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Abstract: Due to the lack of body stability of emergency rescue vehicles, their attitude stability is
insufficient and they are unable to realize working while driving, resulting in low rescue efficiency.
Aiming at the water tower fire truck, which is equipped with an active suspension system, the vehicle
attitude stability is studied. First, combined with the active suspension system and spray system, a
13-DOF integrated dynamic model for the water tower fire truck is established. Using the model-
assisted active disturbance rejection control method, the controllers are designed for the vertical
displacement, pitch angle, and roll angle of the vehicle attitude. Then, the computer simulation is
carried out to verify the effectiveness of this control method. Finally, the water spray obstacle crossing
experiment is carried out with a JP32G water tower fire truck. The results show that when the vehicle
runs over the triangular obstacle on one side and two sides in the integrated spray-active suspension
mode, the peak–peak values of body pitch angle and roll angle are reduced by 10.9% and 23.2%, and
23.7% and 16.3%, respectively, compared with the passive hydro pneumatic suspension.

Keywords: water tower fire truck; active suspension; MADRC; vehicle attitude stability

MSC: 93D15

1. Introduction

With the acceleration of urbanization and the improvement of people’s living stan-
dards, disaster prevention and mitigation, public safety, and emergency hedging have
attracted increasingly more attention. Emergency rescue is characterized by uncertainty,
unexpectedness, and complexity. The chassis of existing emergency rescue vehicles is
restricted by their poor mobility and insufficient vehicle attitude stability, which leads to
low rescue efficiency. For example, when a water tower fire truck is working, the tradi-
tional suspension system cannot satisfy the requirement of vehicle posture stability. When
working, the whole vehicle needs to be supported at a fixed place by outriggers, which
makes it impossible for the vehicle to work while driving. The scope of work is limited and
the rescue efficiency is not high. If the water tower fire truck is operated while driving, its
operation efficiency can be improved, and the rescue time can be saved, which is of great
significance to ensure the safety of personnel and property.

The water tower fire truck is equipped with a high-power fire pump and a fire monitor.
The fire monitor will produce a jet reaction force, resulting in a large roll and pitch moment
acting on the body. At the same time, the boom of the water tower fire truck will be
deployed, resulting in the increase in the center of gravity of the whole vehicle. These
factors seriously affect the pose stability of the vehicle. In addition, when the vehicle is
driving, the road surface is uneven and sometimes full of explosives such as gravel. When
working on uneven terrain, the vehicle may roll over [1]. Therefore, to realize the operation
while driving, the water tower fire truck requires the body to have better posture stability,
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which puts forward higher requirements for the regulation performance of the vehicle
suspension system. The suspension system is an important part of the vehicle chassis, and
its performance directly determines the ride comfort, operating stability, and driving safety
of the vehicle [2–4].

The active suspension system can adjust the output of the actuator in real-time ac-
cording to the changes in road input and vehicle state [5–7]. Obtaining a better shock
absorption and body posture control effect provides the possibility to realize the operation
while driving the water tower fire truck.

At present, much research effort has been devoted to the control synthesis of active
suspension systems, such as model predictive control [8], preview control [9], adaptive
control [10,11], fault-tolerant control [12], and event-triggered control [13]. The above
control methods have improved the performance of vehicles to varying degrees, and many
scholars have studied vehicle attitude stability. Kim and Lee [14] proposed a new nonlinear
controller to adjust the height of the vehicle sprung mass and to regulate the roll and
pitch angles of the vehicle body by an air suspension system. Youn et al. [15] designed an
attitude tracking controller with zero acceleration as the target and simulated the feasibility
of the attitude tracking controller by using a 4-DOF half-car model. Westhuizen et al. [16]
proposed the possibility of using slow active suspension control to reduce the body roll
and, thus, reduce the rollover tendency. Tchamna [17] studied a variable-stiffness semi-
active suspension system to control vehicle attitude under cornering conditions. Chen [18]
proposed an attitude control strategy for heavy emergency rescue vehicles based on the
road level. For different road grades, the control parameters of the active suspension system
are changed to reduce the root-mean-square values of the vertical acceleration, pitch angle,
and roll angle of the vehicle body. Youn [19] studied the attitude control method of the
vehicle body and calculated the ideal driving posture of the vehicle to offset the lateral
and longitudinal forces acting on the passengers. The simulation results showed that this
method has great potential. He [1] analyzed the impact of fire monitors under different
working conditions on the static rollover angle of fire engines. The results showed that
when the fire monitor works under high pressure, the influence on the static rollover angle
of the vehicle can reach 15.8◦. By establishing a virtual prototype model, Sun et al. [20]
analyzed the influence of jet reaction force on the lateral stability of urban main fire trucks.
The results showed that when the water flow velocity of the fire monitor is 30 L/s to 120 L/s,
the rollover angle of the fire engine ranges from 30.9◦ to 20.57◦. Gong et al. [21] proposed a
semi-active suspension variable damping control strategy for heavy vehicles using a 9-DOF
vehicle mode with improved vehicle ride comfort and handling stability. Wang et al. [22]
presented a vehicle attitude compensation algorithm based on the state observer for a
vehicle semi-active suspension system, improved the ride comfort of magneto-rheological
suspension, and optimized the vehicle body attitude under braking and steering states.
Li et al. [23] developed a centralized-distributed control strategy with attitude information
obtained by multi-sensor fusion. The proposed attitude control system improved the
obstacle performance, mobility, and flexibility of the vehicles. Guo [24] made the multi-axle
emergency rescue vehicle equivalent to a 3-degrees-of-freedom parallel mechanism; the
action of the servo actuator was driven by solving the inverse solution of the parallel
mechanism position. Zeng et al. [25] presented an aperiodic adaptive intermittent control
scheme to stabilize the attitude of the vehicle by using the backstepping technique.

The above research on vehicle attitude mainly focused on body attitude control under
steering or stationary conditions. Few papers have been published on the body stability of
the water tower fire truck while driving. Most of the models used in the current literature
have been quarter-car or half-car suspension models, and only the vertical attitude or the
pitch angle has been considered, which is not practical in industrial applications. Although
the whole vehicle suspension system model has been used in the literature [14,15,18,22–24],
the dynamic model of the working device mounted on the vehicle has not been consid-
ered. These models are not accurate enough for the water tower fire truck. Although the
literature [1,20] has studied the effects of the reaction force on the vehicle, they have not
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realized the control of the vehicle attitude. Therefore, in order to improve the stability of
the high-pressure jet fire truck, it is necessary to study a new vehicle dynamics model and
algorithm.

In this paper, the dynamic model and control method of the vehicle active suspension
system is studied. The main contribution in this work is to explore a 13-DOF dynamic
model of the spray-active suspensions integrated system considering factors such as the fire
monitor reaction force and the boom posture, rather than the conventional active suspen-
sion. In addition, unlike the linear state observer without model reference information in
the literature [26,27], we consider the factors such as fire monitor reaction force and boom
posture, which is embedded into a nonlinear ESO. This can reduce the estimation and
bandwidth burden of the observer, and the nonlinear fal function can accelerate the con-
vergence rate of the observer. Thus, the anti-interference ability of the system is improved.
The spray-active suspensions integrated system of the water tower fire truck in Figure 1
is different from conventional suspension; thus, the theoretical results-derived MADRC
controller is particular in this study. Therefore, this paper intends to make the water tower
fire truck have a high posture stability when moving, to realize fire truck operation while
moving on an uneven road.
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The rest of the paper is organized in the following structure. Section 2 presents a
Dynamic model and a state–space representation of a spray-active suspensions integrated
system. Section 3 shows the equations of the MADRC design method of the Vehicle Attitude
Stability Controller. Section 4 describes the results obtained after simulating the attitude of
the vehicle in types of conventional models and integrated models and in different control
methods. Section 5 shows the Experiment and Results Analysis, and the discussion and
conclusions are shown in Sections 6 and 7, respectively.
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2. Dynamic Model of Spray-Active Suspensions Integrated System
2.1. Reaction Force Calculation of Fire Monitor

The high pressure and high flow working environment of the fire monitor will certainly
result in a large reaction force, which will affect the operation stability of the fire truck.
Therefore, it is necessary to calculate the reaction force. The direction of the reaction force
acting on the fire monitor is opposite to that of the water flow. According to the Navier–
Stokes equation of the fluid, the ANSI Standard Specification gives the following general
expressions for calculating the jet reaction force.

F = −
∫

C.V.

d
dt
(ρu)dV +

∫
C.S.

ρu(u · dA) +
∫

Ain

pdAin+
∫

Aout

pdAout−
∫

Apipe

padApipe (1)

where F represents the reaction force, ρ represents density of the fluids, u represents the
velocity of the fluid, p represents the pressure at the center of unit area, pa represents
the pressure of the environment around the pipe, V represents the volume of the control
volume, A represents the area of the control volume, Ain represents the area that flows
into the control volume, Aout represents the area that flows out of the control volume,
Apipe represents the external area of the pipe, C.V. represents the control volume, and C.S.
represents the control surface.

In the formula, there is no assumption or simplified calculation, and it is based on
the most basic principles of the fluid force, so it is accurate and universal. There are many
integral operations in the general formula, which are difficult to apply in the actual project.
It needs to be further simplified.

Assume that the flow of water in the fire monitor is one-dimensional.
When the fluid reaches a steady state, the above equation can be simplified as [28]

Fl = ρeu2
e Ae − Ae(pe − pa) (2)

where ρe represents the density of the fluids, Fl represents the steady-state jet reaction force,
ue represents the fluid velocity, pe represents fluid pressure, Ae represents the area of the
fire monitor outlet, and pa represents the surrounding pressure around the fire monitor.

2.2. Integrated Dynamic Model

The 13-DOF integrated dynamic model of the active suspension and the spray system
is shown in Figure 1.

The 13 degrees of freedom in this model are 6 unsprung mass vertical movements; the
vertical, roll, and pitch movements of the vehicle; the luffing, rotation of the boom, and
the swing motion of the fire monitor in two directions. There are six suspension actuating
units in the model; zbi represents vertical displacement at the hinge point of the suspension
and chassis (i = 1,2,3,4,5,6), mwi represents each unsprung mass, zwi represents the vertical
displacement of each unsprung mass, csi represents the damping coefficient, ksi represents
the stiffness of the suspension, l represents the wheel tread, and kti represents the stiffness
of the tire.

Assume that the mass of the boom is concentrated at the center of mass; according to
Newton’s second law, the following equations of motion for the heave, pitch, and rolling of
a vehicle can be obtained.

mb
..
Z = ks1(zw1 − zb1) + cs1(

.
zw1 −

.
zb1) + U1 + ks2(zw2 − zb2) + cs2(

.
zw2 −

.
zb2)

+U2 + ks3(zw3 − zb3) + cs2(
.
zw3 −

.
zb3) + U3 + ks4(zw4 − zb4) + cs2(

.
zw4 −

.
zb4) + U4

+ks5(zw5 − zb5) + cs2(
.
zw5 −

.
zb5) + U5 + ks6(zw6 − zb6) + cs2(

.
zw6 −

.
zb6) + U6 − Fl sin α

(3)

..
θ Iθ = −a[ks1(zw1 − zb1) + cs1(

.
zw1 −

.
zb1) + U1 + ks2(zw2 − zb2) + cs2(

.
zw2 −

.
zb2) + U2]

+b
[
ks3(zw3 − zb3) + cs2(

.
zw3 −

.
zb3) + U3 + ks4(zw4 − zb4) + cs2(

.
zw4 −

.
zb4) + U4]

+c[ks5(zw5 − zb5) + cs2(
.
zw5 −

.
zb5) + U5 + ks6(zw6 − zb6) + cs2(

.
zw6 −

.
zb6) + U6]

+Fl [cos α sin(β + γ) sin δB + sin α(d− B cos δ cos γ)]

(4)
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..
ϕIϕ = l

2 [ks1(zw1 − zb1) + cs1(
.
zw1 −

.
zb1) + U1 + ks3(zw3 − zb3) + cs2(

.
zw3 −

.
zb3) + U3

+ks5(zw5 − zb5) + cs2(
.
zw5 −

.
zb5) + U5]− l

2 [ks2(zw2 − zb2) + cs2(
.
zw2 −

.
zb2) + U2

+ks4(zw4 − zb4) + cs2(
.
zw4 −

.
zb4) + U4 + ks6(zw6 − zb6) + cs2(

.
zw6 −

.
zb6) + U6]

−Fl [cos α cos(β + γ)B sin δ− sBinα sin δ sin γ]

(5)

where Z, θ, and ϕ represent vertical displacement, pitch angle, and roll angle of the vehicle,
respectively; mb represents a sprung mass; mb = ma1 + ma2; ma1 represents the chassis part of
the sprung mass; ma2 represents the boom part of the sprung mass; α represents the angle
between the jet reaction force and horizontal direction; β represents the angle between the
jet reaction force and vertical direction; a represents the distance between the front axle
and mass center of the chassis; b represents the distance between the middle axle and mass
center of the chassis; c represents the distance between the rear axle and the mass center
of the chassis; d represents the distance between the hinge of the boom and chassis and
the mass center of the chassis; δ represents the luffing angle of the boom; γ represents the
rotating angle of the boom; B represents the length of the boom; B1 represents distance
from the hinge point of the boom and chassis to the mass center of the boom; Iθ1 represents
the pitching moment of inertia of the chassis part; Iϕ1 represents the rolling moment of
inertia of the chassis part; Iθ represents the equivalent pitching moment of inertia of the
vehicle; Iϕ represents the equivalent rolling moment of inertia of the vehicle body.

The calculation method of the equivalent pitch and roll moment of inertia of the
vehicle body is as follows:

Iθ = Iθ1 + ma

√
(B1 sin δ)2 + (d− B1 cos δ cos γ)2 (6)

Iϕ = Iϕ1 + ma

√
(B1 sin δ)2 + (B1 cos δ sin γ)2 (7)

The vertical dynamic equation of the six wheels is

mwi
..
Zwi = ksi(zbi − zwi)− kti(zwi − zri) + csi(

.
zbi −

.
zwi)−Ui (8)

where zri represents the road input of the ith wheel.
As the pitch and roll angles of the vehicle are small, it can be considered that sinθ ≈ θ,

sinϕ ≈ ϕ. Suppose that the vehicle is a rigid body; according to the motion law of a rigid
body, the vertical displacement of the hinge joint between the suspension and chassis can
be obtained:

Zb1 = Zb − a sin θ − l/2 sin ϕ ≈ Zb − aθ − l/2ϕ (9)

Zb2 = Zb − a sin θ + l/2 sin ϕ ≈ Zb − aθ + l/2ϕ (10)

Zb3 = Zb + a sin θ − l/2 sin ϕ ≈ Zb + aθ − l/2ϕ (11)

Zb4 = Zb + a sin θ + l/2 sin ϕ ≈ Zb + aθ + l/2ϕ (12)

Zb5 = Zb + a sin θ − l/2 sin ϕ ≈ Zb + aθ − l/2ϕ (13)

Zb6 = Zb + a sin θ + l/2 sin ϕ ≈ Zb + aθ + l/2ϕ (14)

Select the vehicle system state vector X as follows:

X = [Z θ ϕ zb1 zb2 zb3 zb4 zb5 zb6 zw1 zw2 zw3 zw4 zw5 zw6
.
Z

.
θ

.
ϕ

.
zw1

.
zw2

.
zw3

.
zw4

.
zw5.zw6] (15)

Then, the system equation is expressed as

.
X = AX + BU + W (16)

where A is the coefficient matrix of vector X, B is the coefficient matrix of vector U, W
represents external disturbance, and U is the road profile of each wheel and the active
output force of each actuator.



Mathematics 2022, 10, 3391 6 of 17

U = [zr1 zr2 zr3 zr4 zr5 zr6 U1 U2 U3 U4 U5 U6] (17)

W = [w1 w2 w3] (18)

w1 = −Fl sin α (19)

w2 = Fl [cos α sin β sin δB + sin α] (20)

w3 = −Fl cos α cos β sin δB (21)

Select the vertical displacement, pitch angle, roll angle, and the corresponding speed,
acceleration of the vehicle body, the suspension, and the tire displacement to form the
output vector Y:

Y = [Z θ ϕ
.
Z

.
θ

.
ϕ

..
Z

..
θ

..
ϕ zb1 zb2 zb3 zb4 zb5 zb6 zw1 zw2 zw3 zw4 zw5 zw6] (22)

The output equation of the system can be expressed as

Y = CX + DU (23)

where C is a coefficient matrix of vector X and D is a coefficient matrix of vector U.

3. Design of Vehicle Attitude Stability Controller

The ADRC method is used to design the vehicle attitude controller. ADRC consists
of three main parts [29,30]: extended state observer (ESO), feedback controller, and distur-
bance rejection law.

The available system model information can be used to reduce the estimation time of
the ESO and improve the ability of disturbance rejection. Accordingly, the jet action force is
regarded as a model-assisted part, which is embedded in the ESO and integrated into the
control law to achieve the desired output [31,32].

According to the derived vehicle dynamics equations, let x1 = Z, x2 = θ, and x3 = ϕ.
Thus, Equations (3)–(5) can be rewritten as follows:

..
x1 =

..
Z = f1(Z θ ϕ

.
Z

.
θ

.
ϕ zr1zr2 · · · zr6)−

Fl sin α

mb
+

U1

mb
+

U2

mb
+

U3

mb
+

U4

mb
+

U5

mb
+

U6

mb
(24)

..
x2 =

..
θ = f1(Z θ ϕ

.
Z

.
θ

.
ϕ zr1zr2 · · · zr6) +

Fl [cos α sin β sin δB+sin α(d−B cos δ)]
Iθ

− aU1
Iθ
− aU2

Iθ
+ aU3

Iθ
+ aU4

Iθ
+ aU5

Iθ
+ aU6

Iθ

(25)

..
x3 =

..
ϕ = f1(Z θ ϕ

.
Z

.
θ

.
ϕ zr1zr2 · · · zr6)−

Fl cos α cos β sin δB
Iϕ

+ lU1
2Iϕ
− lU2

2Iϕ
+ lU3

2Iϕ
− lU4

2Iϕ
+ lU5

2Iϕ
− lU6

2Iϕ

(26)

Let X = [x1 x2 x3]T, take u = [ U1 U2 U3 U4 U5 U6]T as the input of the suspension
actuator, and take Y = [x1 x2 x3]T as system output; the state space expression is{ ..

X = F(Z θ ϕ
.
Z

.
θ

.
ϕ zr1zr2 · · · zr6) + FlH + Bu

Y = X
(27)

where

F(Z θ ϕ
.
Z

.
θ

.
ϕ zr1zr2 · · · zr6) =

 f1(Z θ ϕ
.
Z

.
θ

.
ϕ zr1zr2 · · · zr6)

f2(Z θ ϕ
.
Z

.
θ

.
ϕ zr1zr2 · · · zr6)

f3(Z θ ϕ
.
Z

.
θ

.
ϕ zr1zr2 · · · zr6)

 (28)
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B =



1
mb

1
mb

1
mb

1
mb

1
mb

1
mb

−a
Iθ

−a
Iθ

b
Iθ

b
Iθ

c
Iθ

c
Iθ

l
2Iϕ

−l
2Iϕ

l
2Iϕ

−l
2Iϕ

l
2Iϕ

−l
2Iϕ

 (29)

H =



− sin α

mb
cos α sin β sin δB + sin α(d− B cos δ)

Iθ

− cos α cos β sin δB
Iϕ

 (30)

The coupling between each suspension output force Bu in the above system is called
“Static coupling”, and the coupling that exists in the Vehicle model is called the “Dynamic
coupling”. Let S = Bu be the virtual output of the system; then, Equation (27) can be
rewritten as { ..

X = F(Z θ ϕ
.
Z

.
θ

.
ϕ zr1 zr2 · · · zr6) + FlH + S

Y = X
(31)

Therefore, the input–output relationship of the ith channel of the system is expressed as{
..
xi = fi(Z θ ϕ

.
Z

.
θ

.
ϕ zr1zr2 · · · zr6) + Fl Hi + Si

yi = xi
(32)

where i = (1,2,3), respectively, represents the vertical displacement, the pitch angle, and
the roll angle of the vehicle. In each channel, the relationship between the input and
output is SISO, and the static coupling in the system is decoupled. Dynamic coupling and
other disturbances are regarded as system disturbances, and a second-order extended state
observer (ESO) is designed to estimate the system disturbance as follows:

ei1 = Zi1 − yi1
fei1 = f al(ei1, ζ, hi).
Zi1 = Zi2 − βi1ei1.
Zi2 = Zi3 − βi2 fei1 + Fl Hi + bi1Si.
Zi3 = −βi3 fei1

(33)

where ei1 is the output error of each channel; Zi3 is the estimated disturbance of the system;
hi is the length of the sampling step; Zi1 and Zi2 are system state observations; bi1 is the
compensation factor; fal is the nonlinear feedback function; βi1, βi2, and βi3 are adjustable
parameters of the extended state observer. The parameters are adjusted by the Fibonacci
series and engineering experience [33].

f al(e, ρ, h) =

{
|e|τsign(e) |e| ≥ h

e
h1−τ |e| ≥ h

(34)

Design the state error control law as
ei1 = vi1 − Zi1
ei2 = vi2 − Zi2
F0i = β1 f al(ei1, α1, ρ) + β2 f al(ei2, α2, ρ)
Fi = F0i − (Zi3 + Fl Hi)/bi1

(35)

Where β1 and β2 are gains of the controller.
The principle of a single-channel MADRC is shown in Figure 2.
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As the control objective of each channel is to stabilize vertical displacement, the pitch
angle, and the roll angle, i.e., v1i = 0, a tracking differential does not need to be designed in
the controller to extract the input.

Three virtual outputs Si are calculated by the three ADRCs designed above, and
the suspension system studied in this paper is a 6-input 3-output system. Therefore,
the 3 outputs need to be decoupled. As the input coefficient matrix B of the system is
irreversible, the output of the system is decoupled by solving the pseudo-inverse matrix of
B. Let T = BT(BBT)−1; then, the input force of each actuator is Uj =TSi, (i = 1,2,3; j = 1,2,
. . . ,6). The structure of the MADRC system of the vehicle is shown in Figure 3.
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Figure 3. Structure of MADRC system.

Vertical, pitch, and roll controllers are designed using the MADRC integrated control
strategy. The parameters of the spray system are added into the ESO, which reduces the
estimation burden of the ESO, improves the system control performance, and realizes the
adjustment and control of vehicle attitude.

4. Simulation Analysis

To verify the effectiveness of the three designed controllers, the control effect of the
active suspension system and passive suspension system is simulated. The required
parameters in the vehicle simulation model are shown in Table 1.
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Table 1. Main parameters of the vehicle.

Parameter Symbol Value Unit

Sprung mass ma1 25,649 Kg
Boom mass ma2 4249 Kg

Unsprung mass mw 650 Kg
Stiffness of suspension spring ks 130,000 N/m

Damping of suspension cs 38,500 N/m
Stiffness coefficient of tire kt 1.9 × 106 N/m

Equivalent pitching moment of inertia Iϕ 78,593 Kg m2

Equivalent rolling moment of inertia Iϕ 26,506 Kg m2

Wheel tread l 2.15 m
Distance of front axle and mass center of chassis a 3.65 m

Distance of middle axle and mass center of chassis b 1.05 m
Distance of rear axle and mass center of chassis c 2.70 m

Distance of hinge of boom and mass center of chassis d 3.12 m
Luffing angle of boom δ 85 ◦

Rotating angle of boom γ 0 ◦

Length of boom B 18 m
Distance of hinge point of boom and mass center of boom B1 8.4 m
Angle between jet reaction force and horizontal direction α 20 ◦

Angle between jet reaction force and vertical direction β 45 ◦

Area of fire monitor outlet s 3.11 × 10−3 m2

Random white noise as shown in Figure 4 is taken as the road excitation, the driving
speed of the vehicle is set to 10 km/h, and the instantaneous flow rate of the fire monitor
is set to a sinusoidal form with an amplitude of 0–120 L/min, as shown in Figure 5a. The
simulation time is set to 10 s, and the simulation results of the output response of the
vehicle attitude are shown in Figures 5b and 6.

Figures 5b and 6 show the comparison curves of vertical displacement, pitch angle,
and roll angle of the mass center of the chassis. It can be seen from the figure that the
vertical displacement, pitch angle, and roll angle of the integrated spray-active suspension
system under MADRC control are significantly optimized compared with the conventional
active suspension system under ADRC control and passive suspension.
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The quantitative analysis of the curves is carried out, and the root-mean-square 
values of the vertical displacement, pitch angle, and roll angle of the vehicle are calculated. 
The results are shown in Table 2. 
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Figure 6. (a) Comparison curve of vehicle pitch angle under stochastic signals; (b) comparison curve
of vehicle roll angle under stochastic signals.

The quantitative analysis of the curves is carried out, and the root-mean-square values
of the vertical displacement, pitch angle, and roll angle of the vehicle are calculated. The
results are shown in Table 2.

Table 2. Root-mean-square value of vehicle attitude under stochastic signals.

Passive ADRC MADRC

vertical displacement (mm) 2.638 1.140(↓56.78%) 0.786(↓70.20%)
pitch angle 0.077 0.048(↓37.84%) 0.016(↓79.22%)
roll angle 0.477 0.205(↓56.92%) 0.107(↓77.57%)

It can be seen from Table 2 that compared with the passive suspension system, the
vertical displacement, pitch angle, and roll angle of the traditional active suspension system
under ADRC control decrease by 56.78%, 37.84%, and 56.92%, respectively, and those of
the integrated spray-active suspension system under MADRC control are further reduced
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by 13.42%, 41.38%, and 20.65%, respectively, compared with the passive suspension system.
Each evaluation index is reduced by 70.20%, 79.22%, and 77.57% respectively.

In order to verify the advantages of the integrated model compared with the traditional
suspension model in the literature [21], sinusoidal wave road excitation is implemented
in the simulation. The road excitation of the two sides of the vehicle is shown in Figure 7.
Other required parameters in the simulation model are the same as before. Figures 8 and 9
show the comparison curves of vertical displacement, pitch angle, and roll angle of the
mass center of the chassis, and the peak–peak values are presented in Table 3.
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Figure 7. (a) Road profile of left side under sinusoidal signals; (b) road profile of right side under
sinusoidal signals.
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Table 3. Peak–peak value of vehicle attitude under sinusoidal signals.

Vertical Displacement/mm Pitch Angle/◦ Roll Angle/◦

Conventional model 11.17 0.29 0.68
Integrated model 8.96 0.23 0.37

Difference 2.21 0.06 0.31
Performance improvement 19.8% 20.7% 45.6%

As shown in the previous figures, the proposed spray-active suspensions integrated
model presents a better performance when compared with the conventional active sus-
pension model. The vertical displacement, pitch angle, and roll angle of the vehicle are
decreased by 19.8%, 20.7%, and 45.6%, respectively.

5. Experiments and Results Analysis

In order to further verify the effectiveness of the controller for improving the vehicle at-
titude, a barrier-crossing experiment was carried out on a water tower fire truck JP32G. The
suspension system of the vehicle has active and passive working modes. The active mode
is driven by a hydraulic servo and the passive mode is the hydro-pneumatic suspension
system. The structure of the integrated control system is shown in Figure 10.

The controller uses a SCM9022 main board, which meets the standard PC/104 bus
standard. The data acquisition system uses a ADT882-AT expansion board and provides
32 16-bit analog channels at a sampling speed of 200 kHz. The inertia measuring unit adopts
an MTi 300AHRS IMU and the pressure sensor uses a PM95B series pressure transmitter
with a measuring range of 0–40 MPa and accuracy of <0.25%. The actuator is a hydraulic
cylinder; p1i and p2i (i = 1, 2, . . . , 6) are pressures of the rod and rodless cavity, respectively.
Basic parameters of the tested vehicle are shown in Table 4.

The water spray obstacle crossing test was carried out on the water tower fire truck
working in the integrated spray-active suspension system mode and the passive suspension
mode. The test pavement was cement pavement and tire excitation was achieved by setting
triangular obstacles on the pavement. Figure 11 shows the water spray obstacle crossing
test vehicle and site. The triangular obstacle is shown in Figure 12.
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Table 4. Main parameters of the tested vehicle.

Parameters Value

Vehicle type JP32G
Weight/kg 29,898

Chassis type XPD36
Number of axles 3

Number of wheels 6
Number of drive wheels 6

Tire specification 445/95R25
Wheelbase of first and second axle /mm 4700
Wheelbase of second and third axle /mm 1650

Wheel tread /mm 2150
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Figure 12. Triangle obstacle.

During the experiment, triangular obstacles were placed on one or two sides in
front of the vehicle. The control program was started, the vehicle was moved over the
triangular obstacles, and changes in body pitch and roll angle were recorded. The control
procedure was switched off, the suspension system was switched to hydro-pneumatic
passive suspension, the vehicle was moved over the triangular obstacles at the same speed
and manner, and the pitch and roll angle of the vehicle were recorded.

Figure 13 shows the pitch and roll angle curves of the vehicle with the wheels on one
side crossing a triangular obstacle at a speed of 3.2 km/h. Figure 14 shows the pitch and
roll angle curves of the vehicle with the wheels of two sides crossing a triangular obstacle
at a speed of 3.2 km/h.
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Figure 13. (a) Pitch angle comparison curve of wheel-crossing obstacle on one side; (b) roll angle 
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Figure 14. (a) Pitch angle comparison curve of wheel-crossing obstacle on two sides; (b) roll angle 

comparison curve of wheel-crossing obstacle on two sides. 
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From the test comparison curves, it can be seen that the integrated spray-active
suspension under MADRC control significantly improves the pitch and roll stability of the
vehicle compared with the passive suspension system when the vehicle passes through
uneven road surfaces.

Quantitative analysis of Figures 13 and 14 is carried out, and the peak–peak value of
vehicle attitude is shown in Table 5.
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Table 5. Peak–peak value of vehicle attitude.

Pitch Angle/◦ Roll Angle/◦

One side Two sides One side Two sides
Passive suspension 0.73 1.85 1.68 0.55

Integrated spray-active suspension 0.65 1.41 1.29 0.46
Difference 0.08 0.44 0.39 0.08

Performance improvement 10.9% 23.7% 23.2% 16.3%

It can be seen from Table 5 that compared with the passive suspension system, the
peak–peak values of pitch angle and roll angle of the integrated spray-active suspension
system under MADRC control decrease by 10.9% and 23.2%, respectively, when the vehicle
runs over triangular obstacles on one side, and decrease by 23.7% and 16.3%, respectively,
when the vehicle runs over triangular obstacles on two sides.

6. Discussion

In the 13-DOF integrated dynamic model studied in this paper, it is assumed that the
boom is a rigid body, but in fact, the boom will produce large deformation under the torque
due to the clearance and compliance of the boom. This directly affects the spray angle of
the fire monitor at the top of the boom and the action point of the spray reaction force, so
the elastic deformation of the boom is a critical factor to be considered in future work.

A model-assisted nonlinear disturbance rejection controller is proposed and applied
to water tower fire trucks. The innovation lies in introducing the known vehicle dynamic
information into the extended state observer to reduce the bandwidth burden of the ob-
server and improve the overall control performance. Due to the complicated theoretical
analysis of the nonlinear ADRC (the nonlinearity of the fal function), the stability anal-
ysis of the disturbance rejection controller is still in the development stage, and there
is relatively little related theoretical research. Analysis methods include the self-stable
region approach [34,35], frequency domain method [36,37], and Popov hyperstability the-
ory [38,39]. The difficulty of stability analysis theory leads to the limited application of
nonlinear ADRC. However, it has been proved in practice that the nonlinear ADRC can
stabilize the system and has higher convergence efficiency than the linear form. From the
perspective of engineering application, this paper preliminarily explores its application
in the field of active suspension. However, the stability analysis of the model-assisted
expanding state observer is still under further study, and this is also work to be carried out
in the future.
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7. Conclusions

In this paper, a 13-DOF integrated spray-active suspension dynamic model of the
water tower fire truck is established. The MADRC control method is used to design the
vehicle attitude controller, and computer simulation and real vehicle tests are carried out.

The simulation results show that when the vehicle speed is 10 km/h, the vertical
displacement, pitching angle, and roll angle of the integrated spray-active suspension
system under the MADRC control decrease by 70.20%, 79.22%, and 77.57%, respectively,
compared with the passive suspension system, and decrease by 19.8%, 20.7%, and 45.6%,
respectively, compared with the conventional active suspension model under sinusoidal
wave road excitation.

The experimental results show that when the vehicle runs over the triangular obstacle
on one side and two sides in the integrated spray-active suspension mode, the peak–peak
values of pitch angle and roll angle are reduced by 10.9% and 23.2%, and 23.7% and 16.3%,
respectively, compared with the passive hydro pneumatic suspension.
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