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Abstract: In a graph G = (V, E), where every vertex is assigned 0, 1 or 2, f is an assignment such
that every vertex assigned 0 has at least one neighbor assigned 2 and all vertices labeled by 0 are
independent, then f is called an outer independent Roman dominating function (OIRDF). The
domination is strengthened if every vertex is assigned 0, 1, 2 or 3, f is such an assignment that each
vertex assigned 0 has at least two neighbors assigned 2 or one neighbor assigned 3, each vertex
assigned 1 has at least one neighbor assigned 2 or 3, and all vertices labeled by 0 are independent,
then f is called an outer independent double Roman dominating function (OIDRDF). The weight
of an (OIDRDF) OIRDF f is the sum of f(v) for all v € V. The outer independent (double) Roman
domination number (,i4r (G)) Yoir (G) is the minimum weight taken over all (OIDRDFs) OIRDFs
of G. In this article, we investigate these two parameters 7,z (G) and 7,;;g (G) of regular graphs
and present lower bounds on them. We improve the lower bound on 7,z (G) for a regular graph
presented by Ahangar et al. (2017). Furthermore, we present upper bounds on 7,;r (G) and ;g (G)
for torus graphs. Furthermore, we determine the exact values of 7,;gr (C300C,) and 7, (Cn0Cy)
form = 0 (mod 4) and n = 0 (mod 4), and the exact value of 7,;;gr(C30Cy). By our result,
Yoidr (CnOCy) < 5mn /4 which verifies the open question is correct for C,,[JC,, that was presented
by Ahangar et al. (2020).

Keywords: regular graphs; outer independent double Roman domination; Cartesian product of
cycles; outer independent Roman domination

MSC: 05C69

1. Introduction

In graph theory, problems on vertex domination and independence are attractive
research topics. There have been many achievements on this topic, and still some open
problems remain that have not been completely solved in this area. In this work, we focus
on two parameters which are the combinations of (double) Roman domination and vertex
independence in graphs, and they are the outer independent Roman domination number
and the outer independent double Roman domination number.

In this paper, G = (V,E) is a finite simple connected graph with vertex set V and
edge set E. |V| is the order of G. For a vertex v € V, N(v) is the open neighborhood of v,
ie, N(v) = {w|w is joined to v} and deg(v) is the degree of v. If both the maximum and
minimum degrees are k, then G is k-regular.

Roman domination is a very famous domination on a graph introduced by Cockayne
etal. [1]. In a graph G = (V,E), every vertex is considered as a city that needs legion
protection and every city can be assigned zero, one, or two legions, f is an assignment such
that each vertex without legions must be adjacent to at least one vertex with two legions.
Then, the assignment f is called a Roman dominating function (RDF) of G. The weight of
an RDF fis w(f) = Y_,cy f(v). The Roman domination number is the minimum weight
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taken over all RDFs of G, denoted as vz (G). Since Roman domination was proposed, many
papers on Roman domination have been published and there are several variations such as
weak Roman domination [2], Roman {2}-domination [3], perfect Roman domination [4],
signed Roman domination [5], Roman {3}-domination (double Italian domination) [6], triple
Roman domination [7], and double Roman domination [8].

Double Roman domination is a strengthened Roman domination, which can provide
double the defense for less than twice the cost. In double Roman domination, every vertex
can have no more than three legions, f is an assignment such that each vertex without
legion must be adjacent to at least one vertex with three legions or two vertices with two
legions, and each vertex with one legion must have at least one neighbor with two or three
legions. Then, the assignment f is called a double Roman dominating function (DRDF)
of G. The weight of a DRDF f is w(f) = Lycy(c) f(v). The double Roman domination
number is the minimum weight of DRDFs on G, denoted as g (G).

Ahangar et al. combined Roman domination and double Roman domination with
vertex independence and introduced the outer independent Roman domination [9] and the
outer independent double Roman domination [10]. A function f is an outer independent
(double) Roman dominating function on G, abbreviated as (OIDRDF) OIRDE if f is a
(DRDF) RDF and the set of vertexes assigned 0 under f is independent. The outer indepen-
dent (double) Roman domination number is the minimum weight of (OIDRDFs) OIRDFs on
G, denoted as (7,iar(G)) 7oir(G). For an (OIDRDF) OIRDF f on G, if
(f) = (70iar(G))Yoir (G), then f is called a (7igr (G))7oir (G)-function.

After the two papers [9,10] were published, the topic attracted many researchers. Poureidi
et al. [11] proposed an algorithm to compute v,;g (G) in O(|V]) time. Martinez et al. [12]
obtained some bounds on 7,;z (G) in terms of other parameters. Nazari-Moghaddam et al. [13]
provided a constructive characterization of trees T with 7,;g(T) = yr(T). Mojdeh et al. [14]
characterized a connected graph G with small v,;4r(G), gave lower and upper bounds
on this parameter in terms of domination number 7, independence number &, and vertex
cover number B, proved the decision problem associated with 7,;sr (G) was NP-complete,
and proved 2B(T) + 1 < 7,i4r(T) < 3B(T) for a tree T. Some variations related to these
two parameters have been presented and studied [15-19].

The purpose of this paper was to study two parameters, v,;r(G) and 7,4z (G), of
regular graphs. We improve the lower bound on 7,z (G) presented by Ahangar et al. [9]
and present a lower bound on ,;4r (G). For torus graphs (the Cartesian product of cycles)
G = C,C,, we obtain upper bounds of 7,;r(G) and 7,;;r(G) by constructing some
OIRDFs and OIDRDFs. We determine the exact values of 7v,;g (C30Cy), Yoir (CCy) for
m =0 (mod 4) and n = 0 (mod 4) and ,;4r (C300C,). Ahangar et al. [10] provided an
open question: Is it true that, for any graph G of order n > 4, 7v,;;r(G) < 5n/4? For
the Cartesian product of cycles C,,0Cy, we find 7,;4r (C0Cy) < | 233N | < 5 /4,
which partially answers the open question.

2. The Outer Independent Roman Domination Number of Regular Graphs
2.1. The Lower Bound on <y,;g of Regular Graphs

For any regular graph G = (V,E), f is an outer independent Roman dominating
function of G. Let V; = {v € V|f(v) = i,i = 0,1,2}, then (Vp, V3, V») is a partition of V
induced by f. There is a one-to-one correspondence between (Vp, V4, V2) and f, thus we
also write f = (Vp, V1, V2). Let Ej; = {(uv) € Elu € V;,v € V;,0 < i,j < 2}, obviously
E;j = Ej;, then (Eq1, Eo2, E11, E12, E22) is a partition of E.

Lemma 1. For any k-regular graph G = (V,E), let f = (Vo, V4, Va) be an outer independent
Roman dominating function of G and E;; = {(uv) € Elue Vv e V;,0<i,j < 2}, then

(@) k|Vo| = |Eo1| + [Eo2|-
(b)  k|Vi| = |E1o| + |E11| + |E12].
(c)  k|Va| = |Exo| + |E21] + |Enzl.
(d  (k—=1)|En2| = |Ep|-
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Proof. Since G = (V,E) is a k-regular graph, V = V, U V; U V; and V} is an independent
set, then (a), (b), and (c) hold.

For (d), since every v € Vp has at least one neighbor which is in V; and all other
neighbors are in Vi, then (k — 1)|Egp| > |Ep1]. O

Theorem 1. For a k-regular graph G of order n, y,ir(G) > [W}

Proof. Let f = (Vy, V1, V2) be an arbitrary 7, (G)-function and E;; = {(uv) € E(G)[u €
Vi,0eV;,0<i,j< 2}. By Lemma 1 (b) and (c),

|E1o| = k|Vi| — |E11| — |Ex2], |E2o| = k|V2| — |E12] — |E22|.
Since |Vg| = |V| — |V1| — |V2], Eij = Ej;, then by Lemma 1 (a),
k(|V] = Vi| = |Va]) = |E1o| + |Exo
k([V] = [V1| = |Val) = kIV1| = |[En1| = |Ex2| + k|Va| — |E12| — |E2|
2K|Vi|+2KVa| = k|V]|+ [Exg| +2|Ens| + | Eza

2(k+1)(IVi| + |Va]) = k|V|+2|Vi| +2|Va| + |Eq1| + 2| E12| + |Ex

=
=
=
= 2(k+1)(Vil+V2]) = (k+DIV]= Vol + Vil + [Va| + [En1| + 2| Exa| + | Exz

By Lemma 1 (a)-(c), k(|V1] + [Va| = [Vo|) = [En1| + 2|Exz| + |Ez2], then

k+1)(|E11| + 2|E12| + |En])

2k +1)(Va| + V) = (k +1)|v] + & . S
By Lemma 1 (d), (k — 1)|Exg| > |Eqp|, then
(k= 1)(k|V2| = |Exa| = [Ex2|) = k[Vi| = [Ena| — |Eno
= (k=1Dk|Va| —=kIVi| = (k= 1)(|Ex2| + |Ex2|) — [En1| — [Ex2
Then,
2k = 1)|Va| — 2|V | > 2(k — 2)|E1p| 4+ 2(k — 1) |Eap| — 2|Ena @)

k
Add both sides of Equation (1) and Inequality (2),

(k—1)|E11| +2(2k — 1)|Eqa| + (3k — 1)|Epa|

2k|Vy| +4k|Vo| > (k+1)|V| + p

Since k > 1, then the last term on the right side is non-negative. Therefore,
2k(|V1| +2|V2|) > (K+1)|V].

Thus,
(k+1)|V]
2k ’

Since ,;g is an integer, we have 7,;g(G) > [(k; L 1. O

w(f) = Vil +2|V2| =

Ahangar et al. ([9]) presented 7,;r(G) > [5] + 1 for a regular graph G of order
n. We improve this lower bound to [W] In fact, for an arbitrary k-regular graph

G, k > 1, then we have } < kzikl < 1. Furthermore, since |V(G)| = n > k+ 1, then
k+1
[y = e 2] > [+ ) =[5 +1] = [4] +1.

2.2. Outer Independent Roman Domination in Torus Graphs

In this subsection, we investigate the outer independent Roman domination number of
Cu[C, (torus graph). We determine the exact values of 7y,;gr (C,[JCy,) for m = 0 (mod 4)
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and n =0 (mod 4) and the exact value of 7,;g (C30Cy, ). Furthermore, we present bounds
on the outer independent Roman domination number of other torus graphs.

We denote the vertex set of C,,0C, as V = {vi,j|0 <i<m-10<j<n—-1}
Figure 1a shows the graph of C4[1C¢ where vertices v;  are joined to v;5 and vy,; are joined
to v3 ;. Figure 1b shows an OIRDF on C4[JCs.

Figure 1. The graph of C400Cq (a) and an OIRDEF on C4[0Cq (b).

To save space, thoughout this paper we use an m-by-n matrix to show the OIRDF on
CwOCy in which entry m; ; is f(v; ;) and the following is an OIRDF f on C40Cs,

010202
101010
020102
101010

f(C4OCs) =

Theorem 2. For m = 0(mod 4) and n = 0(mod 4), 7,ir (CuCy) = 222,

Proof. Let G = C,,[1C, then G is 4-regular, k = 4, |V| = mn, by Theorem 1, 7,z (C,,[IC,,) >

5mn

San’ To prove Zg" is the upper bound, we define an OIRDF g on C4[1Cy,

0101
1020
0101
2010

g(C4OCy) =

Then, defining an OIRDF f on C,[(ICy, f(v;;) = (Vi mod 4, mod 4)- Thus, 7,ir (CnCy) <
w(f) =% x2x10=>22" [

Fact. 7,;gr(C300C3) = 8.

Theorem 3. For any integer n > 4, v,ir (C30Cy) = [73—”1
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Proof. We define an OIRDF f on C3[1C, as follows.

n = 0(mod 6), n =1(mod 6),
010102 --- 010102 010102 --- 010102 , 2
f= 102010 --- 102010 ), f= 102010 --- 102010 1 1 ),
111111 --- 111111 111111 --- 111111 j 0
n =2(mod 6), n = 3(mod 6),
010102 --- 010102 | 02 020101 --- 020101 | 101
f=1 102010 --- 102010 ' 10 ), f=1 101020 --- 101020 i 111 )
111111 --- 111111 j 11 111111 --- 111111 j 020
n = 4(mod 6), n = 5(mod 6),
010102 --- 010102 ; 0102 010102 --- 010102 ; 01012
f= ( 102010 --- 102010 1 1020 ) f= ( 102010 --- 102010 r 10201 )
1 --- 111111 ' 1111 111111 -+ 111111 ' 11110
Then,
4x2="70=[7] n = 0(mod6),
14 x :%; +3= ;:BE = [%1, n = 1(mod6),
w(f) = 14 x 7, +5= 3 :W[T], "= 2(mod6),
14 x 122 47 = & = [H], n = 3(mod6),
14 x 4 410 = 2422 = [21], 5 = 4(mod6),
14 x 122 412 = 7L = [71] 5 = 5(mods6).

S0, Y,ir (C30C) < [7].

Then, we prove 7,ir (C30Cy) > [Z]. Let f be an arbitrary 7,;g (C30Cy)-function and
w(fi) = f(voi) + f(v1,) + f(v2) (0 <i < n—1). Since every vertex v € V(C30C,) with
f(v) = 0 has no neighbor assigned 0 under f, then w(f;) > 2for0 <i <n-—1.

We claim w(fi_1) +w(f;) + w(fix1) > 7 for 0 <i < n — 1, where subscripts are taken
modulo n. In fact, if w( f;) = 2, without loss of generality, let f(vg;) =0, f(v1;) = f(v2;) =1,
then f(vo,; 1) + f(vois1) > 3, f(v1i-1) + f(v2-1) > 1, and f(v1,i11) + f(v241) > 1. It
follows that w(f;_1) + w(f;) + w(fir1) > 7. Hw(f;) >3, by w(fi_1) > 2and w(fiy1) > 2,
it follows w(fi_1) + w(f;) + w(fit1) > 7.

Thus, 3w(f) = 3 Lo<i<n—1 W (fi) = Lo<i<n—1(w(fi-1) + w(fi) + w(fit1)) = 7n.

Hence, Yoir (C30Cn) = w(f) > []. O

For every connected graph G of order 1, 7,;r(G) < n (see Ahangar et al. [9]). For torus
graphs, we obtain a smaller upper bound presented by the following theorem.

Theorem 4. For any integers m,n > 4, m # 0(mod4) or n # 0(mod4),

5mn 5mn + 5m + 5n
(251 < Yoir(CnlOCn) < [P0 .

Proof. By Theorem 1, 7,ir (Cu0Cy) > [222]. Then, we define some recursive OIRDFs
and obtain y,;g (C0C,) < | 2mtmton |

Case 1. m = 0(mod4). For n # 0(mod4), we define an OIRDF f on C,,[JC, by
repeating the first four rows in the OIRDF f(C4[]C,,) as m increases by 4 and f(C4[1C,) is
defined as follows.
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n = 1(mod 4), n =2(mod 4),
0101 --- 0101, 01011 0102 --- 0102 , 02
1020 --- 1020 ' 10201 1010 --- 1010 ' 10
AGHC) = | o101 ... 0101 , 01011 | FGHC) = | 001 +.. 0201 02 |’
2010 --- 2010 ' 20110 1010 --- 1010 ' 10
n = 3(mod 4),
0102 --- 0102 , 012
1010 --- 1010 ' 101
FIGHC) = | 4001 ... 0201 | 021
1010 --- 1010 ' 101
The weight of f is
Mo B2 x 10+ % x 14 = 2MEm = 1(mod4),
w(f) =4 2 x12x10+ % x6=>2"02m1 y =2(mod4),
Mox 12 x 104+ % x 10 = 25 = 3(mod4).

Case 2. m = 1(mod4). Forn = 0,1,2,3(mod4), m > 13, an OIRDF f on C,,[JC,, is
defined by repeating the first four rows in the OIRDF f(CyJC,) as m increases by 4 and
f(CoOCy) is defined as follows. An OIRDF f(CsIC,) is defined by deleting the first four

rows of f(CoIC,).
n = 0(mod 4),
0102 0102
1010 1010
0201 0201
1010 1010
f(CoOC,) = | 0102 --- 0102
1010 1010
0201 0201
1011 1011
1110 1110
n =2(mod 4),
0102 0102
1010 1010 :
0201 0201 |
1010 - 1010 |
f(CoOC,) = | 0102 0102
1010 1010
0201 0201 !
1011 1011
1110 1110 !
Then the weight of f is
Z'ZT*55;(% .51)0+ % 14 = Smntdn
m=o)n=-9) 104 m=5 .
w(f) = (m—51)§n—2) 10+ m
(m751)6(n 3) 10 + m—>5

02
10
02
10
h
10
02
10
11

n =1(mod 4),

f(c9|:|cn) =

n = 3(mod 4),

f(CoCy) =

14+WT—5.14+18:W,

-2 _ 5mn+2m+3n—2
7.6+%.14+87%,

7'10""%_3'14'#11:%'

-+ 1020 | 10201
--- 0101 ! 01011
-+ 2010 , 20110
- 0101 ! 01011

- 1020 1 10201 |,
-~ 0101 | 01011
-~ 2010 1 20110
.. 0111 | 01102
- 1101 ' 11010

.- 0102 | 012
-~ 1010 ! 110
.- 0201 1 101
- 1010 | 120

- 70102 1 012
-+ 1010 | 110
- 0201 1 101
.- 1011 | 020
- 1110 ' 101

Case 3. m = 2(mod4). Forn = 0,1,2,3(mod4), an OIRDF f(C,,[]Cy,) is defined by
repeating the first four rows of the OIRDF f(C¢JC,) as m increases by 4.
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n = 0(mod 4), n =1(mod 4),
0102 --- 0102 0101 --- 0101, 0101 1
1010 --- 1010 1020 --- 1020 : 1020 1
| 0201 --- 0201 | 0101 --- 0101, 0101 1
JEHGI = 1010 - 1010 |1 JGEEI =1 2010 - 2010 12011 0 |
0102 --- 0102 0101 --- 0101 , 0101 1
1020 --- 1020 2020 --- 2020 ' 2020 1
n = 2(mod 4), n = 3(mod 4),
0102 --- 0102 , 0102 02 0102 --- 0102 , 0102 012
1010 --- 1010 : 1010 10 1010 --- 1010 : 1010 110
| 0201 --- 0201 ,0201 01 | 0201 --- 0201 ,0201 011
JGEET = 1010 - 1010 1010 20 |+ SCEE = 10 - 1010 11010 201
0202 --- 0202, 0201 01 0202 --- 0202, 0201 011
1010 --- 1010 ' 1010 10 1010 --- 1010 ! 1010 110
The weight of f is
me2L 10+ 86 = 2, n = 0(mod4),
B W-10+”’T’2~14+”T*5~6+8:W, n =1(mod4),
w(f) = (m—21)6(n—2) .10 + msz 6+ nT% 647 = 5mn+27ré+2n720’ n= 2(mod4),
—2)(n-3 - _ _
(m 1)6(” ) .10 + me2 .10+ 157 649 = mtimdn=22 -y = 3(mod4).
Case 4. m = 3(mod4). Forn = 0,1,2,3(mod4), an OIRDF f(C,,[JC,) is defined by
repeating the first four rows of the OIRDF f(C;[1C,) as m increases by 4 and f(C;00C,) is
defined as follows.
n = 0(mod 4), n =1(mod 4),
0102 --- 0102 0101 --- 0101 , 01011
1010 --- 1010 1020 --- 1020 : 10201
0201 --- 0201 0101 --- 0101 , 01011
fcme,) = | 1010 - 1010 |, F(CGmC) = | 2010 - 2010 20110 |,
0102 --- 0102 0111 --- 0111 1 01101
1020 --- 1020 1102 ... 1102 : 11020
1111 --- 1111 2010 --- 2010 ' 20101
n =2(mod 4), n = 3(mod 4),
0102 --- 0102 | 0102 02 0102 --- 0102 | 102
1010 --- 1010 : 1010 10 1010 --- 1010 : 110
0201 --- 0201 /0201 01 0201 --- 0201 102
F(G0C) = | 1010 -+ 101011010 20 |, f(GOC,) = | 1010 - 1010} 110
0202 --- 0202 1 0201 01 0202 --- 0202 ' 011
1010 --- 1010, 1011 11 1010 --- 1010 , 101
1111 --- 1111 ' 1110 10 1111 --- 1111 ' 020
The weight of f is
me3 %104 410 = 2o, n = 0(mod4),
(m=3)n=5) 90 4 3 14 4 12510 4 11 = SmntdmaSn=21 -y = 1(mod4),
w =
(f) (m731)6(1172) 210+ mT73 64 nT76 .10+ 13 = 5mn+27ré+5n722/ n= 2(m0d4>,
—3)(n-3 - - - _
(m 1)6(" ) .10+ M8 .10 + 153 .10 4 6 = dmnadmidn=27 -y = 3(mod4).

Hence, 7,ir (C,,OCy) < LWJ O
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3. The Outer Independent Double Roman Domination Number of Regular Graphs
3.1. The Lower Bound on y,;;r of Regular Graphs

For any regular graph G = (V, E), f is an outer independent double Roman dominat-
ing function (OIDRDF) of G. Let V; = {v € V|f(v) = i,i = 0,1,2,3}, then (Vy, V4, V3, V3) is
a partition of V induced by f. We also write f = (Vj, V1, Va, V3).

Since every vertex v € Vp must have at least two neighbors assigned 2 or one neighbor
assigned 3 under f , then we write V) = Vi U Vi3, where Vpp = {v € Vp : [N(v) N
V3| = 0AN(v)NV,| > 2} and Vs = {v € Vp : |[N(v) N V3| > 1}. Since every vertex
v € V) must have at least one neighbor in V, U V3, then we write V; = Vi, U V3, where
Vio={veVi:INw)NV3| =0A|N(v)NV,| > 1} and Vi3 = {v € V1 : [N(v) N V3| > 1}.
Then, we write f = (Vo, Vi, Vo, Vg) = (V02 U Vs, Vip U Vi3, Vs, V3). Let E,, = {(MU) €
E(G) tueV,ve Vb} where V,, Vv, € {V(), Vi, Vo, V3, Vo, Vos, Via, V13} and €y = |Ea,b‘-
Obviously, e,, = ep, and e1p +e13 > |V4].

Lemma 2. Let f = (Vy, V1, Vo, V3) = (Vo U Vg, Vip U Vi, Vo, V3) be an arbitrary OIDRDF
of a k-regular graph G and e, be the cardinality of E,;, = {(uv) € E(G) : u € V3,0 €
Vb where V,, Vb S {V(), Vl, Vz, V3, Voz, V03, Vlz, V13}}, then we have

(@) k|Vo| = eq,00 +e1,03 + €202 + €203 + €303,
kIVi| = e1,00 +e1,03 + €11 +e12 +e13,
k|Va| = ez02 + €203 +e2,1 + €22 + €23,
k|V3| = e33 + €31 +e32 +e33.

(b)  e100 < S2eyppand eq g3 < (k —1)es 3.

Proof. (a) Since k|Vy| = €1 + eop + €03, €01 = €01 + €031, €02 = €022 + €p32 and ez =
€03,3/ then

kIVo| = o1 + €031 +eo22 + €032 1+ €033 = e1,02 + €1,03 + €2,02 + €2,03 + €303

klVi| = e10+e11 +eip+e13 =eyo +ey0 ey +ern+es

kiVa| = ex0+ex1 +exp+ex3 =ex0m +e03+ 621 +ep+ens.

k|V3| = ez +e31 +e3n+e33 =e303+e31+e32+e33.

(b) Since every vertex v € V| has at least two neighbors in V; and other neighbors
in Vq, theney g < k%zezm. Every vertex v € Vp3 has at least one neighbor in V3 and other
neighbors in V; U V,, then e1,03 < e1,03 +e203 < (k — 1)63,03. O

Theorem 5. Let G be a k-regqular graph with order of n and k > 2, then

(k* + 4k — 8)n
. > = - /7
,-},de(G) = [ %2 — 4 -|

Proof. Let f = (Vo, Vi, Vs, V3) = (V()z U Vs, V1o U Vi3, Vo, V3) be a 7,;4r-function of G and
e, be the cardinality of E, p, i.e., e, = |E, ;| where E; , = {(uv) € E(G) : u € Vz,v € V},},
VH/ Vb € {VO/ Vl/ V2/ V3/ V02/ VO3/ V12/ V13}' BY Lemma 2 (ﬂ),

kIVo| = e,00 + e1,03 + €202 + 2,03 + €303,
etz +e0s =k[Vi| —ei1 —e2 —ei3,
e +e203 =k|Vo| —ep1 —e2p—e23,
e303 =k|V3| —e31 —e3n —e3s.
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Since [Vo| = [V(G)| — V1| — [V2| — | V3], then
k(IV(G)| — V1| = |Va| — | V3])
=klVi| —e11 —e1p—ei3+k|Vo| —ex1 —exp —ex3+k|V3| —e31 —e3p —e33

3 3
= k(Ia] + [Va| + [Vv3]) — L L e
a=1b=

3 3
= 2k([Va| + V2| + [V3]) = K[V(G)[ + Zlelea,b-
a= =

Multiply both sides of the above equation by (k* + 4k — 8) /k, we have the following
equation.

) ) K> +4k 8 o
2(k* + 4k — 8)(|V1| + [Va| + [V3]) = (k* + 4k — 8)[V(G)| + Y Y ey 0
a=1b=1

By Lemma 2 (a) and (b) ,

-2
T)ez,oz + (k—1)es 03 > e1,02 + e1,03,

€2,02 = k |V2\ — €203 — €21 — €22 — €23,
e303 = k| V3| —e31 —e32 —e33,
e1,02 +e1,03 = k|V1\ —€1,1 —€12 —€13.

Then,

(k—2)(k|Va| —ep03 — €21 — €20 —€23) +2(k — 1) (k| V3| —e31 —e32 —e33)
> 2(k|Vi| —e1q —e1p —e13)

3 3
= k(k—2)|Va| — k—2)(62,03+b2162,b) + 2k(k —1)| V3| —Z(k—l)bzlew

>2k|V1\—2):6’1b
L k(- 2)[ V| 1 2K(K D[V - 2607
> (k—2)(ez03 + Z erp) +2(k—1) E e3p —2 E e1p

Multiply both sides of the above inequality by 2(k — 2) /k. Since k > 2, the direction of
the inequality is reversed. Then, we have the following inequality.

2)2|Vo| +4(k —2)(k —1|V3| 4(k — 2)|V1|

(k- 2)(6203+Z€2b)+2(k 1)b);l€3b—2b2161b]

2(k —

> ( 4)

Add both sides of Equation (3) and Inequality (4),

2(k2+4k*8)(|V1|+|V2|+\V3|)+2(k 2)2|Vo| +4(k —2)(k — 1)| V3| — 4(k — 2)| V4|
> (K2 + 4k — 8)|V(G)| + k=t » Zeub

a=1b=1

+( (k- 2)(6203+Z€zb)+2( )Z€3b—2261b]

= (2K? +4k — 8)\V1|+(4k2 )\V2|+(6k2 4k 8)|V3\
> (k2 + 4k — 8)|V(G |+k+4"82 Zeab

3 3
+% [(2k* — 8k + 8)(e2,03 + bgl erp) + (4k* — 12k + 8) bgl e3p — (4k — 8) }El e1p)
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The left-hand side of above inequality is
LHS = (2k* + 4k — 8)|Vy| + (4k* — 8)|Va| + (6k* — 4k — 8)|V3|.
The right-hand side is

RHS = (kK + 4k — 8)|V(G)|
+% (e11+e10+e13+e21+e2p t e3+es1+esntess)
+ 288 (0) 05 + €21 + €20 + €23) + T (031 + 3 + €33)

—M(T_S (e +e12+e).

Since e, , = ey, then

RHS = (k* 44k —8)|V(G)| + key1 + (4k — 4)eq o + (6k — 8)er 3
4 2EBkiB o) 3 4 (3k — 4)egn + (8k — 12)ex3 + (5k — 8)es3
= (K +4k = 8)|V(G)| +ke11 + (4k — 4)(e21 +e31) + (3k — 4)(e22 +€23)
+(2k — 4)es1 + (5k — 8)(ean +e3) + EFEB ey oy

Since ey +e13 > |V1], then

LHS > RHS > (k? + 4k — 8)|V(G)| + key 1 + (4k — 4)| V1| + (3k — 4)(e22 + €23)
+(2k —4)ez 1 + (5k — 8)(e3z +e33) + wezm-
= (2k? — 4)|Vy| + (4k? — 8)|Va| + (6k> — 4k — 8)| V3|
> (k* + 4k — 8)|V(G)| + k11 + (3k — 4) (e22 + €23)
+(2k —4)e3 1 + (5k —8)(e32 +e33) + 2k27;§k+8€2,03-
= (2k% — 4)|Vy| + (4k* — 8)| V| + (6k* — 12)| V3]
> (k* 44k — 8)|V(G)| + ke11 + (3k —4)(e2p +e23)
+(2k — 4)esy + (5k — 8)(e30 + e33) + 2=kt 0) o0 4 (4k — 4)| V3.
= (2k* —4) (V1| +2|Va| +3|V3]) > (kK> + 4k — 8)|V(G)|.

K2 +4k—
= [Vi| +2|Va| + 33| > 8y ().

Since w(f) = |V4| 4 2|Va| + 3| V3], then w(f) > %\V(G)L Furthermore, 7,4z is
an integer, then
k% + 4k — 8)n

Yoidr (G) = [( Tt

O

3.2. Outer Independent Double Roman Domination in Torus Graphs

In this subsection, we investigate the outer independent double Roman domination
number of C,,0C, (torus graph). We determine the exact values of 7, (C300C,) and
present bounds of ;g (CJC,,) for m > 4.

We denote the vertex set of C,,,[ 1C,, as V = {Ul‘,]'|0 <i<m-1,0<j<n-1} and
use an m-by-n matrix to show the OIDRDF on C,,[JC; in which entry m; ; is f(v; ;) and the
following is an OIDRDF f on C3[1Cy,

0202
f(C30Cy) = | 1020 |.
2111

Theorem 6. For any integer n > 3, v,i4r (C3JC,) = 3n.
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Proof. We define an OIDRDF f on C300C3 by: f(vpp) = f(v11) = f(v20) =2, f(vo1) =
f(vlro) = f(vz,z) =1and f(00’0> = f(vlrz) = f(Z)le) = 0. For n > 4, define an OIDRDF f
as follows.

n=0(mod 4), n=1(mod 4),
0202 --- 0202 0202 --- 0202 ; 02012
f=1[ 102 .- 1020), f=1[ 102 - 102010201),
2111 --- 2111 2111 --- 2111 j 21120
n = 2(mod 4), n = 3(mod 4),
0202 --- 0202 | 02 0202 --- 0202 | 0201022
f=1 1020 --- 1020111 |, f=1 1020 --- 1020 1 1020201 |.
2111 --- 2111 ' 20 2111 --- 2111 ' 2112110
Then,
12 x § = 3n, n = 0(mod4),
w(f) = 12 x 172 415 =3n, n=1(mod4),
12x 2 +6=3n, n=2(mod4),
12x 57 421 =3n, n=3(modd),n>7

Thus, 7,i4r (C300Cy) < 3n.

Next we prove 7,;sr(C300C,) > 3n. Let f be an arbitrary v,,sg (C300C, )-function,
Vi = {00,,01,, 02} and w(f;) = f(vo;) + f(v1,) + f(v2:) (0 < i < n—1), then f has
the properties:

(1) w(f;) > 2. Since every vertex v € V(C3C,) with f(v) = 0 has no neighbor
assigned 0 under f, then w(f;) > 2for0 <i<n—1.

(@) Ifw(f;) =2, thenw(fi—1) + w(fi+1) > 8 where subscripts are taken modulo n. If
w(f;) = 2, by symmetry, let f(vg;) = f(v1;) = 1and f(vy;) = 0. Then, by the definition of
OIDRDYE, f(vg,i-1) + f(v0,i+1) = 2, f(v1,i-1) + f(v1,i+1) = 2, and f(vi-1) + f(v2,i41) = 4,
it follows w(fj_1) + w(fi+1) > 8.

For 0 <i < n —1, we put the columns V; into different sets Bs (0 < s < f).
Initialization: t = 0 and D[i] = 0fori =0Qupton — 1.

S1. For i from 0 to n — 1 with w(f;) > 5and D[i] = 0, do:

t=t+1,D[i] =1,B: = {V;}.

Ifw(fiy1) =2and D[i+1] =0, then D[i+1] =1, B = By U{Vj41}.

Ifw(fi 1) =2and D[i—1] =0,then D[i — 1] =1, B = B;U{V;_1}.

S2. For i from 0 to n — 1 with w(f;) = 4 and DJi] = 0, do:

t=t+1,D[i] =1, B, = {V;}.

If Z(J(ﬁ+1) = 2, then D[l + 1] = 1, Bt = Bt U {Vl’Jrl}.

By (2), if w(f;) = 2, then w(f;_1) > 4 or w(fij1) > 4. Therefore w(f;) = 3 for all

D[i] = 0 after S1 and S2.

S3. For i from 0 to n — 1 with w(f;) = 3 and D[i] = 0, do:

t=t+1,D[i|=1, B ={V;}.

Notice that } y.cp, w(f;) > 3 X [By|.

Thus, we have

w(f)= ¥ 1w(fi): Y w(fi)le 3|Bs| = 3n.

0<i<n— 1<s<t V;€B; <s<t
Hence, 7,i4r(C30Cy) > 3n. O

Ahangar et al. [10] proved 7,;sr(T) < 5n/4 for tree T of order n and provided an
open problem: “Is it true that, for any graph G on n > 4 vertices, 7,4r (G) < 5n/4?” We
say this is true for the Cartesian product of cycles C,,.JC,, since we obtain ;g (C,nCy) <
LWJ by constructing some OIDRDFs described in the following theorem.
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Theorem 7. For any integers m,n > 4,

6mn
[?1 < Yidr (CrOCr) < |

7mn + 3m + 3n
8

Proof. By Theorem 5, 7,iqr (CuJCy) > [®42]. Then, we define some recursive OIDRDFs
and obtain 7,;g (COC,) < LWJ

Case 1. m = 0(mod4). For n = 0,1,2,3(mod4), we define an OIDRDF f(C,,0C,) by
repeating the first four rows in f(C40JC,) as m increases by 4.

n = 0(mod 4),
F(C4OC,) =
n = 2(mod 4),
£(C40C,) =
The weight of f is
w(f) =

0202 ---
1020 ---
2101 ---
1020 ---

0202 ---
1020 ---

2101 ---
1020 ---

L EESEESREAE

0202
1020
2101
1020

0202
1020
2101
1020

I

|*'>‘
G

=
N

2
NS
w

n =1(mod 4),
, f(COC,) =
n =3(mod 4),
|02
10
: » |’ f(c0oc,) =
10
_7
4=,
144 4 x 18 = Tmudm,
,14_‘_% X 8 = 7mng—2m,
144 I x 12 = Zmntm

0202 ---
1020 ---
2101 ---
1020 ---

0202 ---
1020 ---
2101 ---
1020 ---

S 2 = =

0202 , 02012
1020 ' 10201
2101 | 21020 |’
1020 ' 10201

0202
1020
2101
1020

Case 2. m = 1(mod4). For n = 0,1,2,3(mod4) and m > 13, an OIDRDF is defined by
repeating the first four rows in f(C9[JC,) as m increases by 4. For f(Cs0IC,) is defined by
deleting the first four rows in f(CoJCy).

n = 0(mod 4),

f(CoOCy) =

n = 2(mod 4),

f(ColCy) =

0202 ---
1020 ---
2101 ---

n =1(mod 4),

, f(CoICy) =

n = 3(mod 4),

02
10
22
10
02 |,
10
22
01
120

f(ColCy) =

- 0202 1 02012 |,
-+ 1020 | 10201
-+ 2101 1 21020
.. 0121 | 01201

+ 2010 ' 20112

-+ 0202 ; 02012
-+ 1020 ! 10201
-+ 2101 | 21020
- 1020 | 10201

-+ 0202 | 102
-+ 1020 ! 120
.. 2101 4 201
- 1020 | 120
- 70202 1 102
-+ 1020 | 120
.. 2101 1 201
.. 0121, 012
- 2010 ' 210
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Then, the weight of f is
me5 . N4 4118 = Tmntn n = 0(mod 4),
" (m*51)6(”*5) 144 15 18 4 M5 18 4 24 = Tmmdmnt? -y = 1(mod 4),
w(f) = 5\
(m 51)6(” 2 144+ 17218+ M5 .84 10 = Imk2min=2 -y = 2(mod 4),
(m=8)(n=3) 4 4 n3 984 M5 .10 415 = Tmntdmin=3 = 3(mod 4).

Case 3. m = 2(mod4). Forn = 0,1,2,3(mod4), an OIDRDF f on C,,[JC, is defined
by repeating the first four rows of f(C¢[JC;) as m increases by 4.

n = 0(mod 4), n =1(mod 4),
0202 --- 0202 0202 --- 0202 | 02012
1020 --- 1020 1020 --- 1020 ' 10201
| 2101 - 2101 | 2101 -+ 2101, 21020
JGEED =1 020 o020 |+ SEESI = G020 1020110201 |-
0202 -~ 0202 0202 --- 0202 | 02012
1012 --- 1012 2020 --- 2020 ' 20210
n =2(mod 4), n = 3(mod 4),
0202 --- 0202 02 0202 --- 0202 102
1020 --- 1020 ' 10 1020 --- 1020 ' 120
2101 --- 2101, 22 2101 --- 2101, 201
FIGEE) =1 020 - 1020 110 |+ SEEOT = 020 10201120
0202 -~ 0202, 02 0202 --- 0202 | 102
2020 --- 2020 ' 20 1210 --- 1210 ' 120
The weight of f is
M2 R 144 4.8 = Tt n = 0(mod 4),
w(f) = (m-2n=5)  qq 4 15 .8 4 2 18 4 10 = Tmmimi2e=2 -y = 1(mod 4),
= (m721)6(n72) 14 + nT72 8+ mTfZ 844 = 7mn+2rg+2n74’ n= 2(mod 4)[
(m-2n=3) qq 08 .8 2 1 4 g = Tmntdma2n=6 = 3(mod 4).

Case 4. m = 3(mod4). Forn = 0,1,2,3(mod4), an OIDRDF f on C,,[0C, is defined
by repeating the first four rows of the OIDRDF f(C;[JC,) as m increases by 4.

n = 0(mod 4), n =1(mod 4),
0202 --- 0202 0202 --- 0202, 02012
1020 --- 1020 1020 --- 1020 ' 10201
2101 --- 2101 2101 --- 2101 1 21020

f(C0C,) = | 1020 --- 1020 |, f(C0C,) = | 1020 --- 1020 | 10201 |,
0202 0202 0202 0202 1 02012
1020 1020 1020 --- 1020 | 10201
2111 2111 2111 -+ 21111 21120

n =2(mod 4), n = 3(mod 4),
0202 --- 0202 | 02 0202 --- 0202 | 0201022
1020 --- 1020 ' 11 1020 --- 1020 ' 1020201
2101 --- 2101120 2101 --- 2101 1 2101020

f(GOC,) = | 1020 --- 1020 | 11 |, f(C,0C,) = | 1020 --- 1020 | 1022101
0202 --- 0202 102 0202 --- 0202 1 0201022
1020 --- 1020 | 11 1020 --- 1020 ; 1020201
2111 --- 2111120 2111 --- 2111 ' 2112110
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The weight of f is
Tf3 1144212 = Tmnt3n n = 0(mod 4),
) %'144‘%_5'124‘%_3'184'15:%' n = 1(mod 4),
w(f) = 3
W.14+%.12+%.8+6:W, n =2(mod 4),
(m—31)6(”—7) 14+ 15712 M8 .06 4 21 = TmnE3mASN=I -y = 3(mod 4).

Hence, 7,i4r (CnOCy) < LWJ 0

4. Conclusions

For the outer independent Roman domination number of regular graph G, we im-
proved the lower bound on 7,;g(G) presented by Ahangar et al. ([9]), determined the
exact values of y,;r(C30Cy), Yir (CndCy) for m = 0 (mod 4) and n = 0 (mod 4), and
presented bounds on ;g (CCy,) for m # 0 (mod 4) or n # 0 (mod 4). For the outer
independent double Roman domination number of regular graph G, we presented a lower
bound on 7,;4r (G), determined the exact values of 7,;4r (C30]Cy, ), and presented bounds on
Yoidr (CmECy) for m,n > 4. By our results, 7,iir (CnJCy) < LWJ, which verifies
Yoidr (G) < 5|V(G)|/4 is correct for G = C,,JC,,.
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