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Abstract: Bone remodelling models (BRM) are often used to estimate the density distribution in bones
from the loads they are subjected to. BRM define a relationship between a certain variable measuring
the mechanical stimulus at each bone site and either the local density or the local variation of density.
This agrees with the Mechanostat Theory, which establishes that overloaded bones increase their
density, while disused bones tend to decrease their density. Many variables have been proposed as
mechanical stimuli, with stress or strain energy density (SED) being some of the most common. Yet,
no compelling reason has been given to justify the choice of any of these variables. This work proposes
a set of variables derived from the local stress and strain tensors as candidates for mechanical stimuli;
then, this work correlates them to the density in the femur of one individual. The stress and strain
tensors were obtained from a FE model and the density was obtained from a CT-scan, both belonging
to the same individual. The variables that best correlate with density are the stresses. Strains are quite
uniform across the femur and very poorly correlated with density, as is the SED, which is, therefore,
not a good variable to measure the mechanical stimulus.

Keywords: bone remodelling; mechanical stimulus; correlation; bone density distribution;
strain energy density; absolute maximum principal stress; fluctuation of stresses

MSC: 92-10

1. Introduction

Bone is a living tissue that can adapt its apparent density and internal microstructure
(through the process called bone remodelling), and its shape and external dimensions
(through bone modelling) as a response to different mechanical and biological stimuli.
Regarding the former, it has been hypothesized that one of the goals of bone remodelling
is to maintain bone as an optimal structure that supports the loads with the minimum
weight [1]. Thus, bone density, and consequently, stiffness, are high in overloaded regions
and low in regions with a low stress level. In other words, there is a direct relationship
between density and stresses. Many bone remodelling models (BRM) have been proposed
in the literature to quantify this relationship [1–5].

These BRM have been very often used to estimate the density distribution in bones
from the loads they are subjected to, mainly in the human femur [6,7], but also in other bones
such as the mandible [8]. This problem, that we will name here Density Prediction Through
Bone Remodelling (DPTBR), is usually approached through the following iterative process:

1. Assign an initial uniform density distribution to the bone under study.
2. Apply the loads and boundary conditions to a Finite Element (FE) model of the bone

and calculate the stresses/strains at every point of the mesh.

Mathematics 2022, 10, 3367. https://doi.org/10.3390/math10183367 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10183367
https://doi.org/10.3390/math10183367
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3407-1582
https://orcid.org/0000-0002-6894-197X
https://orcid.org/0000-0002-2901-4188
https://orcid.org/0000-0003-2038-2336
https://doi.org/10.3390/math10183367
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10183367?type=check_update&version=2


Mathematics 2022, 10, 3367 2 of 29

3. Apply the BRM to relate the stress/strain state with the new density [9] or with the
change in density [1–5], and then update the density at each point.

4. Update the stiffness tensor at each point based on the new density. Go back to step 2
to start a new iteration.

This iterative process is repeated until convergence of the density distribution is
achieved, which usually resembles the real one with good accuracy. The BRM can be
applied following two approaches, as mentioned above in step 3. In an evolutionary model,
the stress/strain state determines the local change in apparent density, ρ̇:

ρ̇ = f (S) Evolutionary model (1)

where S is a certain mechanical stimulus related to the stress/strain state. This approach
is based on the Mechanostat Theory [10], which is behind most of the BRM. This theory
hypothesizes that bone adapts itself to overloads by increasing its apparent density and
adapts to disuse states by decreasing it. Overload and disuse are defined in the Mechanostat
Theory by certain strain ranges. The theory also establishes the existence of a so-called
“lazy zone”, a strain range between disuse and overload, for which no evident change in
apparent density is observed or, at least, it is not significant. Implementing this approach in
DPTBR problems has a major drawback, as the uniqueness of the solution is not guaranteed.
This path dependence occurs due to the implementation of the lazy zone [11], and the final
density distribution depends on the initially assumed distribution.

Recently, we have proposed a non-evolutionary strategy to solve DPTBR problems [9].
Instead of calculating the rate of change in density as a function of the stimulus, we
calculated a priori a relationship between the stimulus S and the density achieved at the
equilibrium (see Equation (2)) and used that relationship to assign the density to an element
as a function of the local stimulus. Since this stimulus can, in turn, change with density
(through the stiffness), an iterative process is still required, but the number of iterations
needed to achieve convergence is much lower. Notwithstanding, the uniqueness of the
solution is not guaranteed in this case. The only advantage of this approach is its higher
speed of convergence.

ρ = g(S) Non-evolutionary model. (2)

On the other hand, the non-evolutionary approach is not suitable to predict the changes
in density in a bone subjected to changes in its biomechanical environment. The evolution-
ary approach is preferable in this case, as it allows a real-time simulation of those changes.
However, to this end, it is very important to start from a realistic initial density distribution,
in order to avoid the path dependence of the solution previously mentioned.

The stimulus S is the variable that drives bone remodelling and must comprise bi-
ological and mechanical factors. Focusing on the latter, the amount of damage has been
used as the stimulus (or a part of it) in targeted bone remodelling models [12–15]. This is
based on the hypothesis that one goal of bone remodelling is to repair the microstructural
damage accumulated in the bone matrix by daily activity. Other models simply apply the
Mechanostat Theory to account for disuse and overload and the influence of these states
on bone adaptation. To this end, these models have used a stimulus that measures the
intensity of the loads, with the strain energy density (SED) being the most commonly used
variable to account for that intensity (see [1–5], among many others). However, in the
original Mechanostat Theory, the disuse, lazy zone and overload states were defined in
terms of strain; thus, establishing the hypothesis that strain is the magnitude driving the
bone response. In such case, after a change in load that could alter the level of strain,
the bone microstructure (and consequently, stiffness) must be regulated to return to the
homeostatic situation [12].

In this work, we will focus on the mechanical part of the stimulus—the main objective
being to study which is the best variable among a series of candidates to account for
the mechanical feedback in bone remodelling models. We will discuss which is the best
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mechanical stimulus, or equivalently, which is the best predictor of bone density, either for
an evolutionary or a non-evolutionary approach. For this purpose, we have analysed the
stress and strain distributions in a human femur using a FE model and the loads extracted
from a gait analysis performed on the same individual, from whom we have also estimated
the bone density distribution from a CT scan. Several mechanical variables calculated from
the stress and strain tensors throughout the gait cycle have been proposed as candidates for
the mechanical stimulus (or predictors) and will be correlated with the density distribution.

This paper is organised as follows: In Section 2.1, we provide a description of the gait
analysis performed to estimate the loads acting on the femur during walking. In Section 2.2,
we describe the image analysis of CT scans of a human femur, which were performed to
obtain its bone density distribution. In Section 2.3, we briefly describe the methodology to
estimate the stiffness tensor at every point of the femur based on the density distribution.
In that section, we focus on the case that considers bone as an isotropic material, while
through Sections 2.4–2.6, we develop the methodology to estimate that stiffness tensor when
bone is considered anisotropic. In Section 2.7, we briefly describe how the gait cycle was
simulated with a FE model. The correlation coefficients used to evaluate the relationship
between bone density and the variables used as candidates for mechanical stimuli (or
predictors) are defined in Section 2.8. In Section 2.9, we define those predictors. In Section 3,
we provide the correlations between the bone apparent density and the proposed predictors.
We discuss the results of these correlations in Section 4 and highlight the conclusions of
this study in Section 5. Finally, the Appendices contain a more detailed description of the
procedures used in the Section 2.

2. Materials and Methods

The procedure followed here is summarised in Figure 1 and is explained as follows:
First, a gait analysis was performed to estimate the forces exerted by those muscles inserted
in the femur and joint reactions at the knee and the hip in the subject under study. A CT scan
of the subject’s femur was taken and the greyscale value was related to the bone apparent
density using a linear relationship. With this, a FE model of the femur was built and the
loads, estimated through a gait analysis performed on the same subject, were applied to
the FE model in order to obtain the distribution of stresses and strains throughout the gait
cycle. A set of variables, defined in Sections 2.7 and 2.9, was assessed from the temporal
evolutions of stresses and strains. Finally, the bone apparent density estimated from the
CT scan was correlated with these variables.

2.1. Gait Analysis and Subject Data

The gait analysis was performed at the Motion Analysis Laboratory of the Depart-
ment of Mechanical Engineering and Manufacturing of the Universidad de Sevilla. A Vi-
con®system of 12 infra-red cameras was used to record motion at a frequency of 100 Hz
along with 2 AMTI force platforms to record the ground reaction forces at a frequency of
1000 Hz. The marker placement protocol employed was the modified Cleveland proto-
col [16].

The subject under study was an adult male of 27 years old, with no reported patholo-
gies, 1.85 m tall and weighing 75 kg, who walked at a freely chosen forward speed. The par-
ticipant signed an informed consent form prior to the recording of the measurements.
The study protocol was approved by a medical ethics committee through the Andalusian
Biomedical Research Ethics Platform (approval number 20151012181252).
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Figure 1. The summary of the procedure followed in this work. One male subject was selected
for the study (A). A CT scan (D) was used to build a FE model of the subject’s femur (F). The gait
analysis (B) perfomed on the same subject was used (C) to estimate the muscle forces (MF) and
joint reaction forces (HJF: hip joint force, KJF: knee joint force) applied to the FE model, together
with isostatic boundary conditions. The mechanical properties of the bone were estimated from
the density, which was estimated, in turn, from the CT scan (E). The FE simulation of the gait cycle
yielded the temporal evolution of stresses and strains (G) throughout the cycle. A set of variables
(I) were derived from those temporal evolutions. Finally, these variables were correlated (H) to the
bone apparent density in order to evaluate a good predictor of density for bone remodelling models.

The recorded experimental data were processed using OpenSim software [17]. The
biomechanical model implemented was the Gait2392, available in the OpenSim library. This
model was developed to perform 3D gait analysis and consists of 23 degrees of freedom and
92 actuators that simulate the action of muscle forces. However, for the sake of simplicity,
the subtalar and metatarsophalangeal joints were blocked in this work, so that the foot
was considered a single biomechanical segment. The model was scaled to fit the subject’s
morphology from the recorded experimental data. The mass ratio of each segment was
assumed constant during scaling. In this model, muscle attachment points were placed
where OpenSim locate them by default, using numerical approximation [18] of cadavers’
data [19,20].

The forces applied to the FE model were obtained in two steps. First, the inverse dy-
namic problem was solved using the kinetics experimental data recorded in the laboratory.
From these results, the time evolutions of the muscle forces were calculated solving a force-
sharing problem through a static optimisation algorithm that considered the dynamics
of muscle contraction and activation [17,21]. The results were collected for those muscles
inserted in the femur and are provided in the Supplementary Materials. Additionally,
joint reaction forces at the hip and knee were estimated using the algorithm proposed by
Steele et al. [22]. A detailed description of this procedure is included in Appendix B.
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2.2. CT Scan of the Femur, FE Model and Density Distribution

A CT scanner (LightSpeed16, GE Medical Systems, Milwaukee, WI, USA; 120 kVp,
reconstructed with bone Plus kernel, 1.25 mm slice thickness) was used to estimate bone
density on the right femur of the same individual on which the gait analysis was conducted.
The software Abaqus (version 2020, SIMULIA, Dassault Systémes, Madrid, España) was
used to run FE analysis. The 3D geometry of the femur was reconstructed from the CT scan
and meshed with 4-node linear tetrahedral elements (C3D4 in Abaqus element library).
The final mesh consisted in 339,168 elements and 64,757 nodes. In order to check the
convergence of the FE solution, we compared the results with a different mesh, built
with 10-node quadratic tetrahedral elements (C3D10). This new mesh was obtained from
the previous one by simply placing mid-side nodes in the edges of the former elements,
resulting—obviously—in the same number of elements and 480,480 nodes.

To assign a value of density to each element of the mesh, a linear relationship between
the greyscale value and the bone apparent density was used, as in [23–26]:

ρe = A + B · ge, (3)

where ge and ρe are the greyscale value and the density estimated for element e, respectively.
Two pairs of greyscale–density values are needed to define the linear relationship (constants
A and B). These points are usually obtained through calibration of the CT scan. However,
this calibration was not available in our case, and therefore, we needed to make two
assumptions. Thus, as the first pair, an apparent density value of 2.1 g/cm3 [4] was assigned
to the maximum greyscale value of the CT scan (255), i.e., to the densest cortical bone.
The second point chosen was that corresponding to a null bone apparent density, which is
sometimes called a grey level (or greyscale) threshold (GLT). It can be seen in Equation (4)
that ρe = 0 for ge = GLT. This lower limit is usually made to correspond to bone marrow,
which was assumed here to be placed inside the diaphyseal canal. However, the greyscale
value inside the canal varied in the range 70–90, thus, making it impossible to assign a
unique and reliable value to GLT. For this reason, three cases were studied, assuming
different values for GLT, namely: 70, 80 and 90. This uncertainty in the choice of GLT affects
the slope of the linear relationship, which is then:

ρe = 2.1 · ge − GLT
255− GLT

. (4)

The greyscale distribution was mapped from the CT scan to the FE mesh using the
software Bonemat, and Equation (3) was used to convert the greyscale value into bone
apparent density. Those elements with a greyscale value below GLT were assigned a very
small density (0.001 g/cm3), thus, yielding a negligible—although, not null—stiffness,
something necessary to avoid convergence problems. Figure 2 shows the distributions of
density obtained for the three GLT. It can be seen that those three GLT led to distributions
of the estimated density which are similar, in general, with the exception of the proximal
region and the thickness of the cortical layer in the diaphysis. As GLT rises, the volume
identified as marrow increases, and this makes GLT = 90 produce a thinner cortical layer
and a slightly underestimated density in the proximal region. Nonetheless, it can be noted
in Figure 2 that the uncertainty introduced in the density distribution by GLT is not too
important, in the range of 70–90. Moreover, we will show later that the conclusions of this
study are the same regardless of the choice of GLT.

The external boundary of the bone was not perfectly defined in some slices of the
CT scan where the cortex was too thin, since the average greyscale value between the
background and the periosteum produced a cortex of intermediate density. For this reason,
the model was covered with a layer of shell elements to simulate the cortex, with a thickness
of 1 mm, a Young’s modulus equal to 19 GPa [27] and a Poisson’s ratio ν = 0.32 [28].
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Figure 2. Distribution of bone density estimated from Equation (3) for three GLT: in the whole femur
(left), in a diaphyseal cross-section (right).

2.3. Estimation of the Stiffness Tensor

Isotropic and anisotropic models were considered. In the former, the stiffness tensor
of bone at each material point can be estimated through the density obtained from the
CT scan, by using one of the numerous correlations between the elastic constants and the
apparent density that can be found in the literature. For example, Jacobs proposed the
following [28]:

EJacobs (MPa) =
{

2014 ρ2.5 if ρ ≤ 1.2 g/cm3

1763 ρ3.2 if ρ > 1.2 g/cm3 (5a)

ν =

{
0.2 if ρ ≤ 1.2 g/cm3

0.32 if ρ > 1.2 g/cm3 . (5b)

Hernandez et al. [29] proposed another correlation for E, based on the ash fraction,
α (a variable used to measure the mineral content of bone tissue), and on the bone volume
fraction (or bone volume per total volume), BV/TV. If we express BV/TV = ρ

ρ̂ , with
ρ and ρ̂ being the apparent density and the tissue density, respectively, then the correlation
proposed by Hernandez et al. reads:

E(MPa) = 84,370
(

ρ

ρ̂

)2.58
α2.74. (6)

If typical values of ash fraction α = 0.68 and tissue density ρ̂ = 2.31 g/cm3 [29] are
used, Equation (6) becomes:

EHernandez(MPa) = 3388 ρ2.58, (7)
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which produces an estimation of the Young’s modulus up to 70% higher than Equation (5a)
depending on the density (see Figure 3). Each correlation was used in the corresponding
isotropic model, named, respectively, IsoJ (Equation (5a)) and IsoH (Equation (7)) after
Jacobs and Hernandez. A constant Poisson’s ratio ν = 0.3 was used in conjunction with
Equation (7) in model IsoH.

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

Figure 3. Comparison of the correlation provided by Jacobs [28] and the one derived from the
correlation of Hernandez et al. [29] for the Young’s modulus as a function of bone apparent density.

Bone is actually an anisotropic material with a dependence of the mechanical proper-
ties on the direction and the type of tissue. Particularly, cortical bone is usually modelled
as a transversely isotropic material [30] and trabecular bone as an orthotropic material [31].
Consequently, its anisotropy must be taken into account in the estimation of the stiffness
tensor, and so was carried out in the anisotropic model, named here AnisoH (note that the
H refers to the fact that the anisotropic model relies on Hernandez correlation, as explained
later in Section 2.4).

Some bone remodelling models have been proposed to predict not only the adap-
tation of bone apparent density but also of its anisotropy [4,5]. The model developed
by Doblaré and García [4] was also used to predict the distribution of anisotropy in the
same manner as DPTBR simulations are used to predict the distribution of bone density.
In fact, these authors predicted both distributions simultaneously. The starting point was
an isotropic material with a uniform distribution of density. Their BRM adapted bone
density and anisotropy, the latter through the fabric tensor, and both variables were used
to update the stiffness tensor. Convergence was deemed when both density and anisotropy
remained constant between simulations. A brief summary of this model is provided next,
in Section 2.4.

Given that DPTBR simulations were shown to be path-dependent [11], we estimated
the density distribution from the CT scan and used the bone remodelling model developed
by Doblaré and García [4] to estimate the anisotropy. This required a slight variation of the
original model, explained in Section 2.5. Besides, another variation of the original model
was used to account for time-varying loads, such as walking. This variation was introduced
by Ojeda [32] and is presented in Section 2.6.

The objective of comparing the three models referred to above (IsoJ, IsoH and AnisoH)
was to rule out that the assumption made for the constitutive model is forcing a certain
correlation between the density and the predictors.

2.4. Anisotropic Bone Remodelling Model Based on Continuum Damage Mechanics—Model by
Doblaré and García

A brief description of the anisotropic bone remodelling model developed by Doblaré
and García [4] is given next. Consulting the original paper is advised for a more detailed
description of the model. This model is an extension to the anisotropic case of the model
developed by Beaupré et al. [3]. It applies the Mechanostat Theory by defining a stepwise
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linear relationship between the mechanical stimulus, Ψt, and the bone formation/resorption
rate, ṙ (see Figure 4). The reference value of the stimulus, Ψ∗t defines a region of width
2w called lazy zone (analogous to the “adapted-window” of the Mechanostat Theory),
where no net change of bone density is produced. The value of ṙ determines the temporal
evolution of apparent density, ρ̇. In turn, apparent density determines the variation of the
Young’s modulus through correlations such as (5a) or (7).

Ψt −Ψ∗
t

ṙ

1

c2

1

c1

w w

Figure 4. The Mechanostat Theory as interpreted by Beaupré et al. [3]. This law establishes a stepwise
linear relationship between the bone formation/resorption rate, ṙ, and the difference between the
mechanical stimulus, Ψt, and a reference value of that stimulus, Ψ∗t .

The model developed by Doblaré and García was based on the theory of Continuum
Damage Mechanics (CDM), where the stiffness tensor of the damaged material, C, is
obtained from the tensor of the the non-damaged material, C0, and damage:

C = (1− D)C0, (8)

where D is the damage variable, null for an intact material and equal to 1 for a completely
damaged or failed material. In the extension of CDM to the anisotropic case introduced by
Cordebois and Sideroff [33], the scalar damage D is replaced with a damage tensor D and
the resulting material is orthotropic, with the principal directions of orthotropy aligning
with the principal axes of the damage tensor D. Damage is understood as a measure of
porosity and the directionality of that porosity and both are incorporated into the model
jointly, by following the idea suggested by Cowin [34] for the fabric tensor, H. Therefore,
the undamaged material is an ideal situation of a perfectly isotropic bone with null porosity.
The damage and fabric tensors are related by:

D = 1−H2, (9)

with 1 being the second order identity tensor. Equation (9) leads to the following relation-
ship between the components of the compliance tensor in the principal directions and the
eigenvalues of the fabric tensor, hi:
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1
Ei

=
1
Ê

1
h4

i

−νij

Ei
= − ν̂

Ê
1

h2
i h2

j

1
Gij

=
1 + ν̂

Ê
1

h2
i h2

j
,

(10)

where Ê and ν̂ are, respectively, the Young’s modulus and Poisson’s ratio of the bone
with no porosity. These values can be obtained through correlations (5) or (7) for an
apparent density ρ equal to the density of the bone matrix, ρ̂, which is assumed constant.
In this particular modelAnisoH, we assumed ρ̂ = 2.1 g/cm3 and chose the Hernandez
correlation (7), together with ν = 0.3. The influence of porosity and directionality are
factorised in this model by redefining the fabric tensor as follows:

H =

(
ρ

ρ̂

)β/4
A1/4 Ĥ1/2, (11)

where Ĥ is the normalised fabric tensor. This tensor is normalised by imposing det(Ĥ) = 1
in order to account only for the directionality of the pores. Additionally, β is the exponent
of the apparent density in the correlations (5a) or (7) and A is a parameter introduced to
ensure that the formulation reproduces the isotropic bone remodelling model developed
by Beaupré et al. [3] if it is applied to an isotropic case. A can here be considered a constant.
As stated before, the quotient ρ/ρ̂ in Equation (11) is equal to the bone volume fraction,
BV/TV = 1− p, with p as the porosity. The mechanical stimulus is defined in this model
through the tensor, Y:

Y = 2
{

2Ĝ sym
[
(HεH)(Hε)

]
+ λ̂ tr(H2ε) sym(Hε)

}
, (12)

where Ĝ and λ̂ are the Lamé constants corresponding to the cortical bone with no porosity
and tr(•) and sym(•) represent the trace and symmetric part of a tensor, respectively.
Doblaré and García defined another tensor, J, to quantify the relative influence of the
spherical and deviatoric parts of the stimulus:

J =
1−ω

3
tr(Y)1 + ω dev(Y), (13)

where 1 is the identity tensor, dev(•) represents the deviatoric part of a tensor and the
anisotropy factor, ω, weights the importance of the anisotropy of the stimulus in the model.
This factor ranges from ω = 0, which means that the model only depends on the isotropic
component of the stimulus, to ω = 1, which produces the maximum level of anisotropy.
The same value used by Doblaré and García [4] was used here (ω = 0.1). Two functions
gr and g f are proposed to establish the remodelling criteria. These functions depend on
the stimulus J and are allowed to distinguish the formation, resorption and lazy zones,
as carried out in Figure 4. For that reason, those functions also depend on the reference
value of the stimulus, Ψ∗t , and the width of the lazy zone, through w. Their expressions
are quite complex and can be consulted in [4]. The remodelling criteria are given by the
following conditions:

g f (J, Ψ∗t , w) ≤ 0 gr(J, Ψ∗t , w) > 0 resorption;
gr(J, Ψ∗t , w) ≤ 0 g f (J, Ψ∗t , w) > 0 formation;
g f (J, Ψ∗t , w) ≤ 0 gr(J, Ψ∗t , w) ≤ 0 lazy zone.

(14)
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Based on the fulfilment of the corresponding criterion, the variation of the fabric
tensor H, that accounts for the variation of anisotropy (through tensor Ĥ) and porosity
(see Equation (11)), is provided by:

Ḣ = k1
ρ̂

ρ
J−3 ω̂ resorption;

Ḣ = k2
ρ̂

ρ
Jω̂ formation;

Ḣ = 0 lazy zone;

(15)

where the tensor ω̂ is introduced to simplify the expression, as follows:

ω̂ =
1− 2ω

3
1⊗ 1 + ωI (16)

with I being the fourth-order identity tensor. The factors k1 and k2 in Equation (15) de-
pended on several parameters in the original model. One of those parameters is ṙ, so that
the amount of formed or resorbed tissue modifies the fabric tensor through porosity.

2.5. Modification of the BRM to Maintain Density Constant

In the original model, Doblaré and García used Ḣ to assess the variation of porosity
and anisotropy, but in this work, since the density is known from the CT scan, we have
forced it to remain constant and that is the reason why k1 and k2 can be assumed as
constants. In such case, by deriving Equation (11):

Ḣ =
1
2

(
ρ

ρ̂

)β/4
A1/4 Ĥ−1/2 ˙̂H (17)

and given that Ĥ must remain normalised (det(Ĥ) = 1), we finally adopted:

˙̂H = c Ĥ1/2 Ḣ, (18)

where c is a constant. This expression can be used in an Euler forward integration algorithm
to yield:

Ĥ(tj+1) = Ĥ(tj) + c Ĥ1/2(tj) Ḣ(tj)∆t, (19)

where tj+1 and tj are two consecutive integration steps, the time step ∆t = 1 is chosen and
c is the constant necessary to enforce the condition det Ĥ(tj+1) = 1. The simulation started
from an initially isotropic material (Ĥ(t1) equal to the identity tensor) and was stopped
when the norm of the fabric tensor averaged for all the elements was almost invariable
between iterations, i.e.:

∑n
e=1 Ĥe(tj+1) : Ĥe(tj+1)−∑n

e=1 Ĥe(tj) : Ĥe(tj)

∑n
e=1 Ĥe(tj) : Ĥe(tj)

< 0.001. (20)

2.6. Modification of the BRM to Consider Time-Varying Loads

Doblaré and García [4] and Beaupré et al. [6] applied their models to estimate the
bone density distribution in a human femur by applying the normal walking loads. These
authors considered three instants of the gait cycle and treated those instants as independent
loads. This procedure does not seem very plausible as they are not independent but part
of the same load. For that reason, the procedure was modified by Ojeda [32] to treat the
gait cycle as a single load. Moreover, the particularity of time-varying loads is taken into
account with this modification.

As stated by Carter et al. [35], bone remodelling depends on the maximum stresses that
the bone withstands throughout its load history. Thus, the peaks of mechanical stimulus
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reached in time-varying loads would control the bone remodelling response, and it is
important to note that these peaks can be reached at different instants at each bone site.
Let us consider, for example, the temporal evolution of the mechanical stimulus shown in
Figure 5, with three different activities. The remodelling response is assumed to depend on
the maximum stimulus representative of each activity (black dots in Figure 5). The cycles
are grouped by the level of stimulus and an average cycle must be chosen as representative
of a certain activity. In Figure 5, A1, A2 and A3 represent, respectively, a high, medium
and low intensity load. The mechanical stimulus must be obtained by superimposing the
effect of all activities [35], but let us consider for a moment that only one of those loads is
applied. In such case, A1 would stimulate formation, A3 resorption and A2 would produce
no net change of bone mass.

Ψ∗
t

t

Formation

A1

g f < 0

g f > 0

Resorption
A3

gr > 0

gr < 0

Lazy zoneA2

Peaks: gM
f and gm

r

Valleys: gm
f and gM

r

Figure 5. Remodelling criteria with different loads. The horizontal lines limit the zones of formation
(top line) and resorption (bottom line). If the peak is over the top line, then gM

f > 0 and gm
r < 0

and formation occurs. If the peak is below the bottom line, then gM
f < 0 and gm

r > 0 and resorption

occurs. If the peak lies between both lines, gM
f < 0 and gm

r < 0 and neither formation nor resorption
occurs (lazy zone).

The peaks of the stimulus coincide with the maximum of the formation criterion
function, g f , which is proportional to the stimulus. Those peaks are termed here, gM

f . Since
the resorption criterion function, gr, is inversely proportional to the stimulus [4], the local
minimum of this function, gm

r , also coincides with the peaks of the stimulus (it must be
noted that gM

f and gm
r do not necessarily coincide. They are simply reached at the same

instant). Analogously, the valleys of the stimulus coincide with the minimum of g f and the
maximum of gr, termed here gm

f and gM
r , respectively (red dots in Figure 5).

The procedure to analyse the bone remodelling process for time-varying loads begins
with the calculation of the stimulus (and thus, of g f and gr) at every point of the FE mesh
throughout the cycle, in order to capture the peaks gM

f and gm
r for each element. Based on

the ideas of Carter et al. [35], Ojeda assumed that only the peaks are important from the
bone remodelling perspective. Therefore, the activities plotted in solid and dashed lines
in Figure 5 would lead to the same bone remodelling response, regardless of the valleys.
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The criterion must identify the peaks and place them in one of the three regions: formation,
resorption or lazy zone. Thus, the remodelling criteria (14) are replaced by:

gM
f > 0 formation;

gm
r ≤ 0 gM

f ≤ 0 lazy zone;
gM

f ≤ 0 gm
r > 0 resorption.

(21)

It is important to highlight that gM
f and gm

r are not necessarily reached at the same
instant for all the elements. This is the reason why a detailed description of the cycle
is required in the modification proposed by Ojeda, as the remodelling response at each
element could be driven by the stress-state reached at a different time point. For the
same reason, the simplification consisting in considering three instants of the cycle as
independent loads is not valid.

2.7. FE Simulation of the Gait Cycle—Temporal Evolution of Stresses and Strains in the Femur

The temporal evolution of stresses and strains in the femur during the gait cycle can
be obtained by solving an elastic problem. Let Ω ⊂ R3 be an open bounded domain
and Γ = ∂Ω be its boundary, assumed to be Lipschitz continuous and divided into two
disjoint parts ΓD and ΓN where Dirichlet and Neumann boundary conditions are applied,
respectively. We denote, by x = xi ei, a generic point of Ω and n(x) = ni ei as the outward
unit normal vector to Γ at a point x. The Einstein summation notation was adopted and a
Cartesian basis ei (i = 1, 2, 3) can be used without loss of generality.

Let u = ui ei, σσσ = σij ei ⊗ ej and εεε(u) = εij ei ⊗ ej denote the displacement field,
the stress tensor and the linearised strain tensor, respectively. ei⊗ ej (i, j = 1, 2, 3) represents
the Cartesian tensorial basis. Let b = bi ei denote the known vector of body forces, t = ti ei
the known vector of surface traction forces at ΓN and δδδ = δi ei the known displacements
at ΓD.

The Momentum Conservation Principle states:

σij,j + bi = ρ üi, (22)

where , j denotes the partial derivative ∂/∂xj and ¨(•) denotes the second derivative with
respect to time. The right-hand side of Equation (22) represents the inertial force per unit
volume. Linearised strains are related to displacements by:

εij(u) =
1
2
(
ui,j + uj,i

)
i, j = 1, 2, 3 (23)

and finally, strains and stresses are related by the constitutive equation, which for linear
elastic materials reads:

σij = Cijkl εkl i, j, k, l = 1, 2, 3, (24)

where Cijkl are the components of the fourth-rank stiffness tensor C. In the case of an
isotropic material, this tensor is completely defined by the Young’s modulus, E, and the
Poisson’s ratio, ν, which are expressed as the functions of the density in the case of bone
(see Equation (5)). In general anisotropic materials, this tensor has 21 independent elastic
constants. In our anisotropic case, bone is assumed to be an orthotropic material, and the
compliance tensor (inverse of the stiffness tensor) is given as a function of the fabric tensor
(recall Equation (10)). The elastic problem is completed with the Dirichlet and Neumann
boundary conditions, respectively, applied at ΓD and ΓN :

u = δδδ at ΓD (25a)

σij nj = ti at ΓN . (25b)
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This boundary value problem rarely has an analytical solution, and hence, it is usually
solved by means of the FEM, as carried out here.

At this point, the FE model of the femur had a complete definition of density, and
consequently, of stiffness. Next, the muscle loads and joint reaction forces, estimated in the
gait analysis, were applied as external forces. Muscle loads were applied as concentrated
loads at the insertion points and with the direction defined by the insertion and origin
points (taken from OpenSim [22]). The joint reaction forces were applied as concentrated
loads on the corresponding articular surfaces, i.e., the hip reaction force on the surface of
the femoral head and the knee reaction force on the surface of the epicondyles or of the
epicondylar fossa. In both cases, the node of application at each instant was calculated as
follows: A line was defined as passing through the corresponding joint centre (defined
in OpenSim [22]) and with the direction of the reaction force at that instant. The reaction
force was applied at the node closest to the intersection of the articular surface with that
line. Furthermore, the minimum number of displacement boundary conditions (isostatic)
was applied to restrain the rigid body motion of the FE model. The loads were varied
over time, as a result from the gait analysis, but a quasi-static analysis was performed by
disregarding the inertial forces in the FE simulation (ρ üi in Equation (22)). Nonetheless,
we must note that the loads estimated with OpenSim arise from enforcing the equilibrium
of all the external forces, including the inertial ones. For that reason, these inertial forces
were indirectly considered in the simulations. The FE model, including the loads and the
boundary conditions, is provided in the Supplementary Materials.

This pseudo-static analysis provided the temporal evolution of stresses and strains at
each element e of the mesh (in fact, it is obtained at each integration point in full integration
elements. In our case, C3D4 elements have only one integration point, which can be,
therefore, identified with the element. In the case of C3D10 elements, the variables were
evaluated at the centroid of the element) and at every instant i of the gait cycle. Several
variables were derived from the stress and strain tensors (see Section 2.9). For a certain
variable proposed as stimulus S, its value was calculated at each instant i and for each
element, e, thus, yielding Si

e. Then, the following maximum, minimum and amplitude were
defined to represent its evolution throughout the gait cycle:

SM
e = Max

i
(Si

e) (26a)

Sm
e = Min

i
(Si

e) (26b)

SA
e = SM

e − Sm
e . (26c)

Note that the definition of SM
e is related to the aforementioned hypothesis of Carter,

according to which the local remodelling response would depend on the peak of stress that
a bone site withstands throughout its load history [35]. As stated before, the peaks of stress
do not necessarily occur at the same time for all bone sites. Therefore, considering only
the loads of a single instant of the cycle is not enough to analyse the remodelling response
of the whole bone. Even considering three instants of the cycle, as carried out in [4,6], is
not enough. A detailed description of the gait cycle is required and the modification of
the BRM presented in Section 2.6 is related to this idea. The variable, SM

e , generalises this
concept of the peak of stress to the peak of stimulus. As an alternative to the maximum of
the stimulus throughout the cycle, the amplitude is considered in SA

e .

2.8. Correlation Coefficients

The Spearman and Pearson correlation coefficients were used to assess the statistical
dependence between the bone density and the variables defined later in Section 2.9. Based
on the definitions made in Equation (26), the following coefficients were calculated, taking
each element as a point of the sample:

• RM
j , between the maximum throughout the cycle SM

e and the apparent density ρe.
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• RA
j , between the amplitude throughout the cycle SA

e and the apparent density ρe.

where j stands for P (Pearson) or S (Spearman). Weighted coefficients were calculated
to account for the relative importance of a sample point based on the volume of the
element. The expressions of the weighted correlation coefficients are given in Appendix A.
The Spearman correlation coefficient is a non-parametric measure of rank correlation
and it assesses how well the relationship between two variables can be described by
a monotonic function. In particular, it evaluates if there is a concordance between the
highest density and the highest values of a predictor variable. The Pearson coefficient is a
parametric measure of correlation between two variables that assesses if they are related by
a specific function. In particular, the linear, quadratic and power correlation coefficients
were calculated for those variables that yielded a high Spearman coefficient, in order to
confirm a strong correlation and to evaluate the best function relating the variable to bone
density. Despite that strain energy density (SED) did not yield a high Spearman coefficient,
it was also correlated with bone density through the Pearson coefficient and using those
three functions, for reasons that will be explained later.

It is important to note that concentrated loads or displacement boundary conditions
can produce spurious stress concentrations in the FE model. For this reason, the elements
closest to the nodes where loads or displacement boundary conditions were applied up to
a distance of two elements in all directions were removed from the correlations.

2.9. Evolution of Stresses and Strains—Definition of Predictor Variables

The set of predictor variables analysed in this work includes some variables that
measure the magnitude of the stress or the strain tensor and the SED that accounts for
the magnitude of both tensors in a single variable. The principal stresses are named here,
σ1 ≥ σ2 ≥ σ3, and analogously, ε1 ≥ ε2 ≥ ε3. The maximum and minimum principal
stresses (σ1, σ3) and strains (ε1, ε3) are proposed as predictor variables. The maximum
tensile stress is defined as:

σt =

{
σ1 if σ1 ≥ 0
0 if σ1 < 0

(27)

and the maximum compressive stress as:

σc =

{ −σ3 if σ3 < 0
0 if σ3 ≥ 0

. (28)

The fluctuations of stresses throughout the cycle can be measured by the variable:

σf = σM
1 − σm

3 , (29)

where the superscripts M and m follow the definition given in Equation (26). The absolute
maximum principal stress (AMPσ) and strain (AMPε) are defined analogously as:

AMPσ = Max
{
|σ1|, |σ3|

}
(30a)

AMPε = Max
{
|ε1|, |ε3|

}
. (30b)

The von Mises (σvonMises) and Tresca (σTresca) stresses (in metallic materials, these
variables are used in yielding criteria, which are not applicable to bone, but they can be
regarded as well as a measure of the stress intensity) as well as the hydrostatic stress (σo)
and volumetric strain (εo) are also proposed as predictor variables:

σvonMises =

√
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

2
(31a)

σTresca =
σ1 − σ3

2
(31b)

σo =
σ1 + σ2 + σ3

3
(31c)
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εo = ε1 + ε2 + ε3. (31d)

Finally, the SED, which has been extensively used as a mechanical stimulus in bone
remodelling algorithms, is also proposed as a predictor. SED is given by the following
expression in terms of the stress (σσσ) and strain (εεε) tensors or their components (σij, εij):

SED =
1
2

σσσ : εεε =
1
2

σij εij. (32)

Beaupré et al. [3] defined the mechanical stimulus that drives bone remodelling, Ψ, as a
combination of two factors: the SED and the number of cycles of each activity. Furthermore,
these authors proposed to superimpose the effect of all the activities, i, performed by
the individual during one day, by weighting the SED of each activity, SEDi, with the
corresponding number of cycles, ni. The interested reader can consult the details in [3].
In the following, we will assume that only the most representative activity is carried out
daily and that the number of cycles is constant. In that case, there is a linear relationship
between Ψ and SED [3]:

Ψ = k · SED. (33)

In other words, we can identify Ψ and SED for correlation purposes. More importantly,
Beaupré et al. proposed to take into account the porosity of the tissue to redefine the
mechanical stimulus. Thus, Ψ represents the mechanical stimulus at the continuum
(or macroscopic) level. SED can be calculated through FEM and if the constant k in
Equation (33) is known, the mechanical stimulus at the continuum level, Ψ, can also be
evaluated for each element of the mesh. Beaupré et al. hypothesized that this mechanical
stimulus must be sensed by the existing tissue within the element in order to produce a
remodelling response. Therefore, Ψ can be distributed among the tissue existing in the
element through porosity, analogously to what localisation procedures do in multiscale
approaches, i.e., allowing to move from the macro to the micro scale. To this end, those
authors proposed the following mechanical stimulus at the tissue (or microscopic) level [3]:

Ψt =
Ψ

(1− p)n , (34)

where p ∈ [0, 1] is the porosity and n=2 is the exponent they used [3]. In this way, if the
porosity of one element is close to 1, the mechanical stimulus must be distributed among the
little existing tissue and this will be heavily overloaded. Later, we will analyse the effect of
the exponent n. As stated before, the linear, quadratic and power Pearson coefficients were
also evaluated for the SED. The rationale for this is based on the theoretical dependence of
SED upon density, which can be deduced from previous works found in the literature [2,35].
In the particular case of a uniaxial stress-state, the stress tensor is σσσ = σ eeei ⊗ eeei, with eeei being
the loading direction and σ the applied stress. In such case, and assuming a linearly elastic
and isotropic behaviour for bone, the SED can be calculated through Equation (32) as:

SED∗ =
1
2

σ ε =
1
2

E ε2, (35)

where εεε is the strain tensor and ε is the strain in the loading direction. The asterisk has
been added to highlight that this expression corresponds to a particular case. Additionally,
a typical power correlation between the Young’s modulus and the apparent bone density
can be assumed, for example Equations (5a) and (7), which would read:

E = B ρβ, (36)

where B and β are constants. In this case, Ψ can be rewritten using Equations (33) and (35) as:

Ψ∗ = k
1
2

B ε2 ρβ = K ρβ, (37)
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where the constants preceding the factor ρβ were grouped in a new constant K. The right-
hand side of Equation (37) is only valid if bone is subjected to a constant strain, which
would be in accordance with the Mechanostat Theory. Under all these assumptions, Ψ
could be related to the bone apparent density through a power law. Recalling Equation (34)
and given that (1− p) is equal to the bone volume fraction, which is proportional to the
bone density, the mechanical stimulus at the tissue level, Ψt, could also be related to bone
density through a power law. For this reason, we will check if such a power correlation
between apparent density and Ψ (or equivalently SED) or Ψt is suitable.

3. Results

The weighted Spearman correlation coefficients between bone density and the predic-
tors proposed here are shown in Table 1 for the constitutive model AnisoH. As stated before,
three different values were used for the grey level threshold (GLT) used in Equation (4),
thus, leading to three different FE models (see Figure 2). The correlation coefficients are
given in the three cases for comparison.

The fact that the Spearman correlation coefficient is non-parametric makes it more
appropriate to evaluate the correlation between density and the variables, as it implies
no assumption on the type of relationship. It simply establishes if there is a concordance
between those points having the highest density and those having the highest values of a
certain predictor.

Table 1. Weighted Spearman correlation coefficients obtained with the constitutive model, AnisoH,
using C3D4 elements and for different values of GLT: for the maximum variable throughout the cycle,
RM

S , and for the amplitude throughout the cycle, RA
S . The predictors analysed are: the maximum

principal stress (σ1), the minimum principal stress (σ3), the absolute maximum principal stress
(AMPσ), the corresponding strains (ε1, ε3 and AMPε), the strain energy density (SED or mechanical
stimulus at the continuum level Ψ), the mechanical stimulus at the tissue level (Ψt), the maximum
tensile and compressive stresses (σt and σc, respectively), the fluctuation of stresses (σf ), the von
Mises and Tresca stresses, the hydrostatic stress (σo) and the volumetric strain (εo). Values higher
than 0.9 are highlighted in boldface; negative values are in red.

Predictor GLT = 70 GLT = 80 GLT = 90
RM

S RA
S RM

S RA
S RM

S RA
S

σ1 0.871 0.880 0.905 0.912 0.936 0.942
σ3 −0.040 0.872 −0.047 0.897 −0.045 0.926
σt 0.871 0.871 0.905 0.905 0.936 0.936
σc 0.868 0.868 0.894 0.894 0.923 0.923
σf 0.904 0.904 0.927 0.927 0.951 0.951

AMPσ 0.896 0.896 0.921 0.920 0.945 0.944
σvonMises 0.898 0.898 0.922 0.922 0.948 0.948

σTresca 0.898 0.898 0.922 0.922 0.948 0.947
σo 0.701 0.886 0.739 0.911 0.782 0.938

ε1 −0.344 −0.340 −0.431 −0.429 −0.503 −0.502
ε3 0.410 −0.355 0.432 −0.445 0.457 −0.504

AMPε −0.328 −0.325 −0.427 −0.425 −0.499 −0.498
Ψ 0.698 0.698 0.721 0.721 0.772 0.772

Ψt for n=2 −0.048 −0.048 −0.092 −0.092 −0.097 −0.099
εo −0.202 −0.303 −0.255 −0.468 −0.327 −0.571

It can be seen that most of the stress magnitudes are highly correlated with the density
except for the peak of the minimum principal stress, σM

3 , for obvious reasons, as the sign
of σ3 (usually negative) is considered in the calculus of this peak. Therefore, σM

3 usually
corresponds to the lowest absolute value throughout the cycle. The amplitude, σA

3 , is better
correlated with the density as it usually measures the range of the compressive stress.
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The strain magnitudes are poorly correlated with the density, in some cases with
negative coefficients. SED (or Ψ) is only moderately correlated with the density and not
correlated at all if it is corrected to account for the porosity (Ψt).

Regarding the influence of GLT, it can be seen that though the values of R are different,
the same trend is observed in the three cases. In fact, if we ordered the predictors based on
R, the same order would result for the three GLT.

The weighted Pearson correlation coefficients are shown in Table 2 for the constitutive
model, AnisoH. Only some of the variables previously analysed in Table 1—those that are
considered more interesting—are studied here; in particular, some of the stress variables
that had a higher Spearman coefficient together with the SED at the continuum and at the
tissue level for n = 1 and n = 2 (see Equation (34)). The Pearson coefficients are parametric
and presuppose a certain relationship between the variables being correlated. Thus, we
have tried linear, quadratic and power functions (see Appendix A for details).

Compared to the Spearman, the Pearson correlations have worsened notably as we are
forcing them to fit a certain function which is probably not the most appropriate to relate
the density with the predictor. Among the three types of functions tested, the quadratic is
slightly better, followed by the power and the linear function. The low correlation between
SED and density stands out—something that does not improve in the case of SED at the
tissue level—for which even negative correlation coefficients were obtained, as in the case
of the Spearman coefficients.

Table 2. Weighted Pearson correlation coefficients obtained with the constitutive model, AnisoH,
using C3D4 elements and for different values of GLT: for the maximum variable throughout the
cycle, RM

P , and for the amplitude throughout the cycle, RA
P . The predictors analysed in this case are:

the absolute maximum principal stress (AMPσ), the maximum tensile and compressive stresses
(σt and σc, respectively), the fluctuation of stresses (σf ) and the mechanical stimulus at the continuum
level (Ψ) and at the tissue level (Ψt) for two values of n. Values higher than 0.8 are highlighted in
boldface; negative values are in red.

Predictor Type GLT = 70 GLT = 80 GLT = 90
RM

P RA
P RM

P RA
P RM

P RA
P

AMPσ Linear 0.773 0.772 0.793 0.791 0.808 0.806
σt Linear 0.746 0.745 0.761 0.760 0.770 0.769
σc Linear 0.671 0.672 0.684 0.684 0.695 0.695
σf Linear 0.810 0.810 0.825 0.825 0.838 0.838
Ψ Linear 0.012 0.012 0.012 0.012 0.012 0.012
Ψt for n = 1 Linear −0.016 −0.016 −0.016 −0.016 −0.013 −0.013
Ψt for n = 2 Linear −0.023 −0.023 −0.026 −0.026 −0.023 −0.023

AMPσ Quadratic 0.784 0.782 0.804 0.803 0.818 0.817
σt Quadratic 0.762 0.761 0.778 0.778 0.787 0.786
σc Quadratic 0.678 0.679 0.690 0.691 0.700 0.700
σf Quadratic 0.823 0.823 0.839 0.839 0.850 0.850
Ψ Quadratic 0.026 0.026 0.026 0.026 0.029 0.029
Ψt for n = 1 Quadratic 0.017 0.017 0.017 0.017 0.018 0.018
Ψt for n = 2 Quadratic 0.021 0.021 0.026 0.026 0.023 0.023

AMPσ Power 0.780 0.778 0.799 0.798 0.813 0.811
σt Power 0.761 0.760 0.777 0.776 0.785 0.784
σc Power 0.674 0.675 0.683 0.684 0.690 0.691
σf Power 0.820 0.820 0.835 0.835 0.845 0.845
Ψ Power 0.006 0.006 0.005 0.005 0.005 0.005
Ψt for n = 1 Power −0.016 −0.016 −0.017 −0.017 −0.015 −0.015
Ψt for n = 2 Power −0.019 −0.019 −0.022 −0.020 −0.015 −0.015

Tables 3 and 4 compare, respectively, the Spearman and Pearson coefficients obtained
using the three constitutive models analysed in this work: AnisoH, IsoH and IsoJ. As in-
dicated above, the effect of GLT was not important, and hence, only one case (GLT = 80)
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was studied. It can be noted that the effect of the constitutive model is negligible on the
Spearman correlations and small on the Pearson correlations, at least for the three cases
tested here. The biggest difference is obtained for the power fit between the IsoH and IsoJ
models, which, in turn, follow a different power correlation between the density and the
Young’s modulus, but is not greater than 0.03.

Table 3. Weighted Spearman correlation coefficients obtained for GLT = 80, constitutive models
AnisoH, IsoH and IsoJ and using C3D4 elements: for the maximum variable throughout the cycle,
RM

S , and for the amplitude throughout the cycle, RA
S . The predictors analysed are: the maximum

principal stress (σ1), the minimum principal stress (σ3), the absolute maximum principal stress
(AMPσ), the corresponding strains (ε1, ε3 and AMPε), the strain energy density (SED or mechanical
stimulus at the continuum level Ψ), the mechanical stimulus at the tissue level (Ψt), the maximum
tensile and compressive stresses (σt and σc, respectively), the fluctuation of stresses (σf ), the von
Mises and Tresca stresses, the hydrostatic stress (σo) and the volumetric strain (εo). Values higher
than 0.9 are highlighted in boldface; negative values are in red.

Predictor AnisoH IsoH IsoJ
RM

S RA
S RM

S RA
S RM

S RA
S

σ1 0.905 0.912 0.906 0.913 0.905 0.913
σ3 −0.047 0.897 −0.058 0.899 −0.059 0.895
σt 0.905 0.905 0.906 0.906 0.905 0.905
σc 0.894 0.894 0.895 0.895 0.892 0.892
σf 0.927 0.927 0.928 0.928 0.925 0.925
AMPσ 0.921 0.920 0.922 0.921 0.920 0.920
σvonMises 0.922 0.922 0.924 0.924 0.921 0.920
σTresca 0.922 0.922 0.923 0.923 0.920 0.920
σo 0.739 0.911 0.742 0.913 0.739 0.911

ε1 −0.431 −0.429 −0.431 −0.429 −0.443 −0.441
ε3 0.432 −0.445 0.431 −0.443 0.429 −0.458
AMPε −0.427 −0.425 −0.425 −0.423 −0.440 −0.438
Ψ 0.721 0.721 0.722 0.721 0.708 0.708
Ψt for n = 2 −0.092 −0.092 −0.092 −0.092 −0.114 −0.114
εo −0.255 −0.468 −0.254 −0.464 −0.247 −0.489

We have also analysed the spatial distribution of the correlations, in particular of the
Pearson coefficients (power fit), by assessing separately the correlations for the elements of
the proximal, distal and diaphyseal thirds (see Table 5). The aim of this comparison was to
investigate if there are regions of the femur where the density is better to the predictors.
Given the limited influence of GLT and the constitutive model, we only show the case
GLT = 80 and IsoH. Besides, we only compare some of the variables that show a higher
correlation (σf , AMPσ) and only the coefficients for the maximum variable throughout the
cycle, RM

S . The other stress variables follow the same trend, as well as RA
S . The comparison

of the strain variables is meaningless since they are not correlated with density, as shown
previously. It can be noted that the correlation coefficients are high in the diaphysis,
significantly worse in the proximal and especially worse in the distal third, influenced
by the simplified way the joint reaction forces were modelled. They were applied as
concentrated nodal forces, as explained in Section 2.7, rather than as a load distributed over
the articular surface, as it actually occurs. This simplification affects the stresses near the
articular region and, therefore, the correlations. The hip joint force can be more plausibly
applied as a concentrated nodal force since the pressure on that joint spans a narrower
region than that on the knee joint. Probably, this makes the correlations be slightly better in
the proximal third than in the distal one.
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Table 4. Weighted Pearson correlation coefficients obtained for GLT = 80, constitutive models
AnisoH, IsoH and IsoJ and using C3D4 elements: for the maximum variable throughout the cycle,
RM

P , and for the amplitude throughout the cycle, RA
P . The predictors analysed in this case are: the

absolute maximum principal stress (AMPσ), the maximum tensile and compressive stresses (σt and
σc, respectively), the fluctuation of stresses (σf ), the mechanical stimulus at the continuum level (Ψ)
and at the tissue level (Ψt) for two values of n. Values higher than 0.8 are highlighted in boldface;
negative values are in red.

Predictor Type of AnisoH IsoH IsoJ
Correlation RM

P RA
P RM

P RA
P RM

P RA
P

AMPσ Linear 0.793 0.791 0.802 0.800 0.814 0.813
σt Linear 0.761 0.760 0.767 0.766 0.771 0.770
σc Linear 0.684 0.684 0.692 0.692 0.707 0.708
σf Linear 0.825 0.825 0.832 0.832 0.840 0.840
Ψ Linear 0.012 0.012 0.012 0.012 0.015 0.015
Ψt for n = 1 Linear −0.016 −0.016 −0.016 −0.016 −0.017 −0.017
Ψt for n = 2 Linear −0.026 −0.026 −0.026 −0.026 −0.029 −0.029

AMPσ Quadratic 0.804 0.803 0.814 0.812 0.834 0.833
σt Quadratic 0.778 0.778 0.785 0.784 0.797 0.796
σc Quadratic 0.690 0.691 0.698 0.699 0.719 0.720
σf Quadratic 0.839 0.839 0.846 0.846 0.861 0.861
Ψ Quadratic 0.026 0.026 0.026 0.026 0.030 0.030
Ψt for n = 1 Quadratic 0.017 0.017 0.017 0.017 0.020 0.020
Ψt for n = 2 Quadratic 0.026 0.026 0.026 0.026 0.029 0.029

AMPσ Power 0.799 0.798 0.809 0.808 0.833 0.832
σt Power 0.777 0.776 0.783 0.783 0.797 0.796
σc Power 0.683 0.684 0.692 0.693 0.717 0.718
σf Power 0.835 0.835 0.842 0.842 0.861 0.861
Ψ Power 0.005 0.005 0.006 0.006 0.008 0.008
Ψt for n = 1 Power −0.017 −0.017 −0.017 −0.017 −0.018 −0.018
Ψt for n = 2 Power −0.022 −0.022 −0.022 −0.022 −0.023 −0.023

Table 5. Weighted Pearson correlation coefficients (power fit) obtained for the maximum variable
throughout the cycle, RM

S , for GLT = 80, constitutive model IsoH and using C3D4 elements. The predic-
tors analysed are: the fluctuation of stresses (σf ) and the absolute maximum principal stress (AMPσ).
Values higher than 0.8 are highlighted in boldface.

Proximal Diaphysis Distal Global

σf 0.718 0.879 0.660 0.844
AMPσ 0.694 0.862 0.640 0.813

The influence of the mesh (C3D4 vs. C3D10) was analysed by comparing the correla-
tion coefficients in Table 6; in particular, the Spearman and the power Pearson coefficients in
the case GLT = 80 and using the constitutive model IsoH. The Pearson coefficients improved
moderately with the use of quadratic elements (C3D10), but only for the good predictors,
i.e., those variables that are highly correlated with density. The rest of variables, such as Ψ
and the strain magnitudes (not shown), did not improve their correlations. The other types
of fit (linear and quadratic) also improved with C3D10, although to a lesser extent. It is
noteworthy that the Spearman coefficients were almost identical in both meshes.
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Table 6. Influence of the FE mesh (C3D4 vs. C3D10) on the weighted Spearman and Pearson
(power) correlation coefficients obtained for GLT = 80 and constitutive model IsoH: for the maximum
variable throughout the cycle, RM

P , and for the amplitude throughout the cycle, RA
P . The same

predictors analysed for Spearman and Pearson coefficients are compared here. Values higher than 0.9
(in Spearman) or 0.8 (in Pearson) are highlighted in boldface; negative values are in red.

Predictor Type of C3D4 C3D10
Correlation RM

P RA
P RM

P RA
P

σ1 Spearman 0.906 0.913 0.904 0.912
σ3 Spearman −0.058 0.899 −0.236 0.896
σt Spearman 0.906 0.906 0.904 0.904
σc Spearman 0.895 0.895 0.893 0.894
σf Spearman 0.928 0.928 0.930 0.930
AMPσ Spearman 0.922 0.921 0.923 0.922
σvonMises Spearman 0.924 0.924 0.925 0.925
σTresca Spearman 0.923 0.923 0.925 0.924
σo Spearman 0.742 0.913 0.734 0.911

ε1 Spearman −0.431 −0.429 −0.499 −0.496
ε3 Spearman 0.431 −0.443 0.484 −0.495
AMPε Spearman −0.425 −0.423 −0.482 −0.480
Ψ Spearman 0.722 0.721 0.709 0.709
Ψt for n = 2 Spearman −0.092 −0.092 −0.182 −0.182
εo Spearman −0.254 −0.464 −0.287 −0.499

AMPσ Pearson (Power) 0.809 0.808 0.874 0.874
σt Pearson (Power) 0.783 0.783 0.818 0.818
σc Pearson (Power) 0.692 0.693 0.741 0.742
σf Pearson (Power) 0.842 0.842 0.902 0.902
Ψ Pearson (Power) 0.006 0.006 0.011 0.011
Ψt for n = 1 Pearson (Power) −0.017 −0.017 −0.019 −0.019
Ψt for n = 2 Pearson (Power) −0.022 −0.022 −0.025 −0.025

Histograms

There are so many points involved in the correlations that the plots of density against
the different variables are very difficult to distinguish. Instead, histograms are used to
show the percentage of volume occupied by those elements whose values of AMPσ or
AMPε are within a given range. The elements of cortical (ρ > 1.2 g/cm3) and trabecular
bone (ρ ≤ 1.2 g/cm3) have been separated into two different histograms and the results for
the three constitutive models were plotted jointly (see Figure 6). Thus, for example, in the
model AnisoH, the elements of trabecular bone whose AMPε is in the range [200,600] µε
occupy 30% of the total volume of trabecular bone (ρ ≤ 1.2 g/cm3).

It can be seen that while the strain range is similar for cortical and trabecular bone,
the stresses are completely different, with trabecular bone having stresses several orders
of magnitude lower than cortical bone. In general, strains are found in a very narrow
range, especially in the cortical bone, for which 87% of the volume has AMPε in the range
of 200–600 µε. This is not so evident in trabecular bone, though 51% is still within the
range of 200–1000 µε and 65% is in the range of 200–1400 µε. This is still a narrow range, as
overload strains are up to 4000 µε [36,37].
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Figure 6. Distribution of the absolute maximum principal stress (AMPσ) and strain (AMPε) for the
elements of trabecular (ρ ≤ 1.2 g/cm3) and cortical bone (ρ < 1.2 g/cm3). The Y axis shows the
percentage of the total volume occupied by the elements, whose AMPσ or AMPε are in a given range.

4. Discussion

A linear function (Equation (3)) was used here to estimate the bone apparent density
from the grey level of the CT scan [23–26]. As in these previous works, the CT scan could not
be calibrated, and thus, a threshold was set by identifying the grey level of the diaphyseal
canal with bone marrow, that is, with null bone density. Notwithstanding, the greyscale
value inside the canal was found to vary in the range of 70–90 and, thus, three different
grey level thresholds (GLT) were used and their effect was investigated. The same trend
was observed in R for the three values of GLT. Therefore, we can state that the choice of
GLT had no effect on the correlation coefficients (see Tables 1 and 2), and hence, on the
overall conclusions of this study. For that reason, the rest of results were compared only for
the intermediate GLT = 80.

In general, the variables derived from the strain tensor has a low correlation with
density and this can be due to the fact that the strains are concentrated in a narrow range,
as deduced from the histograms. On the contrary, the stress-related variables are distributed
over a much wider range and they are very closely related to density as the correlation
coefficients showed. The high correlation found between density and the von Mises,
Tresca, absolute maximum principal stress (AMPσ) and the fluctuation of stresses (σf )
are noteworthy.

On the other hand, SED is only modestly correlated with density, probably because it
depends on the strains, which are very poorly correlated with ρ. Since SED also depends
on the stress level, the histograms of SED (not shown) are as spread as the histograms of
stress; however, in view of the correlations, its variation does not seem to be as coupled
to density as the mere variation of stress is. However, if SED seems a modest predictor of
density, the mechanical stimulus at the tissue level proposed by Beaupré (Ψt) is even worse,
as it yields negative correlation coefficients.
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The Spearman coefficient is probably the most simple indicator that two variables are
correlated by a monotonic function, since it does not assume any specific relationship as
does the Pearson coefficient. If RS is positive and high for a certain variable, this means that
density increases with that variable, and that a large part of that increase can be explained
by the variable, without assessing what specific relationship exists. Hence, that variable
can serve as a good predictor of density in a bone remodelling model, though the particular
relationship between the density and the specific variable should be further investigated.
In this regard, the linear, quadratic or power functions tried for the Pearson coefficients
worked only moderately well. Only σf and AMPσ showed a value of RP slightly over 0.8
(up to 0.861 for σf in the IsoJ model). This means that R2 >∼ 0.64, i.e., around 64% of the
variation of the density, can be explained by σf (up to 74% in the IsoJ model).

Only some of the variables appearing in Table 1 were chosen for assessing its Pearson
coefficient, those having a high Spearman coefficient plus SED and its related variables
(Ψt), for its common use as a mechanical stimulus in many models of bone remodelling.
Obviously, if the Spearman coefficients of SED and its related variables were low, the re-
spective Pearson coefficients could not improve them, but it is worth noting the very
low values of RP obtained for SED compared to RS. This would mean that Equation (37)
was not very appropriate, probably because of the many assumptions involved in it, viz:
uniaxial stress-state, isotropic material and power correlation between Young’s modulus
and density.

The distribution of two variables, one representing the stress-state (AMPσ) and one
representing the strain-state (AMPε), was analysed by means of histograms (see Figure 6)
that distinguish between cortical (ρ > 1.2 g/cm3) and trabecular bone (ρ ≤ 1.2 g/cm3).
These histograms showed that the strains are concentrated in a relatively narrow range in
the case of trabecular bone. Around 65% of the volume of trabecular bone was found to be
within the range AMPε ∈ [200–1400] µε in the AnisoH model, 62% in IsoH and 53% in the
IsoJ. The range was particularly narrow in the case of cortical bone, as about 85% of its total
volume was found in the range AMPε ∈ [200–600] µε for all constitutive models.

It is noteworthy that the range of strains obtained here was low compared with
the normal strains indicated by the Mechanostat Theory (between 800 and 1200 µε [10]).
Nonetheless, other authors have established a different range of normal strains in the
so-called “adapted-window” of the Mechanostat, between 200 and 1500 µε [36,37]. Yet,
the strains seem relatively low for models, AnisoH and IsoH, which are likely overestimating
the bone stiffness. The correlation, (5a), used by model IsoJ, is probably more adequate in
view of the strains it produces.

In contrast to strains, the stresses are more uniformly distributed and over a much
wider range, with the stresses of trabecular bone being one or two orders of magnitude
lower than those of cortical bone. This strong relationship between bone density and
stress is confirmed by the high Spearman correlation coefficients of most stress variables
(see Table 1).

The distributions and correlations of strain and stress variables would confirm that
bone is adapted to withstand a constant strain, or at least a strain within a narrow range,
in accordance with the Mechanostat Theory, while the local stress-state seems to determine
the bone density. This would suggest the use of a strain variable as the mechanical stimulus
S in evolutionary BRM (see Equation (1)), such that bone density changes if the strain is
out of the normal or adapted range. On the contrary, a stress variable would be more
appropriate for the stimulus in a non-evolutionary BRM (see Equation (2)), such that the
stress would determine the bone density at a given location. In the case of cyclic loads, such
as the one applied here, a variable measuring the fluctuations of stresses throughout the
cycle seems the more appropriate mechanical stimulus among those tested here, though the
specific relationship between density and stress is yet to be determined. In no case does the
SED seem a suitable variable to be used as the mechanical stimulus in BRM.

We have compared three constitutive models (AnisoH, IsoH and IsoJ) in order to check
whether the correlation between predictors and density, S− ρ, is being forced by the rela-
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tionship between stiffness and density, E = F(ρ), in particular for those predictors derived
from the stress tensor (for the sake of generality, we should write C = F(ρ), with C being
the stiffness tensor, in order to account for anisotropic materials. However, the rationale
provided is independent of this distinction and we will continue with E = F(ρ)) . It is well
known from the literature that F is a monotonically increasing function and given that the
stiffer elements tend to withstand higher stress levels, we should expect a function such as
σ = H(E) to be monotonically increasing as well. Thus, if we write:

σ = H
(

F(ρ)
)
, (38)

we can expect a monotonically increasing function relating σ and ρ, in other words, a posi-
tive correlation S− ρ for the predictors derived from the stress tensor. Therefore, it could
seem that the function E = F(ρ) is forcing S− ρ and it is so to some extent, especially for
the Spearman correlation coefficients. However, if E = F(ρ) were the only determinants
of the correlation S− ρ, this correlation should depend on the constitutive model and it
does not—significantly, at least. Indeed, the increase in stiffness from IsoJ to IsoH is quite
remarkable (up to 70%, see Figure 3, left) and yet the Pearson correlations do not change
much from one model to the other (see Table 4). Moreover, since the ratio of stiffness is
non-uniform (see Figure 3, right), a redistribution of stresses could be expected that would
cause the stress patterns of the two models not to coincide. The same could be said of
the comparison between models AnisoH and IsoH. Such redistribution of stresses would,
therefore, affect the Spearman correlation coefficients or the AMPσ histograms, but both
are almost identical for the three models (see Table 3 and Figure 6). Hence, we can conclude
that the assumed constitutive model has no significant effect on the correlations.

However, there is another argument to support that S− ρ is not completely forced by
the constitutive behaviour, but only to some extent. Certainly, Equation (38) is incomplete
as the stress-state also depends on the loads and boundary conditions:

σ = H
(

F(ρ), F
)
, (39)

where F stands for the set of loads applied to the domain, including the body forces,
the surface tractions applied on the boundaries (i.e., Neumann boundary conditions) and
the reaction forces (and consequently the Dirichlet boundary conditions). Apart from that,
the predictors, S, are obtained as a function of the stress tensor, that we can denote as
S = G(σ), thus leading to:

S = G
(

H
(

F(ρ), F
))

. (40)

In view of Equation (40) the predictors, S, need not be predetermined only by the
function F(ρ), not even the Spearman correlation coefficients, as the function G is not
necessarily monotonic. This is confirmed by the different Spearman coefficients obtained
for different predictors (see Tables 1 and 3). It should be noted that the same concepts that
are behind the G functions can be applied to the predictors derived from the strain tensor
or the SED-based predictors.

An example can serve to illustrate the key role played by the loads on the correlations
S− ρ. We have obtained these correlations for every instant of the gait cycle separately.
The stress and strain tensors obtained at each instant i were used to assess Si

e (recall
Section 2.7) and these variables were correlated with ρe to give Ri

P, a weighted Pearson
correlation coefficient for each instant i. The worst coefficient between AMPσ and den-
sity throughout the cycle was Ri

P = 0.48 (for the quadratic fit and in the case GLT = 80,
constitutive model IsoH and C3D4 elements), which is far from RM

P = 0.804. The former
is a very poor correlation. (Ri

P)
2 = 0.23, i.e., only about 25% of the variance of density

can be explained by AMPσi and this is probably because the loads at that instant are not
representative of the gait cycle. In fact, the loads at a single instant cannot be representative
of the entire cycle on a general basis.
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In summary, the function E = F(ρ) is contributing to obtain the correlations S− ρ,
at least for stress-based predictors, but only to some extent. There are other factors, not
influenced by that function, that play an important role in the correlations; an accurate
estimation of the loads is crucial, taking into account the variation of stresses throughout
the cycle is also important and an appropriate choice of S (funtion G) is key to predict-
ing density.

The type of element (C3D4 vs. C3D10) had a relative importance on the results,
as the linear elements (C3D4) are stiffer than the quadratic ones (C3D10). The latter
yielded moderately higher stresses and strains, which were slightly better correlated
with density through a power law than those obtained with C3D4 elements (see Table 6).
The linear and quadratic fits (not shown) also improved with C3D10, but to a lesser extent.
Notwithstanding, the C3D4 mesh had a sufficient element density and was accurate enough
as evidenced by the fact that the stress and strain patterns are almost identical in both
meshes. Consequently, the Spearman correlation coefficients derived from both are also
almost identical. For that reason, the use of C3D4 elements was justified, at least for the
mesh density employed in our model.

Among the limitations of this study we must note that only one activity (walking)
has been considered, among the many activities that a person can carry out in a normal
day. Other activities can load the femur in a different way than walking, thus, affecting the
local bone density. This could partially explain the variance of density not explained by
our correlations. However, walking is by far the most common activity affecting the lower
limb and the most common activity performed by the subject under study. Hence, little
influence of other activities can be expected.

The joint loads were applied in a simplified way, as nodal-concentrated loads instead
of loads distributed over the articular surface. This approximation is especially significant
in the knee reaction force and this could explain the lower correlation coefficients found in
the distal third of the femur. Another limitation is that the CT scan could not be calibrated,
but we have shown that this fact did not influence the conclusions drawn. Finally, it must
be noted that only one individual, a male healthy subject, was studied. As future work,
it would be interesting to repeat the study in other cases, including different bones, age,
gender, health status, bone pathologies, etc., in order to confirm whether these variables or
others alter the dependence of bone density on the proposed predictors.

5. Conclusions

In view of the results of this study we can conclude the following:

• Stresses are highly variable in the femur and very different in cortical and trabecu-
lar sites.

• Stresses are strongly correlated with density and seem to determine it. Therefore,
certain variables derived from the stress tensor could be good candidates for the
mechanical stimulus in non-evolutionary BRM that can be used in DPTBR problems.

• In the case of cyclic loads, the fluctuation of stresses throughout the cycle is the best
predictor of density among those tested in this work.

• In contrast to the above, strains are relatively uniform across the femur and remain
within the “adapted-window” established by the Mechanostat Theory.

• Strains are very poorly correlated with density and all indications are that bone
tends to keep them approximately constant. Therefore, variables derived from the
strain tensor could be good candidates as mechanical stimulus in evolutionary BRM,
in which density would be forced to change in order to maintain strains within the
“adapted-window”.

• Strain energy density does not seem to be a good variable to measure the mechanical
stimulus in any case, and even less so if this variable is evaluated at the tissue level by
using the porosity correction factor.
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Appendix A. Weighted Pearson and Spearman Correlation Coefficients

In the case of a linear correlation, the Pearson coefficient between the bone apparent
density ρ and the predictor var is weighted with the volume of the finite elements, which are
the sample points. The weighted Pearson coefficient is defined as the weighted covariance
divided by the weighted variances of both variables and determines the proportion of
variance explained by the weighted linear fit of the point cloud (ρe , vare):

RP =

n

∑
e=1

[Ve (ρe − ρ)(vare − var)]√
n

∑
e=1

[Ve (ρe − ρ)2] ·
n

∑
e=1

[Ve (vare − var)2]

(A1)
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with the weighted averages being •, for example, in the case of the predictor var:

var =

n

∑
e=1

vare Ve

n

∑
j=1

Ve

(A2)

and with an analogous expresion for the weighted average of density, ρ. Ve is the volume
of the element e, used to weight the variable vare.

The weighted Spearman correlation coefficient, RS, is obtained through
Equations (A1) and (A2) by simply replacing the pairs (ρe , vare) with the pairs composed
of their respective ranks, i.e.,

(
rank(ρe) , rank(vare)

)
.

The weighted Pearson correlation coefficient was also obtained for both a quadratic
and a power fit of the point cloud (ρe , vare). In the first case, the following function was
fitted to the point cloud in the least squares sense, after being weighted with the element
volume, using the polyfitweighted library of MATLAB:

˜var(ρ) = A ρ2 + B ρ + C. (A3)

In least squares fitting the Pearson coefficient is defined as the quotient between the
covariance of the fitted and raw variables divided by the variances of both. In weighted
fittings Equation (A1) is modified as follows:

RP =

n

∑
e=1

[Ve ( ˜var(ρe)− ˜var)(vare − var)]√
n

∑
e=1

[Ve ( ˜var(ρe)− ˜var)2] ·
n

∑
e=1

[Ve (vare − var)2]

. (A4)

In the case of a power fit, the function to be fitted (var = K ρβ) is transformed into a
linear function by taking logarithms of both sides:

log var = K + β log ρ. (A5)

Then, the Pearson coefficient of a linear fit (Equation (A1)) is used by replacing the
pairs (ρe , vare) with (log ρe , log vare).

Appendix B. Inverse Dynamic Problem Methodology

The forces applied to the FE model were obtained solving an inverse dynamics prob-
lem, which is briefly described next (a more detailed description can be found for example
in [38,39]). All the simulations were run in OpenSim. First, the inverse kinematics problem
was solved. The input data in this problem are the trajectories of the markers, xext, obtained
experimentally for the gait cycle by using a Vicon®system. The output is the temporal
evolution of the generalized coordinates, q. The inverse kinematics problem was solved
using a least square pose estimator:

min
q

(
∑

i∈markers
wi ‖xexp

i − xi(q)‖2

)
, (A6)

where xi(q) is the position of the virtual marker i, which depends on the coordinates
values, and wi is a marker weight taken from [17,21]. The results of the inverse kinematics
problem were used as input to solve the inverse dynamics problem, by means of the
classical equations of motion:

M(q)q̈ + C(q, q̇) + G(q) = ø, (A7)
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where q, q̇ and q̈ are the vectors of generalized positions, velocities and accelerations,
respectively; M is the mass matrix; C is the vector of quadratic velocities; G is the vector of
external forces including gravitational forces and ground reaction forces and ø is the vector
of generalized forces regarding motor tasks. Finally, muscle forces (Fmus) were estimated
solving the following optimization problem:

min

(
J =

n

∑
m=1

(am)
p

)

s.t.
n

∑
m=1

[am · f (F0
m, lm, vm)] · rm,j = τj

, (A8)

where n is the number of muscles in the model; am is the activation level of muscle m
at a given time step; F0

m its maximum isometric force; lm its length; vm its shortening
velocity; f (F0

m, lm, vm) its force-length-velocity relation; rm,j its moment arm about the jth
joint axis and τj is the generalized force acting about the jth joint axis. The cost function J
of Equation (A8) minimizes the sum of muscle activation squared (p = 2) as in [17]. As an
example, Figure A1 shows the temporal evolution of the forces exerted by the iliacus and
the lateral gastrocnemius obtained following this procedure. The temporal evolutions of all
the muscles considered in the analysis are included in the Supplementary Materials.

Figure A1. Temporal evolution of the components of the forces exerted by the iliacus and
the lateral gastrocnemius throughout the gait cycle. AP: antero-posterior. CC: Cranio-caudal.
LM: Lateral-medial.

Finally, the bone-on-bone forces on the hip and the knee were calculated using the
algorithm proposed by Steele [22].

Ri = Mi(y)ÿi − (∑ Fmuscles + ∑ Fexternal + Ri−1) (A9)

In this equation, vector Ri contains the resultant forces and moments at joint i or
bone-on-bone forces. The body distal to joint i, Bi, is treated as an independent body with
known kinematics in a global reference frame. Thus, ÿi represents the six dimensional
vector of known angular and linear accelerations of Bi, while Mi(q) is the 6 × 6 mass
matrix of Bi. Fexternal and Fmuscles represent the previously calculated forces and moments
produced by external loads and musculotendon actuators, respectively. R(i−1) represents
the joint reaction load applied at the distal joint and was calculated in the previous recursive
step. Our aim was to study bone-on-bone forces only at the hip and the knee joints, thus,
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the generic name Ri will be replaced by HJF and KJF (acronyms for hip and knee joint
forces, respectively) and expressed in the local frame attached to the femur. Figure A2
shows the temporal evolution of HJF and KJF throughout the gait cycle. These data are
included in the Supplementary Materials.

Figure A2. Temporal evolution of the HJF and KJF throughout the gait cycle. AP: Antero-posterior.
CC: Cranio-caudal. LM: Lateral-medial. BW: Body weight.
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