0.83
RF 95.08% 0.95 0.90

RF algorithms include multiple DTs, in which every node is a condition of a single
feature and is designed to split the dataset into two subsets. Basically, similar response
values end up in the same dataset. As previously mentioned, different ECG signal features
may have varying impacts on the final classification result. Usually, the importance of a
feature is estimated based on the degree to which it decreases the entropy in each tree.

Only four ECG signal characteristics (Sa, Ra, Ta, and QT) are important for A1 and A2
state classification (mental fatigue recognition) if the selected threshold is equal to 0.8 (see
Figure 8). Based on these results, the final RF model was designed using only those four
ECG parameters.

Figure 8. The importance of ECG parameters for classification of states A1 and A2: (a) ECG parame-
ters and FR accuracy; (b) cumulative accuracy curve for the RF model.
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A random forest is a complex algorithm with multiple hyperparameters, all of which
should be optimized. In this research, a random search algorithm was selected based on a
grid search technique; this algorithm attempts every possible combination. However, the
number of iterations is limited, and possible randomly selected hyperparameter values are
declared in advance. Only the best hyperparameter values are saved to maximize the FR
validation accuracy. The optimal RF model identified in this research consists of 40 DTs
with a maximum tree height of 7 and a minimum of 40 samples in a node for a split.

K-times cross validation was used in the RF model training process. The training
dataset was split into two subsets: the training set and the testing set. In this case, the same
steps were repeated 10 times, and averaged results were estimated. Receiver operating
characteristic curves (ROCs) are commonly used to visually represent of k-fold cross
validation. These curves help to plot and illustrate the true-positive (TP, correctly classified
values of state A2 presented on the y-axis) and false-positive (FP, misclassified A1 state
values presented on the x-axis) rates. The 10-fold cross validation and averaged curve for
states A1 and A2 are illustrated in Figure 9. In this figure, the area under the ROC curve
(AUC) provides an accumulated measure of performance across all possible classification
thresholds. In this research, the AUC indicated the probability that the model ranks a
random value from state A2 more highly than a random value from state A1. Analysis
of multiple scenarios with various k values shows that in most cases, a lower number of
k-folds may negatively affect recall or precision values. However, the AUC value remains
similar, and further investigation is needed to determine the number of k-folds in the
cross-validation process. Due to small changes in the results, we decided not to present all
possible combinations and instead use only 10-fold cross validation as an example.

Figure 9. 10-fold cross validation of the RF model.

Based on cross-validation results (see Figure 9), and accuracy of 98% can be expected
for A1 and A2 state classification. The next step is to test the final RF model using a separate
dataset (30% of all input data). The testing accuracy of the constructed RF model is equal to
94.5%, which is lower than expected (validation accuracy, 98%). However, this model can
sufficiently classify and correctly assign values to states A1 and A2. True-positive (state
A2) and false-positive (state A1) values are predicted with similar accuracy (95% and 94%,
respectively) (Figure 10).
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Figure 10. Confusion matrix of classification results for states A1 and A2.

Finally, Cohen’s Kappa coefficient was estimated as an essential measurement to
evaluate a model’s suitability and reliance on random samples. This value was calculated
as κ = 0.886, indicating “perfect” model reliability. Therefore, the constructed RF classifier
sufficiently classifies data into states A1 and A2, meaning that the model can identify
fatigued conditions using ECG signal parameter values.

5. Discussion and Conclusions
5.1. Discussion and Future Work

In this paper, we proposed a framework for mental fatigue detection combining ECG
signal recording twice a day corresponding to different mental states: fatigued and without
mental fatigue. Extracted ECG signal features, such as R, S, and T wave amplitude values,
as well as QT intervals, increased the classification accuracy compared to similar methods
reported in the literature. For example, in [5], heart rate variability (HRV) indicators
achieved an accuracy of 75.5%. Additionally, in [6], the proposed methods achieved an
accuracy of 93.3%. However, this research considered mentally stressed participants (after
12 h of intense work), which may have resulted in an increased impact on HRV parameter
values. This research enables the detection of smaller changes in mental health conditions
compared to previously mentioned literature reports. Furthermore, statistical analysis of
several ECG signal features showed that RR interval values (used in HRV analysis) overlap
in between states, which is why HRV analysis and parameter estimation are not efficient
and may reduce classification accuracies. PCA analysis showed that other ECG features
present with larger differences between states. Due to the use of several ECG signal features,
an accuracy of 94.5% was achieved.
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Although the proposed technique shows promising results, it is also subject to some
weaknesses. ECG signals should be recorded using professional devices, such as Car-
dioScout Multi, which is expensive and inconvenient. User-friendly devices, such as a
Polar v10 belt or Garmin watch, do not record full ECG signals, and data from such devices
are not sufficiently reliable. Furthermore, in this research, the gathered data were not suit-
able for diagnostic purposes because we did not include patients with diagnosed mental
illness. Future research should focus on gathering more data and improving classification
accuracies. We suggest that 60 sec ECG signal recordings could be expanded and compared
with HRV analysis results.

5.2. Conclusions

Considering gaps identified in recent literature, we presented a novel framework that
combines ECG signal feature extraction, PCA analysis, and ML classification algorithms.
The obtained results show that the proposed framework is feasible for automatic mental
fatigue detection.

To ensure daily fatigue recognition, we designed an experiment involving separate
recordings registered twice a day. Each recording represents a mental state, i.e., a state
without fatigue recorded in the morning and a fatigued state recorded in the evening. A
total of 60 healthy adults (ages 24 to 34) without a diagnosis of health pathologies or over-
work-related problems were recruited for this experiment. All ECG signals were filtered
using a Butterworth filter, and features were extracted using Python toolbox NeuroKit2.
Using these methods, the following high-quality ECG parameters were obtained: Q, R, S,
and T wave amplitude values; QRS complexes; and RR, ST, QT, and T intervals.

Data visualization processes and statistical analysis show that RR interval values over-
lap between states, which is why only RR interval analysis alone, such as HRV parameter
estimation, is not an efficient way to detect mentally fatigued states. To overcome this issue,
other ECG signal parameters were considered in this paper.

PCA analysis showed a significant difference between states (with and without fatigue).
As the most representative ECG signal features Q and R wave amplitude values and QT and
T intervals were observed. Changes in the first three principal components were evident,
indicating the importance of ECG signal feature extraction for mental fatigue recognition.

Finally, machine learning algorithms were applied for automatic classification of ECG
signal features into separate states. Four ECG signal parameters (Sa, Ra, Ta, and QT) were
identified as the most important for the mental fatigue classification process. The final RF
model was able to detect daily mental fatigue with an accuracy of more than 94.5%.

Although the proposed technique shows promising results, it is also subject to some
weaknesses. Future work should focus on user-friendly devices for the ECG signal gather-
ing process to ensure that a wide range of participants can be included in experiments.
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Abbreviations

ANOVA Analysis of variance
AUC Area under the ROC curve
cCNN Causal convolutional neural network
CF Cognitive fatigue
DT Decision tree
ECG Electrocardiogram
EEG Electroencephalogram
EES Epidermal electronic system
EMG Electromyogram
EOG Electrooculogram
E-tattoos Electronic tattoos
G Gini coefficient
GSR Galvanic skin response
HR Heart rate
HRV Heart rate variability
IMU Inertial measurement unit
KNN K-nearest neighbor
LDA Linear discriminant analysis
LR Logistic regression
MA Moving average
MCC Matthew’s correlation coefficient
MF Mental fatigue
ML Machine learning
NB Naïve Bayes
NN Neural network
PCA Principal component analysis
PPG Photoplethysmography
RF Random forest
ROC Receiver operating characteristic curve
RPCA Robust principal component analysis
SVM Support vector machine
TICC Toeplitz inverse covariance-based clustering
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19. Butkevičiūtė, E.; Erin, š, M.; Bikulčienė, L. An Adaptable Human Fatigue Evaluation System. Procedia Comput. Sci. 2021, 192,
1274–1284. [CrossRef]

20. Fan, C.; Huang, S.; Lin, S.; Xu, D.; Peng, Y.; Yi, S. Types, Risk Factors, Consequences, and Detection Methods of Train Driver
Fatigue and Distraction. Comput. Intell. Neurosci. 2022, 2022, 8328077. [CrossRef]

21. Badr, A.; Badawi, A.; Rashwan, A.; Elgazzar, K. XBeats: A Real-Time Electrocardiogram Monitoring and Analysis System. Signals
2022, 3, 189–208. [CrossRef]

22. Delliaux, S.; Delaforge, A.; Deharo, J.; Chaumet, G. Mental Workload Alters Heart Rate Variability, Lowering Non-Linear
Dynamics. Front. Physiol. 2019, 10, 565. [CrossRef] [PubMed]

23. Wei, J.X.; Wang, J.; Zhu, Y.X.; Sun, J.; Xu, H.M.; Li, M. Traditional Chinese Medicine Pharmacovigilance in Signal Detection:
Decision Tree-Based Data Classification. BMC Med. Inform. Decis. Mak. 2018, 18, 19. [CrossRef] [PubMed]

24. Shao, M.; Bin, G.; Wu, S.; Bin, G.; Huang, J.; Zhou, Z. Detection of Atrial Fibrillation from ECG Recordings Using Decision Tree
Ensemble with Multi-Level Features. Physiol. Meas. 2018, 39, 094008. [CrossRef]

25. Balagué, N.; González, J.; Javierre, C.; Hristovski, R.; Aragonés, D.; Álamo, J.; Niño, O.; Ventura, J.L. Cardiorespiratory
Coordination after Training and Detraining. A Principal Component Analysis Approach. Front. Physiol. 2016, 7, 35. [CrossRef]
[PubMed]

26. Ye, W.; Lu, W.; Tang, Y.; Chen, G.; Li, X.; Ji, C.; Hou, M.; Zeng, G.; Lan, X.; Wang, Y.; et al. Identification of COVID-19 Clinical
Phenotypes by Principal Component Analysis-Based Cluster Analysis. Front. Med. 2020, 7, 570614. [CrossRef]

27. Wang, J.; Liao, X.; Zheng, P.; Xue, S.; Peng, R. Classification of Chinese Herbal Medicine by Laser- Induced Breakdown
Spectroscopy with Principal Component Analysis and Artificial Neural Network. Anal. Lett. 2018, 51, 575–586. [CrossRef]

28. Kara, S.; Dirgenali, F. A System to Diagnose Atherosclerosis via Wavelet Transforms, Principal Component Analysis and Artificial
Neural Networks. Expert. Syst. Appl. 2007, 32, 632–640. [CrossRef]

29. Papi, M.; Caracciolo, G. Principal Component Analysis of Personalized Biomolecular Corona Data for Early Disease Detection.
Nano Today 2018, 21, 14–17. [CrossRef]

30. Martis, J.R.; Acharya, U.R.; Mandana, K.M.; Ray, A.K.; Chakraborty, C. Application of Principal Component Analysis to ECG
Signals for Automated Diagnosis of Cardiac Health. Expert. Syst. Appl. 2012, 39, 11792–11800. [CrossRef]

31. Li, J.; Li, H.; Umer, W.; Wang, H.; Xing, X.; Zhao, S.; Hou, J. Identification and Classification of Construction Equipment Operators’
Mental Fatigue Using Wearable Eye-Tracking Technology. Autom. Constr. 2020, 109, 103000. [CrossRef]

32. Zhang, C.; Yu, X. Estimating Mental Fatigue Based on Electroencephalogram and Heart Rate Variability. Pol. J. Med. Phys. Eng.
2010, 16, 67–84. [CrossRef]

33. Phadikar, S.; Sinha, N.; Ghosh, R.; Ghaderpour, E. Automatic Muscle Artifacts Identification and Removal from Single-Channel EEG
Using Wavelet Transform with Meta-Heuristically Optimized Non-Local Means Filter. Sensors 2022, 22, 2948. [CrossRef] [PubMed]

34. Ahmed, M.Z.I.; Sinha, N.; Phadikar, S.; Ghaderpour, E. Automated Feature Extraction on AsMap for Emotion Classification Using
EEG. Sensors 2022, 22, 2346. [CrossRef] [PubMed]

35. Tuncer, T.; Dogan, S.; Subasi, A. EEG-Based Driving Fatigue Detection Using Multilevel Feature Extraction and Iterative Hybrid
Feature Selection. Biomed. Signal Process. Control 2021, 68, 102591. [CrossRef]

36. Luo, H.; Lee, P.-A.; Clay, I.; Jaggi, M.; De Luca, V. Assessment of Fatigue Using Wearable Sensors: A Pilot Study. Emerg. Appl.
2020, 4, 59–72. [CrossRef]

37. Hinde, K.; White, G.; Armstrong, N. Wearable Devices Suitable for Monitoring Twenty Four Hour Heart Rate Variability in
Military Populations. Sensors 2021, 21, 1061. [CrossRef]

http://doi.org/10.1016/j.actpsy.2022.103540
http://doi.org/10.1080/1463922X.2021.1965670
http://doi.org/10.1080/00140139.2019.1687940
http://doi.org/10.1111/psyp.13554
http://www.ncbi.nlm.nih.gov/pubmed/32108954
http://doi.org/10.1155/2017/5109530
http://doi.org/10.1016/j.clinph.2008.03.012
http://doi.org/10.1016/j.bspc.2013.01.007
http://doi.org/10.1016/j.eswa.2020.113405
http://doi.org/10.1016/j.procs.2021.08.131
http://doi.org/10.1155/2022/8328077
http://doi.org/10.3390/signals3020013
http://doi.org/10.3389/fphys.2019.00565
http://www.ncbi.nlm.nih.gov/pubmed/31156454
http://doi.org/10.1186/s12911-018-0599-5
http://www.ncbi.nlm.nih.gov/pubmed/29523131
http://doi.org/10.1088/1361-6579/aadf48
http://doi.org/10.3389/fphys.2016.00035
http://www.ncbi.nlm.nih.gov/pubmed/26903884
http://doi.org/10.3389/fmed.2020.570614
http://doi.org/10.1080/00032719.2017.1340949
http://doi.org/10.1016/j.eswa.2006.01.043
http://doi.org/10.1016/j.nantod.2018.03.001
http://doi.org/10.1016/j.eswa.2012.04.072
http://doi.org/10.1016/j.autcon.2019.103000
http://doi.org/10.2478/v10013-010-0007-7
http://doi.org/10.3390/s22082948
http://www.ncbi.nlm.nih.gov/pubmed/35458940
http://doi.org/10.3390/s22062346
http://www.ncbi.nlm.nih.gov/pubmed/35336517
http://doi.org/10.1016/j.bspc.2021.102591
http://doi.org/10.1159/000512166
http://doi.org/10.3390/s21041061


Mathematics 2022, 10, 3395 18 of 18

38. Zeng, Z.; Huang, Z.; Leng, K.; Han, W.; Niu, H.; Yu, Y.; Ling, Q.; Liu, J.; Wu, Z.; Zang, J. Nonintrusive Monitoring of Mental Fatigue
Status Using Epidermal Electronic Systems and Machine-Learning Algorithms. ACS Sensors 2020, 5, 1305–1313. [CrossRef]

39. Sampei, K.; Ogawa, M.; Cesar, C.; Torres, C.; Sato, M.; Miki, N. Mental Fatigue Monitoring Using a Wearable Transparent Eye
Detection System. Micromachines 2016, 7, 20. [CrossRef]

40. Liu, M.; Hao, H.Q.; Xiong, P.; Lin, F.; Hou, Z.G.; Liu, X. Constructing a Guided Filter by Exploiting the Butterworth Filter for ECG
Signal Enhancement. J. Med. Biol. Eng. 2018, 38, 980–992. [CrossRef]

41. Prasad, S.T.; Varadarajan, S. ECG Signal Analysis: Different Approaches. Int. J. Eng. Trends Technol. 2014, 7, 212–216. [CrossRef]
42. Makowski, D.; Pham, T.; Lau, Z.J.; Brammer, J.C.; Lespinasse, F.; Pham, H.; Schölzel, C.; Chen, S.H.A. NeuroKit2: A Python

Toolbox for Neurophysiological Signal Processing. Behav. Res. Methods 2021, 53, 1689–1696. [CrossRef] [PubMed]
43. Bi, Q.; Goodman, K.E.; Kaminsky, J.; Lessler, J. What Is Machine Learning? A Primer for the Epidemiologist. Pract. Epidemiol.

2019, 188, 2222–2239. [CrossRef] [PubMed]
44. Bowes, D.; Hall, T.; Gray, D. DConfusion: A Technique to Allow Cross Study Performance Evaluation of Fault Prediction Studies.

Autom. Softw. Eng. 2014, 21, 287–313. [CrossRef]
45. Halimu, C.; Kasem, A.; Newaz, S.H.S. Empirical Comparison of Area under ROC Curve (AUC) and Mathew Correlation

Coefficient (MCC) for Evaluating Machine Learning Algorithms on Imbalanced Datasets for Binary Classification. In Proceedings
of the 3rd International Conference on Machine Learning and Soft Computing (ICMLS 2019), Marakesh, Morocco, 28–30 October
2019; pp. 10–15. [CrossRef]

46. McHugh, M.L. Lessons in Biostatistics Interrater Reliability: The Kappa Statistic. Biochem. Medica 2012, 22, 276–282. [CrossRef]
47. Oeda, S.; Chieda, M. Visualization of Programming Skill Structure by Log-Data Analysis with Decision Tree. Procedia Comput. Sci.

2019, 159, 582–589. [CrossRef]
48. Spanakis, G.; Weiss, G.; Roefs, A. Bagged Boosted Trees for Classification of Ecological Momentary Assessment Data. In Ebook:

ECAI 2016; IOS Press: Amsterdam, The Netherlands, 2016; pp. 1612–1613. [CrossRef]
49. Chicco, D. Ten Quick Tips for Machine Learning in Computational Biology. BioData Min. 2017, 10, 35. [CrossRef]

http://doi.org/10.1021/acssensors.9b02451
http://doi.org/10.3390/mi7020020
http://doi.org/10.1007/s40846-017-0350-1
http://doi.org/10.14445/22315381/IJETT-V7P275
http://doi.org/10.3758/s13428-020-01516-y
http://www.ncbi.nlm.nih.gov/pubmed/33528817
http://doi.org/10.1093/aje/kwz189
http://www.ncbi.nlm.nih.gov/pubmed/31509183
http://doi.org/10.1007/s10515-013-0129-8
http://doi.org/10.1145/3310986.3311023
http://doi.org/10.11613/BM.2012.031
http://doi.org/10.1016/j.procs.2019.09.213
http://doi.org/10.3233/978-1-61499-672-9-1612
http://doi.org/10.1186/s13040-017-0155-3

	Introduction 
	Related Work 
	Materials and Methods 
	ECG Signal Characteristics and Data Analysis 
	Research Design and Data Acquisition 
	Data Description and Visualization 
	Principal Component Analysis 
	Machine Learning Technique 

	Experimental Results 
	PCA Implementation 
	Machine Learning Performance 

	Discussion and Conclusions 
	Discussion and Future Work 
	Conclusions 

	References

