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Abstract: In view of prey’s delayed fear due to predators, delayed predator gestation, and the
significance of intra-specific competition between predators when their populations are sufficiently
large, a prey–predator population model with a density-dependent functional response is established
in a deterministic environment. We research the existence and asymptotic stability of the equilibrium
statuses. Then, taking into consideration environmental disturbances, we extend the deterministic
model to a stochastic model and research the existence and stationary distributions of stochastic
solutions. Finally, we perform some numerical simulations to verify the theoretical results. Numerical
examples indicate that fear, delays and environmental disturbance play crucial roles in the system
stability of the equilibrium status.
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1. Introduction

In natural ecosystems, the classical Lotka–Volterra model has been introduced to
describe interactions between species [1]. One of the most important species interaction
is predation. By incorporating logistic growth for a prey population and the predator
population’s functional response (predation connecting the predator–prey interactions), the
Lotka–Volterra model was improved to a prey–predator population model. The functional
response formulates the feeding rate per predator on the prey population. This is a very
key portion for researchers to investigate the kinetics of the model in a more realistic way.
Various functional responses have been proposed to formulate realistic behavior among
predator and prey species [2–5]. A Holling-type functional response describes well the
predation speed within a regular range. However, in the real world, due to mutual dis-
turbances among predators, an increase in predator population density may indicate a
reduction in predation speed. Intra-specific competition within predator populations can-
not be ignored when the predator population is significantly large. This is a crucial factor
to modify the Holling-type response to a predator-dependent functional response [6–8].
By comparing 19 predator–prey systems, the authors of [6] found that when prey is abun-
dant, the Beddington–DeAngelis functional response can preferably describe the predator
population’s feeding behaviors.

Functional response formulates the direct feeding of predators, which is easy to find
in nature, so a large number of dynamic studies have been performed, and many nice
results have been obtained [1–8]. However, in the presence of a mighty predator, the prey
species may change its behaviors more powerfully than due to the direct impact of killing,
which has been verified by both theoretical studies and empirical data. Experimental
facts show that almost all prey population react to the risk of predation with a variety of
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anti-predation behaviors resulting in a series of physiological changes such as vigilance,
foraging and changing habitats. These anti-predation responses may reduce the long-term
cost of reproduction and increase the probability of adult survival [9]. For example, an
experiment on songbirds was executed in 2011 by the authors of [10]. They observed
that the birthrate and offspring survival rate of songbirds were both affected by fear of
predators, and the number of their offspring declined by 40%. Incorporating the cost of
fear in the birthrate of prey, Wang et al. [11] proposed a prey–predator model and found
that a large amount of fear could destabilize the system, accompanied by oscillations. They
suggested that the death rate of prey is also influenced by fear of the predator. Further, the
findings of Elliot et al. [12] also revealed that the intrinsic growth rate of prey declines in
response to fear of the predator, with a reduction from 4.2 to 3.6.

Consequently, in the study of predator–prey dynamics, the fear induced by predators
should be incorporated.

In reality, when prey perceives risk from a predator by vocal or chemical cues, they
take some time to estimate the risk and decide whether it is necessary to present some
anti-predation behavior or not, instead of having an instantaneous response. That is,
there is always a time lag for the response of prey to the predation risk [13–15]. Actu-
ally, delay occurs in almost all biological activities, such as gestation, digestion, matu-
ration and so on. For example, in prey–predator system, the predator’s consumption
of prey cannot be instantaneous, and there must be a time delay for this conversion,
which is called gestation delay [16]. Many results demonstrate that models with time
delay present some rich dynamic behaviors, such as periodic orbits, stability switching,
chaos and some bifurcations [17,18]. In view of the complexity of the system, multiple
delays often appear in prey–predator systems. The authors of [16] researched a predator–
prey system with two time lags of fear and gestation of predator populations. Their
results indicated that these two delays jointly brought some crucial influence on the
population dynamics.

In addition, predator–prey population systems are exposed to a variety of environmen-
tal perturbations, such as drought, disease, flood, earthquake, etc. These environmental
components are very important in the study of system dynamics [19,20]. The disturbances
can have large influences on the density of populations directly or the parameter values of
models indirectly. Therefore, it is necessary to make use of a stochastic system to precisely
analyze and predict changes to prey–predator dynamics [21,22]. In stochastic models,
not only the mean tendency but also the variance are taken into account. Usually, for
fixed initial data, similar results are generated by the deterministic model, but stochastic
prediction values are to be given by the stochastic models. In reality, researchers pro-
pose many stochastic models to formulate the effects of white noise on prey–predator
dynamics [23–25].

To the best of our knowledge, an interaction between predator and prey species
together with fear in prey, Beddington–DeAngelis functional response, two time delays
(delayed fear and delayed gestation) and environmental white noise has never been studied.
Hence, we are encouraged to study its kinetics.

For dynamic systems, the existence of a stable equilibrium status is very important
for deterministic models, so the main subject of our research is to study the existence and
dynamics of the equilibrium status of above predator–prey model and then analyze the
potential effects of fear, delay and stochastic parameters theoretically and numerically.

Our study is structured as follows: A deterministic population model with fear of
predators and delays is presented, and the existence and global asymptotic stability of its
equilibrium status are analyzed in Section 2. Then, the deterministic model is extended to
a stochastic environment, and the stationary distribution of its solutions is studied in
Section 3. The theoretical results are indicated by numerical examples, and the con-
crete influences of fear, delays and stochastic environmental disturbances are explored in
Section 4. Finally, in Section 5, a summary discussion is given to conclude our research.
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2. Deterministic Scenario
2.1. Model Formulation

The popular predator–prey system with Beddington–DeAngelis-type density-dependent
functional response is as follows:

dX
dT

= X
(

A1 − B1X− PY
C1 + X + C2Y

)
,

dY
dT

= Y
(
−A2 − B2Y +

QPX
C1 + X + C2Y

)
.

Taking the effect of fear of predators into account, the growth rate of prey will be
changed. Then, we consider the modified growth rate of prey in the form A1

1+ f Y , which is a
monotonic decreasing function about both fear f and species Y, where f is a fear parameter.
Consequently, the above model becomes

dX
dT

= X
(

A1

1 + f Y
− B1X− PY

C1 + X + C2Y

)
,

dY
dT

= Y
(
−A2 − B2Y +

QPX
C1 + X + C2Y

)
,

where X is the prey population and Y is the predator population at time T. All parameter
values in this model are positive for biological justification, and their biological meanings
see Table 1.

Table 1. Biological meanings of all parameters.

Parameter Biological Meaning

A1 Intrinsic growth rate of prey

A2 Natural mortality rate of predator

B1 Intra-specific competition coefficient of prey

B2 Density dependence rate of predator

P Maximal relative increase of predation

Q Conversion factor

C1 Half-saturation constant

C2 Magnitude of interference among predators

f Fear effect of prey induced by predator

For the convenience of our analysis in system dynamics, using the transformation as
X = A1x

B1
, Y = A1Py

B1
and A1T = t, we can then get the system listed below:

dx
dt

= x
(

1− x
1 + f y

− cy
1 + a1x + a2y

)
,

dy
dt

= y
(

cx
1 + a1x + a2y

−m− ey
)

,
(1)

where c = PQ
C1B1

, a1 = A1
C1B1

, a2 = C2 A1Q
C1B1

, m = A2
A1

, e = B2Q
B1

.
Incorporating the time lag of fear of prey induced by the predator and the time lag of

the predator’s gestation, we get the delayed version of System (1) as follows:
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dx
dt

= x
(

1− x
1 + f y(t− τ1)

− cy
1 + a1x + a2y

)
,

dy
dt

= y
(

cx(t− τ2)

1 + a1x(t− τ2) + a2y(t− τ2)
−m− ey

)
.

(2)

The initial history functions are

x(θ) = φ1(θ), y(θ) = φ2(θ),−τ ≤ θ ≤ 0,

where φ = (φ1, φ2)
T ∈ C([−τ, 0], R2

+), τ = max{τ1, τ2}, and τ1 and τ2 denote the fear
and gestation delay, respectively; C([−τ, 0], R2

+) is a Banach space of continuous functions

with norm ||φ|| = supθ∈[−τ,0]{|φ(θ)|}, |φ(θ)| =
√

φ2
1(θ) + φ2

2(θ). We assume φ(θ) ∈ R2
+ =

{(x, y)|x > 0, y > 0} for any θ ∈ [−τ, 0] so as to satisfy the biological justification.

2.2. The Positivity and Permanence of Solutions

We begin with a comparison theorem and the definition of permanence.

Lemma 1 ([26]). For equation

dx(t)
dt

= px(t− τ)− qx(t)− rx2(t),

where p, q, r, τ > 0 and x(t) > 0 for t ∈ [−τ, 0], we then have

lim
t→∞

x(t) =
p− q

r
, i f p > q, lim

t→∞
x(t) = 0, i f p < q.

Definition 1 (Permanence). For System (2) with positive initial values φi(θ) > 0, θ ∈ [−τ, 0]
(i = 1, 2), we assume that there exist two positive constantsN andM satisfying 0 < N ≤M and

min
{

lim inf
t→∞

x(t), lim inf
t→∞

y(t)
}
≥ N , max

{
lim sup

t→∞
x(t), lim sup

t→∞
y(t)

}
≤M,

then, (2) is said to be permanent.

To assure System (2) is reasonable in terms of biological justification, we begin with
the proof of positivity and boundedness of the solutions of (2). By integrating both sides of
the former equality of (2), we have

x(t) = x(0) exp
{∫ t

0

(
(1− x)

1 + f y(t− τ1)
− cy

1 + a1x + a2y

)
ds
}

> 0.

Similarly, we deduce that

y(t) = y(0) exp
{∫ t

0

(
cx(t− τ2)

1 + a1x(t− τ2) + a2y(t− τ2)
−m− ey

)
ds
}

> 0.

By the second equation of (2), then

dy
dt
≤ c

a1
y(t− τ2)−my− ey2.

By Lemma 1, then

y ≤
c
a1
− d

e
.
= T if

c
a1
− d > 0.
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On the other hand, by use of the first equation of (2), we have

dx(t)
dt
≤ x(t)(1− x(t)).

For the above inequality, by the same integrating, we have

x(t) ≤ 1.

That is to say, all solutions of Model (2) are bounded.
Further, from the former equality of Model (2), we get

dx
dt
≥ x

(
1− x

1 + f T
− c

a2

)
.

Then
x(t) ≥ (

1
1 + f T

− c
a2
)(1 + f T) .

= N if
1

1 + f T
>

c
a2

.

Using (2) again, then

dy
dt
≥ y

(
N

1 + a1 + a2T
−m− ey

)
.

Thus

y ≥
N

1+a1+a2T −m

e
.
= S if

N
1 + a1 + a2T

−m > 0.

We summarize the above analysis that System (2) is permanent.

2.3. Existence of Equilibrium Status

We plan to investigate the existence of a coexisting equilibrium status of (2) in this
subsection. Clearly, the equilibrium status of (2) satisfies the following equalities:

1− x
1 + f y

− cy
1 + a1x + a2y

= 0,

cx
1 + a1x + a2y

= m + ey.

(3)

By the second equality of (3), the equilibrium point x∗ should meet

x∗ =
(m + ey∗)(1 + a2y∗)

c− a1(m + ey∗)
,

which is positive under the condition c− a1(m + ey∗) > 0. Putting x = x∗ into the first
equality, then y∗ satisfies the following equality:

e f y3 + (m f + e)y2 + my− (d + ey)(1 + a2y)
c− a1(m + ey)

(1− (d + ey)(1 + a2y)
c− a1(m + ey)

) = 0.

Eliminate the denominators; then, we have

a2
1e3 f y5 + D1y4 + D2y3 + D3y2 + D4y + D5 = 0,
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where

D1 = a2
1e2(e + m f )− 2a1e(c− a1m)e f + e2a2

2),

D2 = a2
1e2m + (c− a1m)2e f − 2a1e(c− a1m)(e + m f ) + a2e(2e + a1e + 2a2m),

D3 = (c− a1m)2(e + m f )− 2a1e(c− a1m)m + e2 + a1e2 + 2mea1a2 + 4mea2 + m2
2a2

2 − cea2,

D4 = (c− a1m)2m + 2me + 2mea1 + m2a1a2 + 2m2a2 − cma2 − ce,

D5 = m(m− (c− a1m)).

By verification, if max
{

a2, m, 2a1em
e+m f

}
< c− a1m < min

{
a1m, a1m(e+ f )

2e , a1(e+m f )
2 f

}
, then

Di > 0 (i = 1, 2, 3, 4) and D5 < 0. By Descartes’ rule of signs, we conclude that there exists
a unique positive solution y∗ if the above condition holds. Hence, System (2) has a unique
positive equilibrium E∗(x∗, y∗).

2.4. Global Asymptotic Stability

With respect to the long-time dynamic behavior of E∗(x∗, y∗), we have the
below conclusion:

Theorem 1. For System (2) with initial data φi(θ) > 0, θ ∈ [−τ, 0] (i = 1, 2), we assume that

1
1 + f T

>
ca1y∗

1 + a1x∗ + a2y∗
+

c(1 + a2y∗)
2(1 + a1x∗ + a2y∗)

,

e >
c(1 + a2y∗)

1 + a1x∗ + a2y∗
.

Then, the equilibrium status E∗(x∗, y∗) of Model (2) is globally asymptotically stable, i.e., for any
solution (x(t), y(t)) of (2), we have lim

t→∞
x(t) = x∗, lim

t→∞
y(t) = y∗.

Proof. Define a functional listed below:

V1(x) = x− x∗ − x∗ ln x/x∗.

Due to the monotonicity of V1(x) with respect to x, obviously V1(x) is positive on
t ∈ [0, ∞). Differentiate V1(x) on variable t along System (2); then

dV1(x)
dt = (x− x∗)

(
1− x

1 + f y(t− τ1)
− cy

1 + a1x + a2y

)
= (x− x∗)

(
1− x

1 + f y(t− τ1)
− cy

1 + a1x + a2y
− 1− x∗

1 + f y∗
+

cy∗

1 + a1x∗ + a2y∗

)
= (x− x∗)

(
− (1 + f y∗)(x− x∗) + f (1− x∗)(y(t− τ1)− y∗)

(1 + f y(t− τ1))(1 + f y∗)

− c(1 + a1x∗)(y− y∗)− ca1y∗(x− x∗)
(1 + a1x + a2y)(1 + a1x∗ + a2y∗)

)
≤ −

(
1

1 + f T
− ca1y∗

1 + a1x∗ + a2y∗

)
(x− x∗)2.

Similarly, define
V2(y) = y− y∗ − y∗ ln y/y∗.
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Function V2(y) : R → R+ is positive. Differentiating V2(y) about variable t along (2),
we get

dV2(y)
dt = (y− y∗)

(
cx

1 + a1x + a2y
− d− ey

)
= (y− y∗)

(
cx(t− τ2)

1 + a1x(t− τ2) + a2y(t− τ2)
− d− ey− cx∗

1 + a1x∗ + a2y∗
+ d + ey∗

)
= −e(y− y∗)2 + (y− y∗)

c(1 + a2y∗)(x(t− τ2)− x∗)− ca2x∗(y(t− τ2)− y∗)
(1 + a1x(t− τ2) + a2y(t− τ2))(1 + a1x∗ + a2y∗)

≤ −e(y− y∗)2 +
c(1 + a2y∗)

1 + a1x∗ + a2y∗
(x(t− τ2)− x∗)(y− y∗)

≤ −e(y− y∗)2 +
c(1 + a2y∗)

2(1 + a1x∗ + a2y∗)
((x(t− τ2)− x∗)2 + (y− y∗)2)

≤ −
(

e− c(1 + a2y∗)
2(1 + a1x∗ + a2y∗)

)
(y− y∗)2

+
c(1 + a2y∗)

2(1 + a1x∗ + a2y∗)
((x(t− τ2)− x∗)2.

Introduce V3(t) below to eliminate the terms of delay that appeared in the above
inequality:

V3(t) =
∫ t

t−τ2

c(1 + a2y∗)
2(1 + a1x∗ + a2y∗)

((x(s− τ2)− x∗)2ds.

Then

dV2(y)
dt

+
dV3(t)

dt
≤ −

(
e− c(1 + a2y∗)

1 + a1x∗ + a2y∗

)
(y− y∗)2 +

c(1 + a2y∗)
2(1 + a1x∗ + a2y∗)

((x− x∗)2.

Let V(t) = V1(x) + V2(y) + V3(t); together with the previous condition, we then have

dV(t)
dt

= −
(

1
1 + f T

− ca1y∗

1 + a1x∗ + a2y∗
− c(1 + a2y∗)

2(1 + a1x∗ + a2y∗)

)
(x− x∗)2

−
(

e− c(1 + a2y∗)
1 + a1x∗ + a2y∗

)
(y− y∗)2

< 0.

By functional differential equation theory [18], we conclude that the equilibrium status
E∗(x∗, y∗) of (2) is globally asymptotically stable.

Remark 1. From the biological point of view, if the population growth rate of prey affected by fear
is large, such that 1

1+ f T > ca1y∗
1+a1x∗+a2y∗ +

c(1+a2y∗)
2(1+a1x∗+a2y∗) , then the prey is persistent. On the other

hand, compared to the conversion rate of the prey, if the interspecific competition rate of the predator
is not too low, such that e > c(1+a2y∗)

1+a1x∗+a2y∗ , then the predator population is inhibited from increasing
excessively and remains persistent.

When both populations hold, then the prey and predator can coexist near the equilibrium state
and the system has global stability, which is biologically reasonable.

Theorem 2. For System (1) with initial data x(0) > 0, y(0) > 0, E∗(x∗, y∗) is globally asymptot-
ically stable provided that 1

1+ f T > ca1y∗
1+a1x∗+a2y∗ .

Proof. We apply the same techniques presented in Theorem 1 to prove the conclusion. Take

V1(x) = x− x∗ − x∗ ln x/x∗, V2(y) = y− y∗ − y∗ ln y/y∗,

which are the same as before. Compute the derivatives of V1(x) and V2(y) with respect to t
along System (1); then
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dV1(x)
dt = (x− x∗)

(
1− x

1 + f y
− cy

1 + a1x + a2y
− 1− x∗

1 + f y∗
+

cy∗

1 + a1x∗ + a2y∗

)
≤ −

(
1

1 + f T
− ca1y∗

1 + a1x∗ + a2y∗

)
(x− x∗)2

− c(1 + a1x∗)
(1 + a1x + a2y)(1 + a1x∗ + a2y∗)

(x− x∗)(y− y∗),

and

dV2(y)
dt = (y− y∗)

(
cx

1 + a1x + a2y
− d− ey− cx∗

1 + a1x∗ + a2y∗
+ d + ey∗

)
≤ −e(y− y∗)2 +

c(1 + a1y∗)
(1 + a1x + a2y)(1 + a1x∗ + a2y∗)

(x− x∗)(y− y∗).

Let V(t) = V1(x) + V2(y). Together with the condition 1
1+ f T > ca1y∗

1+a1x∗+a2y∗ , we can
derive that

dV(t)
dt

= −( 1
1 + f T

− ca1y∗

1 + a1x∗ + a2y∗
)(x− x∗)2 − e(y− y∗)2 < 0.

Hence, the result holds.

Remark 2. By Theorem 1, it seems that delays have no effect on stability because they are absent
from the restricted conditions; while applying the same techniques, Theorem 2 reveals that the
assumption guaranteeing the global stability of the equilibrium status E∗ is lower than that in
Theorem 1 with no delays (τ1 = τ2 = 0). This implies that, in fact, the delays have some important
influence on global system stability, as presented by simulations in Section 4.

3. Stochastic Scenario
3.1. Model Formulation

As stated before, predator–prey population systems are often influenced by environ-
mental disturbances. In this section, through consideration of environmental white noise,
we extend model (2) to the following stochastic model.

Theoretically, environmental fluctuation may disturb all parameters in Model (2),
but the demographic randomness mainly influences the birth velocity of the prey pop-
ulation and the mortality velocity of the predator population [27]. Mathematical re-
searchers often introduce white noise to model environmental perturbations. By the
central limit theorem, the error terms of the influenced parameters follow a normal dis-
tribution. References [28,29] showed that the stochastic disturbance was related to the
difference between existing populations and the equilibrium status. Therefore, perturbing
the growth velocity of the prey population and the natural mortality velocity of the predator
population, that is, adding a random disturbance coefficient to the original constants:

A1 → A1 + σ1(X− X∗), −A2 → A2 + σ2(Y−Y∗).

Using the transformation in Section 2.1 together with the method in [9], we then obtain
the following stochastic model:

dx
dt

= x
(

1− x
1 + f y(t− τ1)

− cy
1 + a1x + a2y

)
+ σ1x(x− x∗)dw1(t),

dy
dt

= y
(

cx(t− τ2)

1 + a1x(t− τ2) + a2y(t− τ2)
−m− ey

)
− σ2y(y− y∗)dw2(t),

(4)

where w1(t) and w2(t) are two Brownian motions that are independent and defined on a
complete probability space (Ω, F, P), and σ2

i (i = 1, 2) denotes the intensity of white noise.
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3.2. Existence and Stochastic Permanence of Model (4)

We investigate the existence of stochastic solutions and stochastic permanence of
Model (4) in this subsection. Suppose x(t) is a homogeneous Markovian process in Rn

described by the stochastic equation:

dx(t) = f (t, x(t))dt +
n

∑
k=1

gk(t, x(t))dwk(t). (5)

The diffusion matrix is A(x) = (aij(x)), aij(x) = ∑n
k=1 gi

k(x)gj
k(x). For Lyapunov

functional V(x(t)), we define the Lyapunov operator L of V(x(t)) as follows:

LV(x(t)) = Vx(x(t)) f (t, x(t)) +
1
2

trace[gT(t, x(t))Vxx(X(t))g(t, x(t))].

Before study of the existence and positiveness of solutions, we give a lemma.

Lemma 2. Let x(t) be a stochastic process satisfying

dx(t) = (b(t)− a(t)x(t))dt + σ(t)x(t)dw(t). (6)

For System (6), there exists a unique positive solution x(t) with any initial value x(0) = x0 > 0
that is global and is represented by

x(t) = e
∫ t

0 −(a(u)+ σ2(u)
2 )du+σ(u)dw(u)

(
x0 +

∫ t

0
b(s)e

∫ t
0 (a(u)+ σ2(u)

2 )du−σ(u)dw(u)ds
)

,

or

x(t) = x0e−
∫ t

0 a(s)ds +
∫ t

0
e−a(s)(t−s)(b(s)ds + σ(s)x(s)dw(s)).

Proof. First, we verify

x(t) = e
∫ t

0 −(a(u)+ σ2(u)
2 )du+σ(u)dw(u)

(
x0 +

∫ t

0
b(s)e

∫ t
0 (a(u)+ σ2(u)

2 )du−σ(u)dw(u)ds
)

,

is the solution of (6). Let ξ(t) =
∫ t

0
−(a(u) +

σ2(u)
2

)du + σ(u)dw(u). Then ξ(t) is a

stochastic process, and

dξ(t) = −
(

a(t) +
σ2(t)

2

)
dt + σ(t)dw(t).

Define V(ξ) = eξ . Applying Itô’s formula to V(ξ) results in

dV(ξ) = eξ

(
−a(t)− σ2(t)

2
+

1
2

σ2(t)
)

dt + eξ σ(t)dw(t).
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Consequently, we have

dx(t) = x0d(eξ) + d
(

eξ
∫ t

0
b(s)e−ξ ds

)
= x0d(eξ) + d(eξ)×

∫ t

0
b(s)e−ξ ds + eξ × d

(∫ t

0
b(s)e−ξ ds

)
+ d(eξ)× d

(∫ t

0
b(s)e−ξ ds

)
=

(
x0 +

∫ t

0
b(s)eξ ds

)
eξ

((
−a(t)− σ2(t)

2
+

1
2

σ2(t)
)

dt + σ(t)dw(t)
)
+ eξ b(t)e−ξ dt

+

(
eξ

(
−a(t)− σ2(t)

2
+

1
2

σ2(t)
)

dt + eξ σ(t)dw(t)
)

b(t)e−ξ dt

= −a(t)x(t)dt + σ(t)x(t)dw(t) + b(t)dt

= (b(t)− a(t)x(t))dt + σ(t)x(t)dw(t).

Next, we illustrate that

x(t) = x0e−
∫ t

0 a(s)ds +
∫ t

0
e−a(s)(t−s)(b(s)ds + σ(s)x(s)dw(s))

is the solution of (6). Let

ρ(t) =
∫ t

0
e−a(s)(t−s)(b(s)ds + σ(s)x(s)dw(s));

then ρ(t) is a stochastic process, and

dρ = b(t)dt + σ(t)x(t)dw(t)− a(t)
∫ t

0
e−a(s)(t−s)(b(s)ds + σ(s)x(s)dw(s)).

An easy computation gives

dx(t) = −a(t)x0e−
∫ t

0 a(s)ds + b(t)dt + σ(t)x(t)dw(t)− a(t)
∫ t

0
e−a(s)(t−s)(b(s)ds + σ(s)x(s)dw(s))

= −a(t)
(

x0e−
∫ t

0 a(s)ds +
∫ t

0
e−a(s)(t−s)(b(s)ds + σ(s)x(s)dw(s))

)
+ b(t)dt + σ(t)x(t)dw(t)

= (b(t)− a(t)x(t))dt + σ(t)x(t)dw(t).

Hence, the result holds.

If the coefficients of (6) are all constants, we can obtain the following corollary.

Corollary 1. Suppose x(t) is a stochastic process satisfying

dx(t) = (b− ax(t))dt + σx(t)dw(t). (7)

For System (7), there exists a unique positive solution x(t) with any initial value x(0) = x0 > 0
that is global and is represented by

x(t) = e−(a+ σ2
2 )t+σw(t)

(
x0 + b

∫ t

0
e(a+ σ2

2 )s−σw(s)ds
)

.

If b = 0, then

x(t) = x0e−(a+ σ2
2 )t+σw(t).
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Remark 3. In [30], there are some errors in the use of Itô’s formula to solve the stochastic equation.
For example, by applying Itô’s formula, the authors stated that the solution of the following equation
(page 1511, line-4):

dH1(t) =
[

r−
(

gζ − d1 +
β(1− ζ)

β

)
H1 + ζ2σ2

1 H1

]
dt− ζσ1H1dw1

is

H1(t) =
r

gζ − d1 − ζ2σ2
1 + β(1−ζ)

β

+

H1(0)−
r

gζ − d1 − ζ2σ2
1 + β(1−ζ)

β

e(ζ
2σ2

1−gζ+d1−
β(1−ζ)

β )t−ζσ1w1(t).

Easy verification implies that this is wrong. Actually, one can derive from Corollary 1 that the
solution to the above equation is

x(t) = e−(gζ−d1−ζ2σ2
1+

β(1−ζ)
β )− ζ2σ2

1 (t)
2 −ζσ1w(t)

[
H1(0) + r

∫ t

0
egζ−d1−ζ2σ2

1+
β(1−ζ)

β +
ζ2σ2

1
2 −ζσ1w(s)ds

]
.

Now, by use of Corollary 1, we discuss the existence and uniqueness of a global
positive solution of system (4).

Theorem 3. For System (4) with initial data φi(θ) > 0, θ ∈ [−τ, 0] (i = 1, 2), there exists a
positive solution (x(t), y(t)) a.s. that is positive and global.

Proof. It is not difficult to find that the parameters of Model (4) are local Lipschitz. By use
of the theory of existence of stochastic processes, we assert that Model (4) has a unique
positive solution on [−τ, τe], where τe denotes the explosion time of solutions. Thus,
we only want to prove τe = ∞. For this purpose, we apply the comparison method of
stochastic systems.

By the positivity of solutions of (4), we get from (4) that

dx(t) ≤ x(t)dt + σ1x(t)(x(t)− x∗)dw1(t).

Let X1(t) be the solution of

dX1(t) = X1(t)dt + σ1MX1(t)dw1(t), X1(0) = X0
1 ,

whereM is the super boundness of x(t) defined in Theorem 4. Then by use of Corollary 1,
the solution of the previous equation is

X1(t) = X0
1e(1−

σ2
1M

2

2 )t+Mw1(t).

By comparison theory of stochastic differential equations, we have

x(t) ≤ X1(t).

From the second equation of (4), then

dy(t) ≤
(

c
a2
−m

)
y(t)dt− σ2y(t)(y(t)− y∗)dw2(t).

Let Y1(t) be the solution of

dY1(t) =
(

c
a2
−m

)
Y1(t) + σ2y∗Y1(t)dw2(t), Y1(0) = Y0

1 .
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Again, using Corollary 1 gives

Y1(t) = Y0
1 e(

c
a2
−m− σ2

2 y∗2
2 )t+σ2y∗w1(t).

Then
y(t) ≤ Y1(t).

On the other hand, from the second equation of (4), we have

dy(t) ≥ −my(t)dt− σ2y(t)(y(t)− y∗)dw2(t).

Let Y2(t) be the solution of

dY2(t) = −mY2(t)dt− σ2MY2(t)dw2(t), Y2(0) = Y0
2 ,

whereM is the super boundness of y(t) defined in Theorem 4. By use of Corollary 1 again,
we have the solution of the previous equation:

Y2(t) = Y0
2 e−(m+

σ2
2M

2

2 )t−σ2Mw2(t).

Therefore,
y(t) ≥ Y2(t).

Similarly, we have

dx(t) ≥ −(1 + c
a

Y1(t))x(t)dt− σ1x∗x(t)dw1(t).

Let X2(t) be the solution of

dX2(t) = −(1 +
c
a

Y1(t))X2(t)dt− σ1x∗X2(t)dw1(t), X2(0) = X0
2 .

By verification, the formal solution is

X2(t) = X0
2e−

∫ t
0 (1+

c
a Y1(s))ds+

σ2
1 x∗2

2 t−σ1x∗w1(t).

By Lemma 2, we have
x(t) ≥ X2(t).

Summarizing the above conclusions, we obtain

X2(t) ≤ x(t) ≤ X1(t), Y2(t) ≤ y(t) ≤ Y1(t), for t ∈ [0, τe).

Clearly, the solutions X1(t), X2(t), Y1(t), Y2(t) exist for all t > 0, so we conclude that
the explosion time τe = ∞ and the solution is global.

Theorem 4. Let X(t) = (x(t), y(t))T be a solution of (4) with initial value φi(θ) > 0,
θ ∈ [−τ, 0] (i = 1, 2). Then X(t) is stochastically permanent; that is, there are two constants
M > 0 and N > 0 such that the solution X(t) of System (4) satisfies

P{|X(t)| ≤ M} ≥ 1− ε, P{|X(t)| ≥ N} ≥ 1− ε,

for any ε ∈ (0, 1), where P is the probability of an event.

Proof. Define V1(x) = etx, V2(y) = ety and V(x, y) = V1(x) + V2(y). Applying Itô’s
formula to V(x, y) along System (4), then
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dV(x, y) =

(
etx + etx(

1− x
1 + f y

− cy
1 + a1x + a2y

)

)
dt + etσ1x(x− x∗)dw1(t)

+

(
ety + ety

(
cx(t− τ2)

1 + a1x(t− τ2) + a2y(t− τ2)
−m− ey

)
dt + etσ2y(y− y∗

)
dw2(t)

≤
(
etx + etx(1− x)

)
dt + etσ1x(x− x∗)dw1(t) +

(c/a1 −m)2

4e
etdt + etσ2y(y− y∗)dw2(t)

≤ (etx + et(2x− x2 − x)dt + etσ1x(x− x∗)dw1(t) +
(c/a1 −m)2

4e
etdt + etσ2y(y− y∗)dw2(t)

≤ (etx + et(1− x)dt + etσ1x(x− x∗)dw1(t) +
(c/a1 −m)2

4e
etdt + etσ2y(y− y∗)dw2(t)

= et
(

1 +
(c/a1 −m)2

4e

)
+ etσ1x(x− x∗)dw1(t) + etσ2y(y− y∗)dw2(t).

Taking the mathematical expectation, then

E
∫ t

0
dV(x, y) ≤

(
1 +

(c/a1 −m)2

4e

)
(et − 1).

That is,

EV(x, y) ≤ V(0, 0) +
(

1 +
(c/a1 −m)2

4e

)
(et − 1).

Therefore, we have

E(x + y) ≤
(

1 +
(c/a1 −m)2

4e

)
+

(
V(0, 0)−

(
1 +

(c/a1 −m)2

4e

))
e−t.

Note that
|X(t)| = (x2 + y2)

1
2 ≤ x + y.

Consequently,

E|X(t)| ≤
(

1 +
(c/a1 −m)2

4e

)
+

(
V(0, 0)−

(
1 +

(c/a1 −m)2

4e

))
e−t.

Let M be a large enough positive number such that 1+ (c/a1−m)2

4e
M = ε, which is a

sufficiently small positive constant. Applying Chebyshev’s inequality, we have

P{|X(t)| ≥ M} ≤ E|X(t)|
M ≤

1 + (c/a1−m)2

4e
M = ε.

Taking the superior limit of both sides of the above inequality leads to

lim sup
t→∞

P{|X(t)| ≥ M} ≤ E|X(t)|
M ≤ ε,

which implies
P{|X(t)| ≤ M} ≥ 1− ε.

On the other hand,

EV1(x) = x(0) +
∫ t

0
esEx

(
1 +

1− x
1 + f y(t− τ1)

− cy
1 + a1x + a2y

)
dt

≥ x(0) +
∫ t

0
esEx

(
1 +

1− x
1 + f y(t− τ1)

− c
a2

)
dt.



Mathematics 2022, 10, 3378 14 of 25

By the first conclusion, we have

1 +
1− x

1 + f y(t− τ1)
≥ 1 +

1− x
1 + fM .

Let f (x) = x
(

1 +
1− x

1 + fM − c
a2

)
. To find the supremum value of f (x), we compute

sup
x≥0

f (x) =
a2 − c(1 + fM)

4a2
2(1 + fM)

.

By the definition of supremum, then

EV(x) ≥ x(0) +
a2 − c(1 + fM)

4a2
2(1 + fM)

(et − 1).

Consequently, as t→ ∞, we have

E(x) ≥ a2 − c(1 + fM)

4a2
2(1 + fM)

+

(
x0 −

a2 − c(1 + fM)

4a2
2(1 + f M)

)
e−t ≥ a2 − c(1 + fM)

4a2
2(1 + fM)

.
= ι.

Let ς be a large enough positive number such that 1
ις = ε is a sufficiently small positive

constant. Applying Chebyshev’s inequality again, we have

P
{

1
x
≥ ς

}
≤ 1

ςE(x)
≤ 1

ςι
= ε,

i.e.,

P
{

x ≤ 1
ς

}
≤ ε,

which implies

P
{

x ≥ 1
ς

}
≥ 1− ε.

Applying Itô’s formula to V2(y) = ety, then

dV2(y) =

(
ety + ety

(
cx(t− τ2)

1 + a1x(t− τ2) + a2y(t− τ2)
−m− ey

)
dt + etσ2y(y− y∗

)
dw2(t)

≥ ety
(

1 +
cx(t− τ2)

1 + a1x(t− τ2) + a2y(t− τ2)
−m− ey

)
dt + etσ2y(y− y∗)dw2(t).

Thus,

1 +
cx(t− τ2)

1 + a1x(t− τ2) + a2y(t− τ2)
−m− ey ≥ 1 +

c/ς

1 + a1M+ a2M
−m− ey.

Let f (y) = y
(

1 +
c/ς

1 + a1M+ a2M
−m− ey

)
. By the same reasoning, we deduce

that the supremum value of f (y) is as follows:

sup
x≥0

f (y) =

(
1 +

c/ς

1 + a1M+ a2M
−m

)2

4e
.
= v.

Consequently,
E(y) ≥ v + (x(0)−v)e−t ≥ v, t→ ∞.
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Take ς as before such that 1
vς = ε > 0 is small enough. Applying Chebyshev’s

inequality, we have

P
{

y ≥ 1
ς

}
≤ ε.

It is clear that |X(t)| = (x2 + y2)
1
2 ≥

√
2

ς
.
= N ; then

P{X(t) ≥ N} ≤ ε.

This completes the proof.

Remark 4. By the second equation of (4), we have dy ≤ y( c
a1
−m− ey) + σ2y(y− y∗)dw2(t).

The numerical solution is

y =
exp[(c/a1 −m + y∗2σ2

2 /2)t− σ2y∗w2(t)]

y0 + e
∫ t

0 exp[(c/a1 −m + y∗2σ2
2 /2)s− σ2y∗w2(s)]ds

.

Thus, approximately, y ≤ c/a1−m+y∗2σ2
2 /2

e = T̃ if y0 ≥ e
c/a1−m+y∗2σ2

2 /2
, which is used in the

proof of the stationary distribution.

3.3. Stability in Distribution

For the proof of existence and uniqueness of a stable distribution ψ of (4) that is ergodic,
we present a useful lemma.

Lemma 3 ([25]). Suppose O ⊂ Rn is a region with a regular boundary. For System (5), if the
below conditions hold:

(1) There exists a constant M > 0 such that ∑n
i,j=1 ai,j(x)ξiξ j ≥ M|ξ|2, x ∈ O, ξ ∈ Rn.

(2) There exists a non-negative function V(x) ∈ C2 such that LV(x) is negative for any
x ∈ Rn/O.

Then the Markovian process X(t) is stable in distribution, where the distribution ψ(·) is
unique and ergodic; Hence,

P
{

lim
t→∞

1
t

∫ t

0
f (X(s))ds =

∫
Rn

f (x)ψ(dx)
}

= 1,

for any x ∈ Rn, where function f (·) is integrable about the given measure ψ.

Theorem 5. Suppose E∗(x∗, y∗) is the unique positive equilibrium status of System (2) such that

1
1 + f T̃

>
ca1y∗

1 + a1x∗ + a2y∗
+

f (1− x∗)
2(1 + f y∗)

+
c(1 + a2y∗)

2(1 + a1x∗ + a2y∗)
+

σ2
1 x∗

2
,

e >
c(1 + a2y∗)

2(1 + a1x∗ + a2y∗)
+

f (1− x∗)
2(1 + f y∗)

+
σ2

2 y∗

2
,

Then for system (4) with initial value φi(θ) > 0, θ ∈ [−τ, 0] (i = 1, 2), there exists a
unique stationary distribution ψ, and it has an ergodic property.

Proof. By Theorem 3, we know that the region R2
+ is invariant for process (x(t), y(t)). By

Lemma 3, we only need to find a bounded domain O ⊂ R2
+ satisfying those conditions. We

recall that (x∗, y∗) is the positive equilibrium status of (1) satisfying

1− x∗

1 + f y∗
=

cy∗

1 + a1x∗ + a2y∗
,

cx∗

1 + a1x∗ + a2y∗
= m + ey∗.
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Next, we go to construct the required functional. Define V1(x) : D ⊂ R+ → R+

as follows:

V1(x) =
∫ x−x∗

0

v
v + x∗

dv.

Obviously, it is positive for all x 6= x∗. Differentiating V1(x) along the solution of (4),
we get

LV1(x)|(4) = (x− x∗)
(

1− x
1 + f y(t− τ1)

− cy
1 + a1x + a2y

)
+

σ2
1 x∗

2
(x− x∗)2

= (x− x∗)
(

(1− x)
1 + f y(t− τ1)

− cy
1 + a1x + a2y

− 1− x∗

1 + f y∗
+

cy∗

1 + a1x∗ + a2y∗

)
+

σ2
1 x∗

2
(x− x∗)2

≤ −
(

1
1 + f T̃

− ca1y∗

1 + a1x∗ + a2y∗
−

σ2
1 x∗

2

)
(x− x∗)2 +

f (1− x∗)
1 + f y∗

(y(t− τ1)− y∗)(x− x∗)

≤ −
(

1
1 + f T̃

− ca1y∗

1 + a1x∗ + a2y∗
−

σ2
1 x∗

2
− f (1− x∗)

2(1 + f y∗)

)
(x− x∗)2

+
f (1− x∗)

2(1 + f y∗)
(y(t− τ1)− y∗)2.

Define

V2(t) =
f (1− x∗)

2(1 + f y∗)

∫ t

t−τ1

(y(s)− y∗)2ds.

Differentiating V2(t) on variable t gives

dV2(t)
dt

=
f (1− x∗)

2(1 + f y∗)
(y− y∗)2 − f (1− x∗)

2(1 + f y∗)
(y(t− τ1)− y∗)2.

Then

L(V1(x) + V2(t)) ≤ −
(

1
1 + f T̃

− ca1y∗

1 + a1x∗ + a2y∗
−

σ2
1 x∗

2
− f (1− x∗)

2(1 + f y∗)

)
(x− x∗)2

+
f (1− x∗)

2(1 + f y∗)
(y− y∗)2.

Define

V3(y) =
∫ y−y∗

0

v
v + y∗

dv.

Similarly, it is defined positively in t ∈ [0, ∞). Differentiating V3(y) along the solution
of (4) again, we have

LV3(y)|(4) = (y− y∗)
(

cx(t− τ2)

1 + a1x(t− τ2) + a2y(t− τ2)
− d− ey

)
+

σ2
2 y∗

2
(y− y∗)2

= (y− y∗)
(

cx(t− τ2)

1 + a1x(t− τ2) + a2y(t− τ2)
− d− ey

− cx∗

1 + a1x∗ + a2y∗
+ d + ey∗

)
+

σ2
2 y∗

2
(y− y∗)2

≤ −
(

e−
σ2

2 y∗

2

)
(y− y∗)2 +

c(1 + a2y∗)
2(1 + a1x∗ + a2y∗)

((x(t− τ2)− x∗)2 + (y− y∗)2)

≤ −
(

e−
σ2

2 y∗

2
− c(1 + a2y∗)

2(1 + a1x∗ + a2y∗)

)
(y− y∗)2 +

c(1 + a2y∗)
2(1 + a1x∗ + a2y∗)

(x(t− τ2)− x∗)2.
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In order to eliminate the delay term, we define

V4(t) =
c(1 + a2y∗)

2(1 + a1x∗ + a2y∗)

∫ t

t−τ2

(x(s)− x∗)2ds.

Thus,

L(V3(y) + V4(t)) ≤ −
(

e−
σ2

2 y∗

2
− c(1 + a2y∗)

2(1 + a1x∗ + a2y∗)

)
(y− y∗)2 +

c(1 + a2y∗)
2(1 + a1x∗ + a2y∗)

(x− x∗)2.

Let V(t) = V1(x) + V2(t) + V3(y) + V4(t), then

LV(t) = −
(

1
1 + f T̃

− ca1y∗

1 + a1x∗ + a2y∗
− f (1− x∗)

2(1 + f y∗)
− c(1 + a2y∗)

2(1 + a1x∗ + a2y∗)
−

σ2
1 x∗

2

)
(x− x∗)2

−
(

e− c(1 + a2y∗)
2(1 + a1x∗ + a2y∗)

− f (1− x∗)
2(1 + f y∗)

−
σ2

2 y∗

2

)
(y− y∗)2.

Under the given condition, obviously LV(t) < 0, which implies that Condition (2) of
Lemma 3 holds. On the other hand, it is clear that there exists a M > 0 such that

2

∑
i,j=1

aij(x, y)ξiξ j = σ2
1 x2(x− x∗)2ξ2

1 + σ2
2 y2(y− y∗)2ξ2

2 ≥ M|ξ|2,

for all (x, y) ∈ O, ξ ∈ R2. Hence, Condition (1) of Lemma 3 is also satisfied. Together with
the positive invariant property, System (4) therefore has a stable stationary distribution
ψ(·), and it is ergodic.

If τ1 = τ2 = 0, then System (4) leads to (8) as follows.
dx
dt

= x
(

1− x
1 + f y

− cy
1 + a1x + a2y

)
+ σ1x(x− x∗)dw1(t),

dy
dt

= y
(

cx
1 + a1x + a2y

−m− ey
)
+ σ2y(y− y∗)dw2(t).

(8)

For (8), by the same manner, we have the following finding.

Corollary 2. For (8) with initial value (x0, y0) ∈ R2
+, there is a stationary distribution ψ with an

ergodic property provided that 1
1+ f T̃ > ca1y∗

1+a1x∗+a2y∗ +
σ2

1 x∗

2 and e > σ2
2 x∗

2 .

If f = 0, τ1 = τ2 = 0, by use of the ergodic property of ψ(·), we have the following
proposition.

Proposition 1. Suppose the conditions in Theorem 5 hold. Then

lim
t→∞

1
t

∫ t

0
x(s)ds =

∫
R2
+

z1ψ(dz1, dz2), a.e.,

lim
t→∞

1
t

∫ t

0
y(s)ds =

∫
R2
+

z2ψ(dz1, dz2), a.e.

Proof. By Theorem 4, we know that E(x) ≤ M, E(y) ≤ M for all t ∈ [0, ∞), where

M = 1 + (c/a1−m)2

4e . By the ergodic property, for all n > 0 we get

lim
t→∞

1
t

∫ t

0
(x(s) ∧ n)ds =

∫
R2
+

(z1 ∧ n)ψ(dz1, dz2), a.e.,
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lim
t→∞

1
t

∫ t

0
(y(s) ∧ n)ds =

∫
R2
+

(z2 ∧ n)ψ(dz1, dz2), a.e.

By the dominated convergence theorem, we have

E[ lim
t→∞

1
t

∫ t

0
(x(s) ∧ n)ds] = lim

t→∞

1
t

∫ t

0
E(x(s) ∧ n)ds] ≤M,

E[ lim
t→∞

1
t

∫ t

0
(y(s) ∧ n)ds] = lim

t→∞

1
t

∫ t

0
E(y(s) ∧ n)ds] ≤M.

Thus, ∫
R2
+

(z1 ∧ n)ψ(dz1, dz2) ≤M,
∫

R2
+

(z2 ∧ n)ψ(dz1, dz2) ≤M.

Taking the limit as n→ ∞ leads to∫
R2
+

z1ψ(dz1, dz2) ≤M,
∫

R2
+

z2ψ(dz1, dz2) ≤M.

That is to say, z1 and z2 are integrable with respect to the measure ψ. From Thereom 5,
we know that the measure ψ has an ergodic property; then

lim
t→∞

1
t

∫ t

0
x(s)ds =

∫
R2
+

z1ψ(dz1, dz2), a.e.,

lim
t→∞

1
t

∫ t

0
y(s)ds =

∫
R2
+

z2ψ(dz1, dz2), a.e.

This completes the proof.

Remark 5. By Proposition 1, we find that the mean and variance of the stationary distribution
ψ(·) can be easily computed. It is clear that the mean

x̄ = lim
t→∞

1
t

∫ t

0
x(s)ds =

∫
R2
+

z1ψ(dz1, dz2), a.e.,

ȳ = lim
t→∞

1
t

∫ t

0
y(s)ds =

∫
R2
+

z2ψ(dz1, dz2), a.e.

and the covariance matrix of ψ(·) is

Π =

(
a11 a12
a21 a22

)
,

where

a11 = lim
t→∞

1
t

∫ t

0
(x(s)− x̄)2ds,

a12 = a21 = lim
t→∞

1
t

∫ t

0
(x(s)− x̄)(y(s)− ȳ)ds,

a22 = lim
t→∞

1
t

∫ t

0
(y(s)− ȳ)2ds.

The mean and variance of ψ(·) are useful for population system.

4. Numerical Analysis

Some numerical examples are given to visualize the globally asymptotically stable
equilibrium status, and the important impact of various parameters on system dynamics
are to be explored in this section.
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First, we validate our theoretical results by numerical examples. Fix a set of parameter
values given below:

c = 1.5, a1 = 3, a2 = 0.3, m = 0.3, e = 0.8. (9)

We vary the fear value to see how it affects the equilibrium status. Take f = 0, i.e.,
there is no fear effect on System (2); then, the equilibrium status is E∗0 (0.9669, 0.0867). For
f = 5 and f = 50, the corresponding equilibrium statuses are E∗(0.9532, 0.0850) and
Ê∗(0.8597, 0.0726), respectively. That is, if the fear f induced by the predator is large, then
both the predator and prey populations are smaller at equilibrium. That means the value
of fear from the predator brings some negative influence to the system dynamics (see
Figure 1).
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Figure 1. Time-series curves of equilibrium statuses of System (2). The blue line is for
E∗0 = E∗0 (0.9669, 0.0867) ( f = 0), the green line is for E∗ = E∗(0.9532, 0.0850) ( f = 5), and the
red line is for Ê∗ = Ê∗(0.8597, 0.0726) ( f = 50).

Then, we investigate the global asymptotic stability of equilibrium statuses of
E∗0 (0.9669, 0.0867) and E∗(0.9532, 0.0850). For the fixed values of parameters in (9) and
E∗0 (0.9669, 0.0867), we compute the numerical solutions and depict the time-series curves
(Figure 2), which are in accordance with our theoretical findings of Theorem 2 because
1 > D1 = 0.0994.
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Figure 2. The asymptotic stability of E∗0 (x∗, y∗) of model (2).

For f = 5 and E∗(0.9532, 0.0850), since 1
1+ f T = 0.5714 > D1 = 0.0985, by use of

Theorem 2 again, it should be still globally stable, which is verified by the numerical graph,
see Figure 3. If τ1 = τ2 = 0.2, then the equilibrium status also keeps stable, see Figure 4.
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Figure 3. Global stability of E∗(x∗, y∗) of Model (2).
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Figure 4. Global stability of E∗(x∗, y∗) of Model (2) with τ1 = τ2 = 0.2.

Now, we validate the stochastic results by performing numerical simulations in MAT-
LAB. The stochastic terms are simulated through Milstein’s higher-order method [31]. We
take the parameter values as in (9) and σ1 = σ2 = 1 and solve the numerical solutions of
System (4) (see Figure 5).

This reveals that System (4) has a stationary distribution; that is, the equilibrium status
E∗(x∗, y∗) remains globally asymptotically stable. We summarize all simulation results in
Table 2.

Table 2. Numerical simulations of (4) with parameters given in (9).

Parameters
Stability of Equilibria Simulation Figures

Fear Time Delays Stochastic Effect Equilibria

0 0 0 E∗0 yes Figure 2

5 0 0 E∗ yes Figure 3

5 0.2 0 E∗ yes Figure 4

5 0.2 1 E∗ yes Figure 5
where E∗0 = E∗0 (0.9669, 0.0867), E∗ = E∗(0.9532, 0.0850).

Further, we explore the effects of fear, delays and stochastic parameters on the system
dynamics of the equilibrium state of (2) numerically. Set the parameter values of (2)
as follows:

c = 0.73, a1 = 1.98, a2 = 0.01, m = 0.0695, e = 0.05. (10)

Let f = 5, then, the equilibrium state of (2) is E∗(0.1701, 0.4612). The numerical
curves imply that it remains globally asymptotically stable (see Figure 6). When the fear
is large enough, for example f = 1000, then the equilibrium state is Ẽ∗(0.1214, 0.0381),
which is unstable (see Figure 7). From a biological point of view, a too high amount
of fear can make the prey exhibit such anti-predation responses as foraging, vigilance
and even starvation, reducing the population. Certainly, due to the shortage of prey, the
predator population also declines, which leads to a coexistence equilibrium state with lower
species densities.



Mathematics 2022, 10, 3378 21 of 25

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t−axis

sta
te−

ax
is

(a)

 

 

x
*
=0.9532

x

y
*
=0.0850

y(t)

30 32 34 36 38 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t−axis

d
e
n
s
it
y
−

a
x
is

(b)

 

 

Distribution of x (t)

30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t−axis

d
e

n
s
it
y
−

a
x
is

(c)

 

 

Distribution of y(t)

Figure 5. The stationary distribution of (4) with σ1 = σ2 = 1: (a) time-series curves of x(t) and y(t);
(b) density distribution of x(t); and (c) density distribution of y(t).
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Figure 6. Global stability of E∗(x∗, y∗) of Model (2) with f = 5: (a) time-series curves of x(t) and y(t)
and (b) phase diagram.
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Figure 7. Equilibrium status Ẽ∗ of Model (2) with f = 1000 is numerically unstable: (a) time-series
curves of x(t) and y(t) and (b) phase diagram.

Next, we investigate the influence of time delay and white noise on the system dy-
namics of E∗. Let τ = 0.5 and solve (2) numerically; then we get Figure 8, which indicates
the stability of E∗ fails due to the impact of delays. We alter the values of stochastic pa-
rameters to explore the effect of white noise. Let σ1 = σ2 = 0.02; Figure 9 shows that a
small amount of white noise does not influence the numerical stability of E∗, whereas with
greater amounts of white noise, i.e., σ1 = σ2 = 0.5, the simulation reveals that E∗ is unstable
(see Figure 10). From a biological angle, if the delay and white noise are relatively small,
then their effects can be ignored since this kind of negative role is not enough to affect the
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long-time behavior of species, but if the effects are large enough, then the biomass will
change rapidly in a short period of time so that the negative roles of delay and white noise
cannot be offset, which makes the system unstable.
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Figure 8. The equilibrium status E∗ of (2) with τ = 0.5 is numerically unstable: (a) time-series curves
of x(t) and y(t), (b) is the phase diagram.
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Figure 9. The global stability of E∗(x∗, y∗) of (4) with σ1 = σ2 = 0.02: (a) time-series curves of x(t)
and y(t) and (b) phase diagram.
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Figure 10. The equilibrium status E∗(x∗, y∗) of (4) with σ1 = σ2 = 0.5 is numerically unstable:
(a) time-series curves of x(t) and y(t) and (b) phase diagram.

We summarize the simulation results in Table 3.

Table 3. Numerical simulations of (4) with parameters given in (10).

Parameters
Stability of Equilibria Simulation Figures

Fear Time Delay Stochastic Effect Equilibria

5 0 0 E∗ yes Figure 6

1000 0 0 Ẽ∗ no Figure 7

5 0.5 0 E∗ no Figure 8

5 0 0.02 E∗ yes Figure 9

5 0 0.5 E∗ no Figure 10

where E∗ = E∗(0.1701, 0.4612), Ẽ∗ = Ẽ∗(0.1214, 0.0381).
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5. Conclusions

For predator–prey systems for which the predator scale is sufficiently large, it is
reasonable to use a density-dependent functional response to describe predation, and
the fear of prey due to a powerful predator cannot be ignored; hence, we propose a
delayed prey–predator model with Beddington–DeAngelis functional response and fear of
a predator in a deterministic environment, and then analyze the global asymptotic stability
of the equilibrium status of the model with or without time delays. Then, we extend
the deterministic model to random environments and get a stochastic model. Applying
Lyapunov functional theory, we investigate the distribution stability. Our main results are
summarized in Table 4.

The theoretical results are indicated by above examples (see Figures 1–5). The impor-
tant effects of multiple time lags (delayed fear and delayed gestation), fear of predators and
environmental white noise are revealed by simulations (Figures 6–10). From Figure 1, we
find that the parameter value of fear affects the value of the equilibrium status E∗(x∗, y∗).
In other words, the equilibrium E∗(x∗, y∗) is smaller if the value of fear of the predator
is larger. Figures 2–5 show the long-time behavior of E∗(x∗, y∗); i.e., it is globally stable
when the conditions in the main results are satisfied. Figures 6–10 reveal that the parameter
values have large impacts on the stability of System (5), which can change the dynamics
of the equilibrium state from stable to unstable. We deduce that there may be a threshold
for every parameter for system stability. In other words, we numerically observe that
factors such as fear of prey, time delay of fear, time delay of gestation, and environmental
disturbance can greatly influence the stability of the equilibrium status of System (2). In
detail, the main contributions of this research are as follows:

• Theorems 1 and 2 show the effects of fear on the global stability of Systems (1) and (2),
respectively. Remark 2 reveals the effect of delay on system dynamics.

• Lemma 2 gives the representation of the solution of the stochastic differentialEquation (6).
By use of the comparison method together with Lemma 2, the existence of the solution
of System (4) is proved, which is distinct from the Lyapunov functional methods
applied in some existing research [9,15,32].

• Theorem 3 shows theoretically the effects of environmental white noise and fear on
the distribution stability.

• The effects of fear, white noise and delays are validated by simulation examples
visually and numerically in Figures 1–10.

Table 4. Stability conditions of the equilibrium points E∗(x∗, y∗).

Parameters
Stability Conditions

Fear ( f ) Stochastic Effect (σ) Time Delay (τ)

no no no 1 > D1

no no yes 1 > D1 + D3

no yes no 1 > D1 +
σ2

2 x∗

2 , e > σ2
2 y∗

2

no yes yes 1 > D1 + D2 + D3 +
σ2

2 x∗

2 , e > D1 + D2 +
σ2

2 y∗

2

yes no no 1
1+ f T > D1

yes no yes 1
1+ f T > D1 + D3

yes yes no 1
1+ f T̃ > D1 +

σ2
2 y∗

2 , e > σ2
2 y∗

2

yes yes yes 1
1+ f T̃ > D1 + D2 + D3 +

σ2
2 y∗

2 , e > D1 + D2 +
σ2

2 y∗

2

where T = c/a1−m
e , T̃ =

c/a1−m+y∗2σ2
2 /2

e , D1 = ca1y∗
1+a1x∗+a2y∗ , D2 = f (1−x∗)

2(1+ f y∗) , D3 = c(1+a2y∗)
2(1+a1x∗+a2y∗) .
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In light of our findings, in order to decrease the negative effects of delayed fear
and white noise in order to maintain ecological balance, some measures may be under-
taken, such as (i) construction of refuge zones to reduce the prey’s fear of predators,
(ii) provision of additional food for predators to protect the prey while maintaining the
predator population, and (iii) application of some ‘biological control’ strategies such as
releasing predators to control prey, and so on.

Some interesting topics deserve further study. Firstly, by simulation examples, some
oscillations occur, and there may exist parameter thresholds for stability. Then, it is un-
known if the Hopf bifurcations occur at some critical value of fear f or time delay τ1 and τ2.
Secondly, due to sudden environmental perturbations such natural biological/ecological
disasters and sudden changes in weather (hurricanes), which are usually modeled by
environmental Lévy noise, it is necessary to introduce Lévy noise to the population model.
Thirdly, there is uncertainty created by interactions between different species and shortage
of food resources in real-world systems. A review of the literature shows that this uncer-
tainty plays a key role in using mathematical models to predict population dynamics (see,
for example [33,34] and references cited therein). Thus, incorporated uncertainty into our
model to examine changes in system dynamics is a very interesting topic to be explored.
We leave these subjects for future research.
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