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Abstract: Multivariate modelling of economics data is crucial for risk and profit analyses in compa-
nies. However, for the final conclusions, a whole set of variables is usually transformed into a single
variable describing a total profit/balance of company’s cash flows. One of the possible transforma-
tions is based on the product of market variables. Thus, in this paper, we study the distribution of
products of Pareto or Student’s t random variables that are ubiquitous in various risk factors analysis.
We review known formulas for the probability density functions and derive their explicit forms for
the products of Pareto and Gaussian or log-normal random variables. We also study how the Pareto
or Student’s t random variable influences the asymptotic tail behaviour of the distribution of their
product with the Gaussian or log-normal random variables and discuss how the dependency between
the marginal random variables of the same type influences the probabilistic properties of the final
product. The theoretical results are then applied for an analysis of the distribution of transaction
values, being a product of prices and volumes, from a continuous trade on the German intraday
electricity market.

Keywords: multivariate random variables; product; Pareto distribution; Student’s t distribution;
heavy tails; transaction value; electricity
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1. Introduction

A comprehensive approach to risk management should involve multivariate mod-
elling of economics data as interactions between market variables cannot be simply ne-
glected. However, for the final conclusions a whole set of variables is usually transformed
into a single variable describing a total profit/balance of company’s cash flows. Often, this
transformation is based on the product of market variables. Among many others, these are,
e.g., quotes of commodities in the operational currency of a company, being the product of
prices and exchange rates [1], economic variables with random discount factors [2], and
company’s profit with random tax rates [3] or transaction values, being the product of
prices and volumes. The latter case will be further illustrated in Section 6 based on the
German continuous electricity market data.

In this paper, we analyze the probabilistic properties of the product random variable
defined as

Z = XY, (1)

where X and Y, called marginal random variables, have continuous distributions. In a
general case, the probability density function (PDF) of Z is given by [4,5]

fZ(z) =
∫ ∞

−∞

1
| x | fX,Y

(
x,

z
x

)
dx, (2)
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where fX,Y(x, y), x, y ∈ R is a two-dimensional PDF of the vector (X, Y). Obviously,
the general properties of the product simplify when the marginal random variables are
independent. In that case, the corresponding bi-dimensional random vector has the PDF
that is a product of the marginal densities, i.e., we have

fZ(z) =
∫ ∞

−∞

1
| x | fX(x) fY

( z
x

)
dx, (3)

where fX(x) and fY(y) are the PDF’s of the marginal distributions corresponding to X and
Y, respectively.

In this paper, we separately study the cases when at least one random variable is
Pareto [6] or Student’s t distributed [7]. These distributions belong to the so-called heavy-
tailed class of distributions, for which the variance may be infinite. Therefore, they are
appropriate for modelling phenomena with a high probability of extreme observations.
On the other hand, for both distributions, the probability density function is given by an
explicit formula, being convenient for statistical analyses. As a consequence, the Pareto
and Student’s t distributions are frequently used in various interesting applications; see,
e.g., [8–11]. Both considered heavy-tailed distributions are also crucial in risk analysis and
were applied for description of variables describing the risk factors from different areas of
interest. See, e.g., Refs. [12–15] for an application of the Student’s t distribution and Refs.
[16–19]—for the Pareto distribution. The Pareto distribution is skewed with power-law
tails, while the Student’s t distribution is symmetric and bell-shaped. It resembles the
normal distribution for large values of the degrees of freedom parameter.

We start with an analysis of the joint Pareto (or Student’s t) distribution of the marginal
variables. In this case, we examine how dependency between the variables (expressed by
means of the correlation coefficient for the finite-variance case) influences the probabilistic
properties of the final product. Next, we consider the case, when the marginal random
variables belong to different classes, i.e., heavy-tailed and finite-variance distributions. The
first class is represented here by the Pareto or Student’s t distributions while the second-one
by the Gaussian or log-normal ones. In each case, we give the formula for the product
PDF. In particular, explicit forms are derived for the products of Pareto and Gaussian or
log-normal distributions and, for completeness, recalled from the literature for the product
of two independent Pareto variables with different shape parameters [3] and the product of
Student’s t and Gaussian variables [7]. The asymptotic behaviour of the PDF is shown for
all products with independent Pareto random variable and for the product of the Gaussian
and Student’s t variables. We also calculate the expected value and the variance (if they
exist) for all independent cases.

The theory related to the product random variables has found many interesting
applications; see Section 2. Here, the methodology is applied to real data from the energy
market. We analyze the distribution of the transaction values, being a product of prices and
volumes, from a continuous trade on the German intraday electricity market. We show that,
using the derived product distribution, a fit to the transaction values data can be obtained,
being at the same time consistent with the corresponding prices and volumes distributions.

The first main contribution of the paper is the analysis how the dependence between
marginal random variables coming from given joint distribution (here Pareto or Student’s
t) influences the properties of their product. According to our knowledge, such analyses
are rarely discussed in the literature; however, they may be crucial in real applications.
The second contribution is the analysis of the product random variables coming from
different classes of distributions and investigation of how the parameter responsible for
the heavy-tailed behavior of one of the variables influences the asymptotic tail of the final
product. Finally, we propose the estimation procedure for the product random variable
and demonstrate its efficiency for simulated data.

The rest of the paper is organized as follows: In Section 2, we present the previous
studies related to product random variables and indicate our contribution to this theory. In
Section 3, we conduct a theoretical study on the product distribution in the case, when at
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least one variable has the Pareto distribution. The analogous analysis for the Student’s t
distribution is derived in Section 4. Next, in Section 5, the obtained theoretical properties
are used for the simulation study on the estimation of the parameters of the product
distribution. A possible application of the obtained results is illustrated in Section 6, while
Section 7 concludes the paper. Potential future research directions are then discussed in
Section 8. Additionally, for completeness, in the Appendix A we give the main properties
of the product of the considered representatives of the finite-variance class of distributions,
i.e., the Gaussian and log-normal one.

2. State of the Art

In the literature, there are various examples of random variables for which the product
is analyzed in theory and practice. Particular emphasis is placed on the product of two
random variables that come from the same class of distributions; see, e.g., [20–24]. A
special attention is paid to the case when two considered random variables are Gaussian or
Student’s t distributed; see, e.g., [4,7,25–28]. The other interesting cases one can find also
in [29], where exponentially distributed random variables are considered or in [30], where
Dirichlet distributed random variables are examined. For other references, see also [31–34].

Many authors analyze also the products of random variables having similar probabilis-
tic properties. We mention here the interesting research related to non-negative random
variables [35], continuous random variables [36], symmetric random variables [37] , subex-
ponential random variables [38] or regular-variation-tailed random variables [39]. See
also [40].

Different classes of distributions are also considered in the literature and the product
of such random variables is analyzed; see, e.g., [34,41–46] and references therein. General
properties of the products of subexponential and long-tailed class were studied by [47]. A
particular attention was also paid on the studies of the product of Pareto and Kumaraswamy
random variables [48], Pearson (type VII) and Laplace random variables [49], Pareto
and Rayleigh random variables [50] or product of Beta, Gamma and Gaussian random
variables [51]. Our studies presented in this paper are related to both cases, i.e., when
random variables come from the same as well as different classes of distributions.

Most of the theoretical studies are dedicated to the cases when the considered random
variables are independent; see, e.g., [52–54]; however, there are also articles where a product
of two correlated random variables is examined; see, e.g., [2,55,56]. In this paper, we consider
both cases, namely when the random variables are independent as well as correlated.

When one considers product random variables, the main attention is paid on their
moments [28,35,57], probability distribution (i.e., PDF) [51,54,55] or other statistical charac-
teristics [24,52]. However, there are also analyses related to tails behavior [2,38,39,47,58] or
other asymptotic properties [40,53,59]. In this paper, we also study the basic characteris-
tics of product random variables, like the PDF and moments, but we also examine their
tail behavior.

We also refer the readers to the general theory of a random variables arising as a
product [57,60] or studies devoted to representations of some random variables expressed
as a product [61].

Beyond theoretical considerations, the random variables that arise as a product (or
other functions) of two variables have found various interesting applications including
finance, economy, but also physical sciences, reliability theory, hydrology, and many
others; see, e.g., [1,45,62–67] and the corresponding comments in [2,68–70]. The theory of
product random variables was applied also in cognitive radio networks [40], sociological
models [70], risk theory [2] or wireless communication systems [24]. In this paper, the
proposed methodology is applied to the transaction values from the energy market.

3. Pareto Distribution

In this section, we study probabilistic properties of the product of two random vari-
ables in the case when at least one of them is Pareto distributed. The second variable is
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either dependent Pareto distributed, independent Pareto distributed or belonging to the
finite-variance class, represented by the Gaussian or log-normal distribution.

3.1. Product of Two Pareto Distributed Random Variables

The two-dimensional Pareto distributed random vector (X, Y) with parameters a, θX ,
θY > 0 has the following PDF [6]:

fX,Y(x, y) =
a(a + 1)(θXθY)

a+1

(xθY + yθX − θXθY)a+2 , x > θX , y > θY. (4)

The above parametrization corresponds to the Pareto distribution of the first kind [71].
The shape parameter a is responsible for the behavior of the distribution tail. The marginal
distributions of X and Y are given by

fX(x) =
aθa

X
xa+1 , x > θX , fY(y) =

aθa
Y

ya+1 , y > θY. (5)

Note that the parameter a is the same for both marginal distributions. For a > 2,
the random variables X and Y described by the PDF (4) are positively correlated. The
covariance and correlation are given by, respectively,

cov(X, Y) =
θXθY

(a− 1)2(a− 2)2 , corr(X, Y) =
1
a

. (6)

It is interesting to note that, here, the correlation between the marginal variables is
governed by the shape parameter a. As a consequence, with such parametrization, X and
Y are always positively correlated.

When the random vector (X, Y) is described by the PDF given in Equation (4), using
Formula (2), one obtains

fZ(z) = (a + 1)a(θXθY)
a+1

z
θY∫

θX

1
x
(θYx + θX

z
x
− θXθY)

−a−2dx, z > θXθY, (7)

where fZ(·) is the PDF of the product of X and Y. The integral in Equation (7) has no
closed form and can be expressed by means of the Appel hypergeometric special function.
However, one can obtain its value with numerical calculations.

As one can see, the two-dimensional Pareto distribution defined by the PDF in
Equation (4) does not cover the case with uncorrelated marginal random variables. In
the case when X and Y are independent and are described by the Pareto distributions of the
PDFs given in (5) with aX , θX > 0 and aY, θY > 0, respectively, then the PDF of the vector
(X, Y) is given by the product of the marginal PDFs, fX(x) and fY(y) and the PDF of the
product Z, given in Equation (1), can be explicitly derived.

Lemma 1. Assume that independent random variables X and Y have the Pareto distribution with
parameters aX , θX and aY, θY, respectively. Then, for aX 6= aY, the random variable Z defined in (1)
has the following PDF:

fZ(z) = aXaY

(
z−aX−1(θXθY)

aX

aY − aX
+

z−aY−1(θXθY)
aY

aX − aY

)
, z > θXθY. (8)

When aX = aY = a, then the PDF of Z has the following form:

fZ(z) = a2(θXθY)z−a−1 log
(

z
θXθY

)
, z > θXθY. (9)
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Proof. The proof comes directly from formula (3) and the fact that the PDF of the random
vector (X, Y) is given by the product of marginal PDFs of X and Y for aX 6= aY and
aX = aY = a. Note that the PDF formula for aX 6= aY is a special case of the PDF of the
product of n independent Pareto random variables, derived in [3].

When one considers a random vector of the two-dimensional Pareto distribution
defined by the PDF in Equation (4), then there are no closed forms for the expectation
(when a > 1) and the variance (when a > 2) of the random variable Z. However, when X
and Y are independent random variables, then the expected value and the variance of the
random variable Z are given by [6]

E(Z) =
θXθYaXaY

(aX − 1)(aY − 1)
, aX , aY > 1, (10)

Var(Z) = θ2
Xθ2

YaXaY

[
(aX − 1)2 + (aY − 1)2 − 1

(aX − 2)(aY − 2)(aX − 1)2(aY − 1)2

]
, aX , aY > 2. (11)

In Figure 1, we plot the PDF and the corresponding distribution tail of the random
variable Z that is a product of marginal random variables from the two-dimensional Pareto
distribution described by the PDF (4) for different values of the a parameter. Recall that
the correlation (if exists) is directly related to the shape parameter a; see (6). Thus, it is
influenced by the distribution tails. With larger a (lower corr(X, Y)), the probability of
extreme observations becomes lower. In all cases, the distribution tails behave like a power
function with a clear linear shape in the double logarithmic scale. For comparison, we also
show the plots for the corresponding product of independent Pareto marginal variables. In
this case, the probabilities of extreme observations are lower than for the corresponding
dependent Pareto distribution, but the power tail behavior is preserved.
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Figure 1. Distribution of the product of marginal random variables from the two-dimensional Pareto
distribution with θX = θY = 1 and different values of the a parameter. (Left panel): the PDF of
the random variable Z. (Right panel): the distribution tail for the random variable Z (in log-log
scale). The dotted lines correspond to the case when X and Y are independent and aX = aY = a,
θX = θY = 1. The colors of the solid and dotted lines correspond to the same a parameter.

3.2. Product of Gaussian and Pareto Distributed Random Variables

In this section, we assume that X is a Gaussian random variable with parameters
µX = 0 and σX > 0 and Y is a Pareto distributed random variable with parameters aY > 0
and θY > 0 defined in the previous subsection. Moreover, we assume that X and Y are
independent. Note that the main probabilistic properties of the two-dimensional Gaussian
distribution and its product are recalled in the Appendix A for completeness.
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Lemma 2. The random variable Z defined as a product of X and Y has the following PDF:

fZ(z) =
aYθ

aY
Y σ

aY
X√

2π | z |aY+1
2(aY−1)/2γ

(
aY + 1

2
,

z2

2σ2θ2
Y

)
, z ∈ R, (12)

where Γ(·) is the Gamma function, i.e., Γ(α) =
∫ ∞

0 tα−1e−tdt, and γ(·, ·) is the upper incomplete
Gamma function defined as γ(α, x) =

∫ x
0 tα−1 exp{−t}dt.

The proof of this lemma is given in the Appendix B.
Using the fact that γ(α, x)→ Γ(α) when x → ∞, for z→ ∞, we have

fZ(z) ∼
aYθ

aY
Y σ

aY
X√

2π | z |aY+1
2(aY−1)/2Γ

(
ay + 1

2

)
. (13)

This indicates that the PDF of Z has a power-law behavior and thus, in the considered
case, the Pareto distribution dominates the tail behavior.

The expected value of Z in the considered case, when aY > 1, is equal to zero, and the
variance of Z, if aY > 2, is given by

Var(Z) =
(θYσX)

2aY
(aY − 2)

. (14)

The variance decreases to the square of the product of the marginal variables scale
parameters, (θYσX)

2, as the Pareto shape parameter aY → ∞.
In Figure 2, we plot the PDF and the corresponding distribution tail of the random

variable Z that is a product of two independent random variables from the Gaussian
and Pareto distributions for different values of the parameter aY. Moreover, in Figure 3,
we demonstrate the comparison of the PDFs and distribution tails of X and Y, and the
corresponding random variable Z for selected values of the parameters. One can see that
the product has a lighter tail than the Pareto distributed random variable but a heavier
tail than the Gaussian one. However, the power-law behavior, which corresponds to
Equation (13), can be easily observed.
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Figure 2. Distribution of the product of two independent random variables from the Gaussian and
Pareto distribution with µX = 0 and σX = θY = 1 and different values of the aY parameter. (Left
panel): the PDF of the random variable Z. (Right panel): the distribution tail for the random variable
Z (in log-log scale).
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Figure 3. (Left panel): the PDF of the random variables X (Gaussian), Y (Pareto) and Z. (Right
panel): the distribution tails. The parameters are: µX = 0, σX = θY = 1 and aY = 0.5.

3.3. Product of Log-Normal and Pareto Distributed Random Variables

In this part, we assume that X is a log-normally distributed random variable with
parameters µX = 0 and σX > 0, and Y is a Pareto distributed random variable with
parameters aY > 0 and θY > 0. Moreover, assume that X and Y are independent. Note that
the main probabilistic properties of the two-dimensional log-normal distribution and its
product are given in the Appendix B for completeness.

Lemma 3. The random variable Z defined as a product of X and Y has the following PDF:

fZ(z) =

aYθ
aY
Y exp

{
a2

Yσ2
X

2

}
zaY+1 Φ

(
log(z/θY)− aYσ2

X
σX

)
, z > 0,

where φ(·) and Φ(·) are the PDF and cumulative distribution function (CDF) of the standard
Gaussian distribution, respectively.

The proof of this lemma is presented in the Appendix B. Note that, since the function
Φ(·) is monotonically converging to 1 as z→ ∞, the tail behaviour of the product random
variable Z is dominated by the power function, governed by the Pareto shape parameter aY.

The expected value of Z (when aY > 1) and the variance of Z (when aY > 2) are
given by

E(Z) =
θYaY

aY − 1
exp

{
σ2

X
2

}
, (15)

Var(Z) =

θ2
YaY exp

{
2σ2

X

}
(aY − 1)2

(
1

aY − 2
+ aY − aY exp

{
− σ2

X

})
. (16)

Here, both marginal variables can take only positive values. Hence, the product
variable Z is also positive and its expected value (if it exists) is greater than 0, E(Z) > 0.
The expected value as well as the variance of Z are the products of the corresponding
moments of the marginal distributions. Their existence is directly related to the existence of
the moments of the Pareto marginal distribution.

In Figure 4, we plot the PDF of the random variable Z and the corresponding distri-
bution tail for different values of the parameter aY, while, in Figure 5, we demonstrate
the comparison of the X, Y and Z distributions. As can be observed, the tail parameter of
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the marginal Pareto distribution has a large impact on the tail of the product distribution.
Differently than for the Gaussian distribution, the probability of extreme observations is
greater for the product than for both individual random variables.
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Figure 4. Distribution of the product of two independent random variables from the log-normal and
Pareto distribution with µX = 0 and σX = θY = 1 and different values of aY parameter. (Left panel):
the PDF of the random variable Z. (Right panel): the distribution tail for the random variable Z (in
log-log scale).
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Figure 5. (Left panel): the PDF of the random variables X (log-normal), Y (Pareto) and Z. (Right
panel): the distribution tails. The parameters are equal: µX = 0 and σX = θY = 1 and aY = 0.5.

4. Student’s t Distribution

In this section, we consider another representative of the class of heavy-tailed dis-
tributions, namely the Student’s t. Similarly as for the Pareto case, we examine how the
dependence of two Student’s t distributed random variables influences their product’s
distribution. We also consider the product of Student’s t and Gaussian as well as Student’s t
and log-normally distributed random variables and indicate how the heavy-tailed behavior
of the Student’s t distribution influences the distribution of the final product.

4.1. Product of Two Student’s t Distributed Random Variables

A common method of constructing a two-dimensional Student’s t distributed random
vector (X, Y) is based on the following observation. Let us assume that (N1, N2) is a two-
dimensional Gaussian vector defined by the PDF in Equation (A1) with the parameters
µX = µY = 0, σX = σY = 1 and ρ ∈ (−1, 1), and χ2 is a one-dimensional random variable
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with chi-square distribution with n > 0 degrees of freedom. Moreover, assume that (N1, N2)
and χ2 are independent. Then, the random vector defined as

(X, Y) =
√

n/χ2(N1, N2) (17)

has the two-dimensional Student’s t distribution with n degrees of freedom, and its PDF is
given by [72]

fX,Y(x, y) =
1

2π
√

1− ρ2

[
1 +

x2 − 2ρxy + y2

n(1− ρ2)

]− n+2
2

, x, y ∈ R. (18)

The marginal random variable X (and Y) has the one-dimensional Student’s t distribu-
tion defined by the following PDF [73]:

fX(x) =
Γ((n + 1)/2)√

nπΓ(n/2)

(
1 +

x2

n

)−(n+1)/2

, x ∈ R, (19)

where Γ(·) is the gamma function. Note that the number of degrees of freedom, n, is equal
for both marginal variables. For n > 2, the random variables X and Y described by the
PDF in (18) have the following covariance:

cov(X, Y) =
n

n− 2
ρ. (20)

One can see that, although the zero correlation coefficient corresponds to cov(X, Y) =
0, it is not equivalent to the independence of the random variables X and Y, since in that
case the PDF of a random vector (X, Y) (see Equation (18)) is not a product of the PDFs of
the marginal distributions (see Equation (19)). The cases ρ = 1 and ρ = −1 are not analyzed
in this paper. However, let us note that in this case the product of the random variables X
and Y is a squared Student’s t distributed random variable multiplied by some constant
value. Depending on the sign of ρ, the product random variable takes only positive or only
negative values.

In the case when the random vector (X, Y) is described by the PDF given in Equation (18),
then, using Formula (2), one obtains

fZ(z) =
1

π
√

1− ρ2

∫ ∞

0

1
x

1 +
x2 − 2ρz + z2

x2

n(1− ρ2)

− n+2
2

dx, x ∈ R. (21)

The integral in Equation (21) has no closed form and can be expressed by means of the
Appel hypergeometric special function. Obviously, one can obtain its value with numerical
calculations.

If the random variables X and Y are independent and are described by the Student’s t
distributions of PDFs given in Equation (19) with degrees of freedom nX > 0 and nY > 0
corresponding to X and Y, respectively, then the PDF of the vector (X, Y) is given by a
product of marginal densities of X and Y. Thus, the product random variable Z has the
following PDF for z ∈ R [7]

fZ(z) =
2Γ
(

nX+1
2

)
Γ
(

nY+1
2

)
√

nXnYπΓ
( nX

2
)
Γ
( nY

2
) ∫ ∞

0

1
x

(
1 +

x2

nX

)− nX+1
2
(

1 +
z2

x2nY

)− nY+1
2

dx. (22)

Similarly as in the previous case, the above integral can be expressed using special
functions; see [74].
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It is interesting to note that the PDFs of the product, fZ(·), behave differently in the
dependent with ρ = 0 (see Equation (21)) and independent (see Equation (22)) case. Indeed,
in the dependent case with ρ = 0, we have

fZ(z) =
1
π

∫ ∞

0

1
x

1 +
x2 + z2

x2

n

− n+2
2

dx, x ∈ R, (23)

while in the independent case with nX = nY = n, the product’s PDF is given by

fZ(z) =
2Γ
(

n+1
2

)2

nπΓ
( n

2
)2

∫ ∞

0

1
x

1 +
x2 + z2

x2

n
+

z2

n2

− n+1
2

dx. (24)

When one considers the random vector of the two-dimensional Student’s t distri-
bution defined by the PDF in Equation (18), then the expectation (when n > 1) and the
variance (when n > 2) of the random variable Z can be calculated based on its PDF (see
Equation (21)). In this case, there are no closed forms for the mentioned statistics. However,
when X and Y are independent random variables, then the expected value (if nX , nY > 1)
and the variance (if nX , nY > 2) of the random variable Z are given by [7]

E(Z) = 0, Var(Z) =
nXnY

(nX − 2)(nY − 2)
. (25)

The variance of the product of independent marginal variables is just a product of
the individual variances. Moreover, it tends to the variance of one of the variables if the
number of degrees of freedom of the second variable, nX or nY, goes to infinity. If both
parameters, nX , nY → ∞, then the variance of the product decreases to 1.

In Figure 6, we demonstrate the PDF and the distribution tails of the random variable
Z that is a product of marginal random variables from the two-dimensional Student’s t
distribution described by the PDF (18) for different values of the parameter ρ. The resulting
PDF is symmetric only if ρ = 0. Otherwise, it is right-skewed for ρ > 0 and left-skewed
for ρ < 0. The distribution tails are clearly heavier than in the Gaussian case. For the
comparison, we also show the plots for the corresponding product of independent Student’s
t marginal variables, i.e., with PDF given by Equation (22). The resulting distribution is
again symmetric; however, its tail is lighter than in the corresponding case of dependent
marginal variables.
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Figure 6. Distribution of the product of the marginal random variables from the two-dimensional
Student’s t distribution with n = 5 and different values of the ρ parameter. (Left panel): the PDF
of the random variable Z. (Right panel): the distribution tail for the random variable Z (in log-log
scale). The dotted line corresponds to the case when X and Y random variables are independent and
nX = nY = 5. The colors of the solid and dotted lines correspond to the same ρ parameter.
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4.2. Product of Gaussian and Student’s t Distributed Random Variables

In this section, we assume that the one-dimensional random variable X has the Gaus-
sian distribution with parameters µX = 0 and σX > 0, while the one-dimensional random
variable Y has the Student’s t distribution with the PDF given in Equation (19) with nY > 0.
We assume that X and Y are independent, thus the PDF of the random vector (X, Y) is
just the product of the corresponding marginal PDFs of X and Y. Using Equation (3), one
obtains the PDF of the random variable Z

fZ(z) =
∫ ∞

−∞

1
| x | fX,Y

(
x,

z
x

)
dx (26)

=
Γ
(

nY+1
2

)
πσX
√

2nYΓ
( nY

2
) ∫ ∞

−∞

1
| x | exp

{
− x2

2σ2
X

}(
1 +

z2

nYx2

)− nY+1
2

dx

=
2Γ
(

nY+1
2

)
πσX
√

2nYΓ
( nY

2
) ∫ ∞

0

1
x

exp

{
− x2

2σ2
X

}(
1 +

z2

nYx2

)− nY+1
2

dx.

The PDF of Z has no closed form representation but can be written using special
functions in the following way [7]:

fZ(z) =

√
1

2nY

Γ( nY
2 , 1

2 )

B( nY
2 , 1

2 )
ψ

(
nY
2

+
1
2

, 1,
z2

2σ2
XnY

)
, (27)

where ψ(·, ·; ·) is a Kummer’s hypergeometric function defined as

ψ(α, γ; x) =
1

Γ(α)

∫ ∞

0
exp{−xt}tα−1(1 + t)γ−α−1dt. (28)

Since ψ(α, γ; x) ∼ x−α, for x → ∞ [75], we have that the following holds for z→ ∞

fZ(z) ∼
(

z2

2σ2
XnY

)− nY+1
2

. (29)

Thus, asymptotically, the PDF of Z behaves as a power function z−(nY+1), governed
by the degrees of freedom parameter nY.

Using the fact that, for independent random variables, the expected value of the
product is the product of expected values, one can easily show that

E(Z) = 0, Var(Z) =
nY

nY − 2
σ2

X , (30)

when nY > 2. Note that the variance decreases to σ2
X with nY → ∞.

In Figure 7, we plot the PDF and the corresponding distribution tail of the random
variable Z that is a product of two independent random variables from the standard
Gaussian (i.e., N(0, 1)) and Student’s t distributions for different values of the parameter
nY. The resulting distribution is symmetric around zero. The shape of its tail is clearly
dependent on the value of the parameter nY. For larger values of nY, the tails are close
to the Gaussian ones, while, for lower nY, they become much heavier, resembling rather
the Student’s t tails. These three distributions, namely, the Gaussian, Student’s t and their
product, are compared in Figure 8. One can see that the product has a lighter tail than the
Student’s t distributed random variable but a heavier tail than the Gaussian one.



Mathematics 2022, 10, 3371 12 of 29

0 5 10 15

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

-5 0 5

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 7. Distribution of the product of two independent random variables from the Gaussian and
Student’s t distribution with µX = 0 and σX = 1 and different values of nY parameter. (Left panel):
the PDF of the random variable Z. (Right panel): the distribution tail for the random variable Z (in
log-log scale).
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Figure 8. (Left panel): the PDF of the random variables X (Gaussian), Y (Student’s t) and Z. (Right
panel): the distribution tail’s for X, Y and Z. The parameters are equal to: µX = 0 and σX = 1 and
nY = 0.5.

4.3. Product of Log-Normal and Student’s t Distributed Random Variables

In this part, we assume that the one-dimensional random variable X has the log-
normal distribution with parameters µX = 0 and σX > 0, while the one-dimensional
random variable Y has the Student’s t distribution with the PDF given in Equation (19)
with nY > 0. We assume that X and Y are independent. Using Equation (3), one obtains
that the PDF of the random variable Z is given by

fZ(z) =
Γ
(

nY+1
2

)
πσX
√

2nYΓ
( nY

2
) ∫ ∞

0

1
x2 exp

{
− log2(x)

2σ2
X

}(
1 +

z2

nYx2

)− nY+1
2

dx. (31)

The PDF given in Equation (31) has no closed form representation and requires
numerical calculations. However, using the independence assumption, one can easily
show that
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E(Z) = 0, Var(Z) =
nY

nY − 2
exp

{
2σ2

X − 1

}
, (32)

when nY > 2. Similarly as for the Gaussian-Student’s t case, the variance decreases to the
variance of X with nY → ∞.

In Figure 9, we plot the PDF and the corresponding distribution tail of the random
variable Z for different values of the nY parameter, while, in Figure 10, we show a compari-
son of these three distributions. Similarly as for the Gaussian-Student’s t case (see Figure 7),
the tail behaviour is dominated by the Student’s t distribution. However, here the effect in
the tails is strengthened by the log-normal distribution.
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Figure 9. Distribution of the product of two independent random variables from the log-normal and
Student’s t distribution with µX = 0 and σX = 1 and different values of nY parameter. (Left panel):
the PDF of the random variable Z; (Right panel): the distribution tail for the random variable Z (in
log-log scale).
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Figure 10. (Left panel): the PDF of the random variables X (log-normal), Y (Student’s t) and Z.
(Right panel): the distribution tails. The parameters are: µX = 0 and σX = 1 and nY = 0.5.

5. Parameters Estimation–Simulation Study

Based on the formulas for the PDF, fZ(z), derived in the previous sections, we illus-
trate how the parameters of the product distribution can be estimated. To this end, we
simulate samples of random vectors ((X1, Y1), (X2, Y2), . . . , (XN , YN)) from the analyzed
distributions and calculate the product of each simulated pair, Zi = XiYi, i = 1, 2, . . . , N.
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The Gaussian random vectors are generated using the Cholesky decomposition. The
simulation of the vectors from the log-normal and dependent Student’s t distribution is
based on the relation with the Gaussian distribution. In the case of dependent Pareto
variables, the method based on conditional distributions is used, based on the fact that
FX,Y(x, y) = FX(x)FY|X(y | x). First, X is generated using the marginal distribution FX(x).
Next, Y is generated using the conditional distribution FY|X(y | x = X) with X from the
first step. For both steps, the inverse CDF method is applied. The independent Student’s t,
independent Pareto, Gaussian-Student’s t and Gaussian-Pareto vectors simulation is based
on the corresponding one-dimensional distributions.

The estimation of parameters is based on the maximum likelihood method. Thus,
we have

Θ̂ = argmaxΘL(Z1, Z2, . . . ., ZN ; Θ) = argmaxΘ

N

∏
i=1

fZ(Zi; Θ), (33)

where Θ is the vector of parameters and fZ(z) is the corresponding product probability
density function. Since analytical solutions do not exist in any of the considered cases, the
maximization is performed numerically. Note that the scale parameters of the individual
marginal distributions can not be inferred separately from the product, as they jointly yield
the scale of the resulting one-dimensional variable, e.g., for the independent Pareto θXθY.

In Figure 11, we plot the boxplots of the errors of the shape parameter estimation
for the product of the Student’s t (i.e., n̂ − n) and Pareto (i.e., â − a) distributions. The
dependent variables case (see Equation (21) for Student’s t and Equation (7) for Pareto)
as well as the independent one (see Equation (22) for Student’s t and (8) for Pareto) are
considered. The other parameters are set to ρ = 0, and θX = θY = 1. In the independent
Pareto case, the same shape parameter for both variables, aX = aY = a, is considered. The
boxplots are plotted for two simulated values of the shape parameter, namely, n = 0.5 or
n = 8 and a = 0.5 or a = 8.
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Figure 11. Boxplots of the errors of the degrees of freedom estimator, n̂ and the tail parameter, â, for
the Student’s t and Pareto distribution products, respectively. (Left panels): results for the dependent
and independent Student’s t distribution with ρ = 0 and n = 0.5 or n = 8. (Right panels): results
for the dependent and independent Pareto distribution with θX = θY = 1 and a = aX = aY = 0.5 or
a = aX = aY = 8. The length of each sample was equal to 1000, while the number of repetitions was
equal to 100.

The obtained error distribution is spread around 0, with much larger deviations in
the lighter tails case (i.e., n = 8 and a = 8). Such an effect might be caused by the fact that
for larger values of the shape parameters the differences between distributions become
smaller. In the case of the Student’s t distribution, the errors are not symmetric around zero
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with more cases of overestimation of the parameter n. In the case of the Pareto distribution,
there is no visible asymmetry.

Finally, in Figure 12, we plot the boxplots of the errors of the shape parameters for
the products of different marginal distributions, namely, the Gaussian—Student’s t, the
Gaussian-Pareto, the log-normal—Student’s t and the log-normal—Pareto case. For the
Gaussian and log-normal distributions, we assume µX = 0 and σX = 1, while the scale
parameter of the Pareto distribution is equal to θY = 1. The errors are analyzed in two
cases representing the infinite- (n = 0.5 for Student’s t distribution or aY = 0.5 for Pareto
distribution) as well as finite-variance (n = 8 for Student’s t distribution or aY = 8 for
Pareto distribution). The obtained estimation results are similar to the purely Student’s t or
Pareto distributions (see Figure 11). The higher errors are obtained for the higher values of
the n and a parameters. Furthermore, the effect of overestimation of the Student’s t degrees
of freedom can be noticed.
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Figure 12. Boxplots of the errors of the degrees of freedom n̂ and the tail parameter â estimators
for the products of the Gaussian or log-normal distribution and Student’s t or Pareto distribution,
respectively. The parameters of the Gaussian and log-normal distribution were set to µX = 0 and
σX = 1. The Student’s t distribution was simulated with n = 0.5 or n = 8 degrees of freedom, while
the Pareto distribution with θ = 1 and a = 0.5 or a = 8. The length of each sample was equal to 1000,
while the number of repetitions was equal to 100.

6. Real Data Application—Distribution of Electricity Transaction Values

In this section, we demonstrate a possible application of the theoretical results dis-
cussed in the previous sections to a real-data case. We use the transactions data from the
German electricity market settled in the EPEX energy exchange. Each transaction is charac-
terized by two values: the volume of sold energy (in MWh) and the price (in EUR/MWh).
The final transaction value, being the amount of the total profit for the energy seller or
a total cost for energy buyer, is the product of these two variables. Hence, knowing the
product distribution is important for profit/costs planning in energy companies.

The data come from a continuous intraday electricity market, which involves trading
of electricity from 3:00 pm on the day before physical delivery up to 5 min before it. A
transaction is settled each time two bid and sell offers meet. Hence, each data point
corresponds to a different offer and usually a different market participant, being in fact a
transaction on different products with the same delivery date. Therefore, we assume that
the sample points are independent. One of the main characteristics of the electricity market
is its seasonality on the yearly, weekly, and daily level [76]. To avoid the possible influence
of the transaction time on its distribution, we analyze separately the transactions being
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settled in different hours, so the data refer to different market participants approximately at
the same time. The data points within one hour are assumed to be identically distributed.

We analyze vectors {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi is the volume and yi is
the price of the i-th transaction within a given hour and n is the number of transactions
during this hour. We also analyze a sample of the transaction values being a product of each
xi and yi, i.e., {x1y1, x2y2, . . . , xnyn}. For an illustration, we have chosen two representative
hours, namely, hour 14 from 20 December 2020 and hour 8 from 15 March 2020. The
first case shows a typical picture that is observable for most hours, while the second
case illustrates the less frequent but typical for the German electricity market situation,
where some of transaction prices are negative. Negative prices are a unique feature of
electricity markets caused by the limited ability to store electricity and the fast development
of production from renewable energy sources [77]. If there is a short-term oversupply of
electricity due, for example, to wind or solar production, the producers from conventional
energy sources might be willing to pay for the reception of electricity instead of stopping
the production units.

The corresponding PDFs are plotted in Figures 13 and 14 for 20 December and
15 March, respectively. The parameters of the considered distributions are estimated
using the maximum likelihood method with formulas for the corresponding PDFs. If
the formulas are not given explicitly, they are calculated numerically. There are 4963 and
4608 observations for 20 December and 15 March, respectively. The correlation between
the volume and price samples is not significant. Precisely, it is equal to −0.0011 for the
transactions on 20 December and−0.0261 for the transactions on 15 March. The correspond-
ing p-values for the t-test on zero correlation are equal to 0.9388 and 0.0765, respectively.
Hence, we assume that the corresponding X and Y random variables are not correlated.
Since the volume can not be negative, the only distributions from the ones analyzed in the
paper that can be fitted to the volume sample are the log-normal and Pareto. For the price
sample, the Gaussian, log-normal (for positive data) and Student’s t with location and scale
parameters are fitted. The resulting densities are plotted in the corresponding panels of
Figures 13 and 14.

Figure 13. Probability distribution of the volume (top panel), price (middle panel) and their product,
i.e., the transaction value (bottom panel) from the continuous intraday energy market data on
20 December 2020, hour 14. The fitted PDFs are also plotted. The transaction value densities are fitted
in two ways: separately to the x (price) and y (volume) data (denoted by ‘(x, y) fit’) or to the product
xy (transaction value) data (denoted by ‘xy fit’).
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Figure 14. Probability distribution of the volume (top panel), price (middle panel) and their product,
i.e., the transaction value (bottom panel) from the continuous intraday energy market data on
15 March 2020, hour 8. The fitted PDFs are also plotted. The transaction value densities are fitted in
two ways: separately to the x (price) and y (volume) data (denoted by ‘(x, y) fit’) or to the product xy
(transaction value) data (denoted by ‘xy fit’).

For both analyzed hours, the log-normal distribution density function resembles
the shape of the volume histogram. On the other hand, the Pareto distribution clearly
overestimates the probability of small volumes. Hence, for the product analysis, we will
only consider the log-normal distribution for the first coordinate. Looking at the price
distribution for the data from hour 14 on 20 December 2020 (see Figure 13), we can observe
that only the Student’s t PDF resembles the shape of the obtained histogram, especially
around the mean, where the Gaussian and log-normal probabilities are underestimated.

The picture for the second considered data set, i.e., the price distribution from hour 8 on
15 March 2020 (see Figure 14), is different. First, there is a significant probability of obtaining
negative values. Hence, in this case, we do not fit the log-normal distribution, which can
take only positive values. Second, the Gaussian and the Student’s t PDF produce a similar
fit. Recall that, with increasing degrees of freedom in the latter case, the distribution tends
to the Gaussian one. The tails for this hour are lighter than for the 20 December data.
Overall, from the set of the considered distributions, the Student’s t is best fitting the prices
from both analyzed hours.

Next, we analyze the resulting product, i.e., the transaction value distribution. To
this end, we proceed in two ways. Firstly, we use the parameters estimated for the one-
dimensional samples of the random variables X and Y (i.e., volumes and prices) and
use the formulas for the product PDF derived in in the previous sections. Based on the
results obtained for the one-dimensional samples, we show only the product of log-normal
distribution or log-normal and Student’s t distribution (log-normal-Student’s t). Secondly,
we also fit the derived PDFs to the sample of the product XY. We can observe that the final
product PDF obtained by these two ways in the case of log-normal-Student’s t overlaps and
resembles the shape of the sample histogram, confirming a good fit. As mentioned before,
due to the negative prices apparent in the second analyzed hour, the log-normal distribution
can be fitted only to the first dataset. In this case, we can observe a discrepancy between the
density obtained using the (X, Y) coordinates and its product XY. Comparing the obtained
shapes of the distribution for both hours, we can see a clear difference between these cases.
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The transaction values for hour 8 on 15 March 2020 take both negative and positive values,
with long left tails of the distribution. On the other hand, there are no negative transaction
values for hour 14 on 20 December 2020, and the distribution is right skewed.

The comparison of the fitted distributions is further evaluated based on the distance
between the corresponding cumulative distribution functions (CDFs). We calculate two-
sample Kolmogorov–Smirnov statistics (KS); see, e.g., [78], which is the maximal distance
between empirical CDFs from two samples. Here, these are the analyzed dataset and
the sample simulated from the corresponding distribution. The KS statistic can be also
used for the goodness-of-fit testing. However, for large samples, even small differences
between distributions lead to rejection of the hypothesized distribution. Here, all of the
considered distributions are rejected at 0.01 significance level, except for the transaction
values on 15 March, for which the rejection rate for 1000 simulated samples is 78%. We
also calculate the root mean square error (RMSE) between the empirical CDFs. Note that
the theoretical distribution is derived from simulations, since, for most of the considered
cases, the PDFs are not given in closed form. In Table 1, we give the mean values of the KS
statistics and RMSE calculated from 1000 simulations. For the comparison of the considered
distributions, we also calculate the Kullback–Leibler divergence (KLD), see, e.g., [79], i.e.,∫

R p(x) log( p(x)
q(x) )dx, where p and q are the compared PDFs. Here, p(·) is the histogram

estimated from the sample, q(·) is the PDF of the considered distribution, while the integral
is calculated numerically. The obtained values are also given in Table 1.

Table 1. Values of the Kolmogorov–Smirnov (KS) statistics, root mean square error (RMSE) and
Kullback–Leibler divergence between the data and the considered distributions. KS statistic and
RMSE were calculated as the means from 1000 simulated samples from the considered distributions.

20 December

Variable Distribution KS statistic RMSE KLD

Volume log-normal 0.0810 0.0359 0.1367
Pareto 0.2263 0.1350 0.5717

Price
log-normal 0.1719 0.0813 3.1737
Gaussian 0.1305 0.0560 2.5211

Student’s t 0.0523 0.0206 2.5304

Value

log-normal (x, y) 0.0501 0.0247 0.0819
log-normal xy 0.0498 0.0247 0.0208

log-normal—Student’s t (x, y) 0.0487 0.0242 0.0214
log-normal—Student’s t xy 0.0500 0.0245 0.0214

15 March

Volume log-normal 0.0952 0.0501 0.2868
Pareto 0.2881 0.1702 0.9211

Price Gaussian 0.1014 0.0333 1.4262
Student’s t 0.0891 0.0308 1.4707

Value log-normal—Student’s t (x, y) 0.0414 0.0167 1.4370
log-normal—Student’s t xy 0.0369 0.0148 1.4202

As can be observed in Table 1, for transactions on 20 December, the smallest difference
from the considered distributions is, indeed, obtained for the log-normal—Student’s t case.
The Pareto distribution for the volume is outperformed by the log-normal one, according to
each of the three measures. For the price distribution, the sample CDF is the closest to the
Student’s t CDF according to the KS statistic and RMSE values. Only the KLD value yields
similar results for the Gaussian PDF. The product distributions fitted to transaction values
yield similar levels of the KS statistic, RMSE and KLD except for log-normal distribution
fitted separately to prices and volumes, which gives the worst results. For transactions on
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15 March, again, the log-normal distribution outperforms the Pareto one for the volume
data according to all considered measures. The Student’s t distribution estimated from the
sample of prices is close to the Gaussian one. Overall, only the log-normal-Student’s t case
from the considered distributions set is flexible enough to be reasonably applied to both
analyzed representative hours.

7. Conclusions

In this paper, we have discussed the distribution of a random variable that is a product
of two continuous random variables when at least one of them belongs to the heavy-tailed
class of distributions. The considered distributions are Pareto and Student’s t. The main
attention was paid to the influence of the parameters of the marginal random variables on
the final product characteristics. For both cases, we have discussed how the dependency
between the marginal random variables (when the two random variables have the same
distribution) influences the probabilistic properties of the product. Next, we have discussed
the product of the random variables coming from different classes of distributions, for
which we have derived the explicit form of the PDF for the Gaussian-Pareto and the log-
normal-Pareto case and studied the resulting tail behavior. The derived as well as recalled
formulas for the considered distributions are gathered in Tables 2 and 3, for the Pareto and
Student’s t distributions, respectively.

Table 2. Summary of the formulas for PDFs, fZ, its asymptotic behaviour for z → ∞ and two first
moments, E(Z) and Var(Z) for the considered products with Pareto distribution.

Multivariate Pareto

fZ(z) = (a + 1)a(θXθY)
a+1

z
θY∫

θX

1
x (θYx + θX

z
x − θXθY)

−a−2dx, z > θXθY

Independent Pareto

fZ(z) =

aXaY

(
z−aX−1(θXθY)

aX

aY−aX
+ z−aY−1(θXθY)

aY

aX−aY

)
1{z>θXθY}, if aX 6= aY

a2(θXθY)z−a−1 log
(

z
θXθY

)
1{z>θXθY}, if aX = aY = a

E(Z) = θXθY aX aY
(aX−1)(aY−1) for aX , aY > 1

Var(Z) = θ2
Xθ2

YaXaY

[
(aX−1)2+(aY−1)2−1

(aX−2)(aY−2)(aX−1)2(aY−1)2

]
for aX , aY > 2

Gaussian-Pareto

fZ(z) =
aYθ

aY
Y σ

aY
X√

2π|z|aY+1 2(aY−1)/2γ

(
aY+1

2 , z2

2σ2θ2
Y

)
fZ(z) ∼

aYθ
aY
Y σ

aY
X√

2π
2(aY−1)/2Γ

(
ay+1

2

)
z−aY−1 for z→ ∞

E(Z) = 0 for aY > 1

Var(Z) = (θYσX)
2aY

(aY−2) for aY > 2

Log-normal-Pareto

fZ(z) =
aYθ

aY
Y exp

{
a2
Y σ2

X
2

}
zaY+1 Φ

(
log(z/θY)−aYσ2

X
σX

)
1{z>0}

fZ(z) ∼ aYθ
aY
Y exp

{
a2

Yσ2
X

2

}
z−aY−1 for z→ ∞

E(Z) = θY aY
aY−1 exp

{
σ2

X
2

}
for aY > 1

Var(Z) =
θ2

Y aY exp{2σ2
X}

(aY−1)2

(
1

aY−2 + aY − aY exp
{
−σ2

X
})

for aY > 2
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Table 3. Summary of the formulas for PDFs, fZ, its asymptotic behaviour for z → ∞ and two first
moments, E(Z) and Var(Z) for the considered products with Student’s t distribution.

Multivariate Student’s t

fZ(z) = 1
π
√

1−ρ2

∫ ∞
0

1
x

[
1 +

x2−2ρz+ z2

x2

n(1−ρ2)

]− n+2
2

dx

Independent Student’s t

fZ(z) =
2Γ
(

nX+1
2

)
Γ
(

nY+1
2

)
√

nXnYπΓ( nX
2 )Γ(

nY
2 )

∫ ∞
0

1
x

(
1 + x2

nX

)− nX+1
2
(

1 + z2

x2nY

)− nY+1
2 dx

E(Z) = 0 for nX , nY > 1
Var(Z) = nXnY

(nX−2)(nY−2) for nX , nY > 2

Gaussian-Student’s t

fZ(z) =
√

1
2nY

Γ( nY
2 , 1

2 )

B( nY
2 , 1

2 )
ψ

(
nY
2 + 1

2 , 1, z2

2σ2
XnY

)
fZ(z) ∼

(
2σ2

XnY
) nY+1

2 z−nY−1

E(Z) = 0 for nY > 1
Var(Z) = nY

nY−2 σ2
X for nY > 2

Log-normal-Student’s t

fZ(z) =
Γ
(

nY+1
2

)
πσX
√

2nYΓ(
nY
2 )

∫ ∞
0

1
x2 exp

{
− log2(x)

2σ2
X

}(
1 + z2

nY x2

)− nY+1
2 dx

E(Z) = 0 for nY > 1
Var(Z) = nY

nY−2 exp
{

2σ2
X − 1

}
for nY > 2

The theoretical results were applied in the proposed estimation methodology. We
used a general approach based on the maximum likelihood technique. The presented
Monte Carlo simulations clearly indicate the effectiveness of the algorithm. Finally, the real
data analysis was presented. Based on the data from continuous trading on the German
energy market, we have shown that, from the considered distributions, the log-normal and
Student’s t one yields the best fit to the transaction values. Since the transaction value is
the final profit/cost for a trader, finding a proper density describing its distribution, which
is also consistent with the prices and volumes data, can help an energy market participant
in strategy planning.

8. Discussion

Product distributions occur naturally also in other financial contexts. Another potential
application of the proposed methodology could be the market risk area in metals and
mining business. Mining companies are exposed to two or more market risk factors, like
metal prices and currency exchange rates. These factors’ behavior is often characterized by
non-Gaussian distributions, which can be reflected by that discussed in this paper, Student’s
t distribution. From a business perspective of an international mining company, which
trades the excavated resources in different than national currency, it is valuable to analyse
the selling price also in the national currency that is a product of the commodity price
(usually quoted in USD) and USD/national currency exchange rate. A case study related to
the modelling of the copper prices for a Polish mining company one can find in [1]. It has
been shown that the behavior of metal price in PLN exhibits specific characteristics that
follow directly from the properties of the individual variables and dependence between
them. These properties need to be reflected in optimizing strategies aimed at mitigation of
the unacceptable market risk for a company.

From the theoretical point of view, the problem analyzed in this paper can be consid-
ered as a special case of a general issue related to the time series (or stochastic process) that
arises as a product of two other time series. This problem is rarely discussed in the literature
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(see e.g., [80,81]), but it seems to be interesting, especially from the practical point of view.
Obviously, in some economical applications, the variable of main interest is the product
of time series describing time-dependent market variables, like, e.g., the cost, being the
product of price and volume. Thus, our future study will be related to this issue. It should
be noted that, in the examination of the product of random variables, the main attention is
usually paid to its probabilistic properties (i.e., probability distribution) and the analysis
on how the characteristics of the individual random variables influence the final product’s
properties. In the case when the individual variables are components of some time series,
the main attention is paid on the dependence structure of the final product and the analysis
how the auto- or cross- dependence between the variables influence the new time series.
An interesting example can be the product of the components of the multi-dimensional
time series describing time-dependent economical variables.

In future study, we also plan to examine more complicated issues, namely the product
of components from a multivariate continuous-time stochastic process. From a theoretical
point of view, this issue seems to be interesting, especially when the stochastic process
under consideration is non-Gaussian and its marginal distributions are heavy-tailed and
have infinite variance. Similarly as in the case of product of time series components,
here the dependence structure may be the most important issue. However, in case of the
infinite-variance distributions of the marginal random variables, the dependence needs to
be described in the language of appropriate measures. This point needs to be addressed in
the future study as well.
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Appendix A. Gaussian and Log-Normal Distributions

Appendix A.1. Product of Two Gaussian Distributed Random Variables

The two-dimensional Gaussian distributed random random vector (X, Y) has the
following PDF [82]:

fX,Y(x, y) =

exp

{
− 1

2(1−ρ2)

[
(x−µX)

2

σ2
X
− 2ρ

(
x−µX

σX

)(
y−µY

σY

)
+ (y−µY)

2

σ2
Y

]}
2πσXσY

√
1− ρ2

, (A1)

where x, y ∈ R, ρ ∈ (−1, 1) is the correlation coefficient between random variables X and Y;
µX , µY ∈ R are the corresponding expected values, while σX , σY > 0 are the corresponding
standard deviations. The cases ρ = 1 or ρ = −1 are not considered in this paper. However,
they correspond to the situation when Y = aX, with a ∈ R. As a consequence, the product
random variable Z has a chi-square distribution with one degree of freedom. It is easy to
see that, when ρ = 0, the PDF of the random vector (X, Y) is just a product of the PDFs of
the Gaussian distributed random variables.
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For simplicity, we assume that µX = µY = 0. In that case, the PDF of the random
variable Z defined in (1) is given by [56]

fZ(z) =
1

πσXσY
√

1− ρ2
exp

{
ρz

σXσY(1− ρ2)

}
K0

(
| z |

σXσY(1− ρ2)

)
, (A2)

where z ∈ R, K0(·) is the Bessel function of the second kind with a purely imaginary
argument of zero order. Recall that the family of the modified Bessel functions of the
second kind for order v is given by Kv(x) =

∫ ∞
0 exp{−x cosh(t)} cosh(vt)dt. The formula

for fZ(·) in the general case with µX = µY ∈ R can be found in [83].
One can show that the PDF given in Equation (A2) corresponds to the variance-gamma

distribution PDF: VG(1, ρσxσy, σxσy
√

1− ρ2, 0). The expected value and the variance of Z
in the general case are given by [84]

E(Z) = µXµY + ρσXσY, (A3)

Var(Z) = σ2
Xµ2

Y + σ2
Yµ2

X + σ2
Xσ2

Y + 2ρµXµYσXσY + ρ2σ2
Xσ2

Y. (A4)

It is interesting to note that, for correlated marginal variables, the individual scale
parameters, σX , σY influence also the expected value of the product, E(Z), and for central
marginal distributions we have E(Z) 6= 0. On the other hand, if ρ = 0, then the product
expectation is just the product of the individual means, µX , µY. The variance of the product
is equal to the product of individual variances only if µX = µY = 0 and the marginal
variables are uncorrelated. Otherwise, it is a function of all individual parameters.

Appendix A.2. Product of Two Log-Normally Distributed Random Variables

The two-dimensional log-normally distributed random vector (X, Y) with parameters
µX , µY ∈ R, σX , σY > 0 and ρ ∈ (−1, 1) is defined in the following way [85]:

(X, Y) = exp{(N1, N2)}, (A5)

where (N1, N2) is the Gaussian random vector defined by the PDF in Equation (A1) with
the parameters µX, µY, σX, σY and ρ. Thus, the marginal random variables X and Y have
the representations

X = exp{N1}, Y = exp{N2} (A6)

and in the general case the ρ parameter is the correlation between N1 and N2. This influences
also the correlation between X and Y. Indeed, one can easily show that the covariance
between X and Y is as follows:

cov(X, Y) = exp
{

µX + µY +
1
2
(σ2

X + σ2
Y)

}[
exp{ρσXσY} − 1

]
. (A7)

The PDF of (X, Y) is given by [86]

fX,Y(x, y) =

exp

{
−

(log(x)−µX )2

σ2
X

−2ρ
(log(x)−µX )(log(y)−µY )

σX σY
+

(log(y)−µY )2

σ2
Y

2(1−ρ2)

}
2πxyσXσY

√
1− ρ2

, (A8)

where x, y > 0. If ρ = 0, the marginal variables X and Y are independent and the PDF given
in (A8) is a product of PDFs of one-dimensional random variables with the log-normal
distribution. The cases ρ = 1 and ρ = −1 are not considered in this paper. However,
one can notice that, in these cases, the product random variable Z has still the log-normal
distribution.
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One can show that the random variable Z defined in Equation (1) in the considered
case also has one-dimensional log-normal distribution. Indeed, from Equation (A6), one has

Z = XY = exp{N1 + N2}.

Since N1 and N2 are jointly Gaussian, the random variable N1 + N2 still has the
Gaussian distribution with the expected value µX + µY and the variance σ2

X + σ2
Y + 2ρσXσY.

Thus, the PDF of Z has the following form:

fZ(z) =
1√

2π(σ2
X + σ2

Y + 2ρσXσY)z
exp

{
−1

2
(log(z)− µX − µY)

2

σ2
X + σ2

Y + 2ρσXσY

}
(A9)

for z > 0. The resulting product distribution is still log-normal with the following param-
eters: µZ = µX + µY and σ2

Z = σ2
X + σ2

Y + 2ρσXσY. Hence, the ρ coefficient influences the
scale parameter of the resulting distribution.

Appendix B. Proofs

Appendix B.1. Proof of Lemma 2

Proof of Lemma 2. Let us first note that the CDF of Y is given by

FY(y) = 1− θ
aY
Y y−aY , y > θY. (A10)

Thus, the CDF of Z takes the form

FZ(z) = P(XY < z) =
∫ ∞

−∞
P(Yx < z) fX(x)dx

=
1√

2πσX

∫ ∞

−∞
P(Yx < z) exp

{
− x2

2σ2
X

}
dx

=
1√

2πσX

∫ 0

−∞
P(Yx < z) exp

{
− x2

2σ2
X

}
dx

+
1√

2πσX

∫ ∞

0
P(Yx < z) exp

{
− x2

2σ2
X

}
dx

=
1√

2πσX

∫ 0

−∞
P
(

Y >
z
x

)
exp

{
− x2

2σ2
X

}
dx

+
1√

2πσX

∫ ∞

0
P
(

Y <
z
x

)
exp

{
− x2

2σ2
X

}
dx.

We consider separately z > 0, z < 0 and z = 0. For z > 0, one obtains

FZ(z) =
1√

2πσX

∫ 0

−∞
exp

{
− x2

2σ2
X

}
dx

+
1√

2πσX

∫ ∞

0
FY

( z
x

)
exp

{
− x2

2σ2
X

}
dx

=
1√

2πσX

∫ 0

−∞
exp

{
− x2

2σ2
X

}
dx

+
1√

2πσX

∫ z/θY

0

(
1− θ

aY
Y

( x
z

)aY
)

exp

{
− x2

2σ2
X

}
dx

= FX

(
z

θY

)
−

θ
aY
Y√

2πσXzaY

∫ z/θY

0
xaY exp

{
− x2

2σ2
X

}
dx.
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Now, calculating the derivative of FZ(z) with respect to z for z > 0, one has

fZ(z) =
1

θY
fX

(
z

θY

)
+

aYθ
aY
Y√

2πσXzaY+1

∫ z/θY

0
xaY exp

{
− x2

2σ2
X

}
dx

−
θ

aY
Y√

2πσXzaY θY

(
z

θY

)aY

exp

{
− z2

2σ2
Xθ2

Y

}

=
1√

2πσXθY
exp

{
− z2

2σ2
Xθ2

Y

}

+
aYθ

aY
Y√

2πσXzaY+1

∫ z/θY

0
xaY exp

{
− x2

2σ2
X

}
dx

− 1√
2πσXθY

exp

{
− z2

2σ2
Xθ2

Y

}

=
aYθ

aY
Y√

2πσXzaY+1

∫ z/θY

0
xaY exp

{
− x2

2σ2
X

}
dx

=
aYθ

aY
Y√

2πσXzaY+1
2(aY−1)/2

×
(

z
θY

)aY+1( θYσX
z

)aY+1
(

Γ
(

aY + 1
2

)
− Γ

(
aY + 1

2
,

z2

2σ2θ2
Y

))

=
aYθ

aY
Y σ

aY
X√

2πzaY+1
2(aY−1)/2

(
Γ
(

aY + 1
2

)
− Γ

(
aY + 1

2
,

z2

2σ2θ2
Y

))

=
aYθ

aY
Y σ

aY
X√

2πzaY+1
2(aY−1)/2γ

(
aY + 1

2
,

z2

2σ2θ2
Y

)
,

where γ(a, x) is the upper incomplete Gamma function and Γ(a, x) = Γ(a)− γ(a, x) is the
lower incomplete Gamma function. For z < 0, the CDF of Z is given by

FZ(z) =
1√

2πσX

∫ 0

−∞
P
(

Y >
z
x

)
exp

{
− x2

2σ2
X

}
dx

=
1√

2πσX

∫ z/θY

−∞
P
(

Y >
z
x

)
exp

{
− x2

2σ2
X

}
dx

+
1√

2πσX

∫ 0

z/θY

P
(

Y >
z
x

)
exp

{
− x2

2σ2
X

}
dx

= FX

(
z

θY

)
+

1√
2πσX

∫ 0

z/θY

θ
aY
Y

( x
z

)aY
exp

{
− x2

2σ2
X

}
dx

= FX

(
z

θY

)
+

θ
aY
Y√

2πσX(−z)ay

∫ 0

z/θY

(−x)aY exp

{
− x2

2σ2
X

}
dx

= FX

(
z

θY

)
+

θ
aY
Y√

2πσX(−z)ay

∫ −z/θY

0
xaY exp

{
− x2

2σ2
X

}
dx.
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Now, taking the derivative of FZ(z) with respect to z for z < 0, we obtain the following
formula for corresponding PDF:

fZ(z) = fX

(
z

θY

)
−

aYθ
aY
Y√

2πσX(−z)ay+1

∫ −z/θY

0
xaY exp

{
− x2

2σ2
X

}
dx

−
θ

aY
Y√

2πσX(−z)ay θY

(
− z

θY

)aY

exp

{
− z2

2σ2
Xθ2

Y

}

=
1√

2πσXθY
exp

{
− z2

2σ2
Xθ2

Y

}

+
aYθ

aY
Y√

2πσX(−z)ay+1 2(aY−1)/2
(
− z

θY

)aY+1(
− θYσX

z

)aY+1

×
(

Γ
(

aY + 1
2

)
− Γ

(
aY + 1

2
,

z2

2σ2
Xθ2

Y

))

− 1√
2πσXθY

exp

{
− z2

2σ2
Xθ2

Y

}

=
aYθ

aY
Y σ

aY
X√

2π(−z)aY+1
2(aY−1)/2

(
Γ
(

aY + 1
2

)
− Γ

(
aY + 1

2
,

z2

2σ2
Xθ2

Y

))

=
aYθ

aY
Y σ

aY
X√

2π(−z)aY+1
2(aY−1)/2γ

(
aY + 1

2
,

z2

2σ2
Xθ2

Y

)
.

The last case is z = 0. In this case, the CDF of Z is given by

FZ(0) = P(XY < 0) = P(X < 0) =
1
2

.

One can also show that

lim
z→0+

FZ(z) = lim
z→0−

FZ(z) =
1
2
= FZ(0).

Thus, finally, we obtain the thesis.

Appendix B.2. Proof of Lemma 3

Proof of Lemma 3. Using the same reasoning as in the proof of Lemma 2, one obtains that
the CDF of Z takes the following form for z > 0:

FZ(z) = P(XY < z) =
∫ ∞

−∞
P(Yx < z) fX(x)dx

=
1√

2πσX

∫ ∞

0

1
x

P(Yx < z) exp

{
− log(x)2

2σ2
X

}
dx

=
1√

2πσX

∫ ∞

0

1
x

P
(

Y <
z
x

)
exp

{
− log(x)2

2σ2
X

}
dx.

Thus, from (A10), we obtain for z > 0
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FZ(z) =
1√

2πσX

∫ ∞

0

1
x

FY

( z
x

)
exp

{
− log(x)2

2σ2
X

}
dx

=
1√

2πσX

∫ z/θY

0

1
x

(
1− θ

aY
Y

( x
z

)aY
)

exp

{
− log(x)2

2σ2
X

}
dx

=
1√

2πσX

∫ z/θY

0

1
x

exp

{
− log(x)2

2σ2
X

}
dx

−
θ

ay
Y√

2πσXzay

∫ z/θY

0
xaY−1 exp

{
− log(x)2

2σ2
X

}
dx.

Now, taking the substitution log(x) = u in the both above integrals, we obtain

FZ(z) =
1√

2πσX

∫ log(z/θY)

−∞
exp

{
− u2

2σ2
X

}
du

−
θ

ay
Y√

2πσXzay

∫ log(z/θY)

−∞
exp

{
uay −

u2

2σ2
X

}
du.

To make the calculations simpler, in the first integral, we put the substitution w = u/σX
and in the second one w = (u− σ2

XaY)/σX . Then, we obtain

FZ(z) =
∫ log(z/θY )

σX

−∞

1√
2π

exp

{
− w2

2

}
dw

−
θ

ay
Y exp

{
a2

yσ2
X

2

}
zay

∫ log(z/θY )−aY σ2
X

σX

−∞

1√
2π

exp

{
− w2

2

}
dw.

Calculating the derivative of FZ(z) with respect to z > 0, one has

fZ(z) =
θY

σXz
φ

(
log(z/θY)

σX

)
+

aYθ
ay
Y exp

{
a2

yσ2
X

2

}
zay+1 Φ

(
log(z/θY)− aYσ2

X
σX

)

−
θ

ay+1
Y exp

{
a2

yσ2
X

2

}
σXzay+1 φ

(
log(z/θY)− aYσ2

X
σX

)
,

where φ(·) and Φ(·) are the PDF and CDF of the standard Gaussian distribution, respec-
tively. Finally, since the form of φ(·) implies that

φ

(
log(z/θY)− aYσ2

X
σX

)
=

zaY

θ
aY
Y

exp

{
−

a2
Yσ2

X
2

}
φ

(
log(z/θY)

σX

)
,

we have that

fZ(z) =

aYθ
ay
Y exp

{
a2

yσ2
X

2

}
zay+1 Φ

(
log(z/θY)− aYσ2

X
σX

)
.
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