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Abstract: This article investigates the three-dimensional magneto stagnation-point flow of ternary
hybrid nanofluid caused by a radially extended infinite gyrating disk with multiple slip effects.
The main concern is to analyze the characteristics of heat transport when linear thermal radiation
(LTR), quadratic thermal radiation (QTR), and full nonlinear thermal radiation (FNTR) are significant.
Ternary fluid is a composition of water, spherical-shaped silver, cylindrical-shaped aluminum oxide,
and platelet-shaped aluminum nanoparticles. Non-uniform heat source effects are taken into account.
The governing equations are constructed using a single-phase nanofluid model using boundary layer
theory and von Karman variables. The consequent nonlinear problem is solved with an efficient finite
element method and the results are verified with the available data. The Nusselt number and friction
factors are computed for both clean fluid and ternary nanofluid subjected to three different forms
of Rosseland’s thermal radiation. Our results demonstrate that the rate of heat transport (Nusselt
number) is higher in the FNTR case than in QTR and LTR, and it is even higher for ternary nanofluid
compared to clean fluid. Further, the heat transport rate gets reduced for a higher heat source
parameter. The rotation of the disk escalates the shear stress along both the radial and axial directions.
The multiple slip boundary conditions lead to condensed boundary layers over a disk surface.

Keywords: rotating disk; stagnation flow; radial stretching; ternary hybrid nanofluid; thermal
radiation; finite element method

MSC: 76M10; 76U05; 80A19; 80A21

1. Introduction

Recently, the role of nanofluids has substantially originated in various applications
due to their properties being incomparably superior to those of other working fluids. The
variety of nanoparticles is immersed in the working fluids to synthesize the nanofluids,
and thus the optical, magnetic, thermal, mechanical, and electrical characteristics have
been improved. Its relevance is found in microreactors, solar collectors, microchannel heat
sinks, enzymatic biosensors, bioseparation systems, and micro-heat tubes. For extended
applications, readers are referred to Das et al. [1], Saidur et al. [2], and Yu and Xie [3].
The idea behind the inclusion of a single type of nanoparticle in a working fluid is to
improvise thermal, rheological, or chemical properties. However, some applications require
improvements in various characteristics of the working fluids. Therefore, the inclusion of
multiple types of nanoparticles of the same volume improves the general characteristics of
the working fluids; the resulting fluid is called a hybrid or composite nanofluid [4]. For
example, aluminum oxide (Al2O3) exhibits superior chemical properties, while copper
(Cu), alumina (Al), and silver (Ag) possess better thermal characteristics, thanks to the
inclusion of Al2O3 and Al in the working fluid (say H2O), which not only improve both
characteristics of H2O, but also make it more stable and capable [5]. Furthermore, the use of
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various nanoparticles in various forms serves the purpose even more effectively. Therefore,
in this study, we considered a ternary composite nanofluid formed by Al nanoparticles
in spherical form, Al2O3 in cylindrical form and Ag in the form of platelets and water
(H2O). Elnaqeeb et al. [6] used copper nanotubes, Al2O3, and graphene nanoparticles in
water to form a ternary nanofluid in the investigation of the suction/injection process in
the 3D dynamics caused by dual stretching of the plate. Animasaun et al. [7] considered
Al2O3, Al and Ag nanoparticles to examine the induced magnetism at the stagnation
point dynamics on a convectively heated plate. Shah et al. [8] utilized Cu− Al2O3 − Ag−
H2O fluid to investigate the thermodynamics of second-grade liquid using the Atangana–
Baleanu approach. Recently, several researchers [9–13] examined the thermal features of
ternary fluid.

The fluid dynamics caused by the rotation of the disk surface were first studied by
von Karman [14], and he became familiar with a set of variables (known as the von Karman
variables) to solve the problem in a self-similar way. Stagnant point flows in blunt rotating
bodies are substantial in several applications [15] and crucial for understanding heat/mass
transport since the stagnation-point region contains the greatest heat/mass transport and
pressure [15]. White [16] and Jensen et al. [17] highlighted applications such as the cool-
ing of silicon wafers, rotary blades, and chemical steam processes. Turkyilmazoglu [18]
studied 3D dynamics in the stagnation-point region beyond a rotating disk with a vertical
magnetic field and showed that vertical magnetism thickens the flow layer in the disk.
Mustafa et al. [19] extended their work [18] to heat transport and ferrofluid using the finite
difference scheme. They reported that the rate of heat transport at the stagnation point was
improved due to the suspension of ferrous particles. Prabhakar et al. [20] examined the dy-
namics of the Casson fluid at the stagnation point and the convective heat condition created
by the enlargement of the disk surface. Ahmed et al. [21] scrutinized the time-dependent
dynamics of Maxwell fluid-carrying nanoparticles due to the extension disk and the Joule
dissipating. They reported that Joule dissipation greatly increases the thermal distribution,
and the chemical reaction depresses the distribution of the solute. Hafeez et al. [22] used
the Midrich technique to study the dynamics of the Oldroyd-B nanofluid in a stagnation
point created by the extended disk surface and found that thermal radiation significantly
increases thermal distribution. Recently, Ahmad and Nadeem [23] used MWCNT-H2O-
C2H2F4 and SWCNT-H2O-C2H2F4 to study the stagnation-point dynamics due to the
extension of the disk surface. In this direction, several researchers [24–27] examined the
disk flow problems. However, the stagnation-point dynamics of the ternary composite
fluid on a traction disk have not yet been studied. Therefore, we intend to examine the
stagnation-point dynamics on an enlarging disk utilizing H2O− Al2O3 − Al − Ag.

On the other hand, heat transport with the appearance of thermal radiation finds
applications in nuclear power plants, solar systems, astrophysical flows, gas production,
spacecraft, electricity generation, etc. Rosseland [28] proposed the model to examine
thermal radiation for gray and coarse media, and it has been widely used. The linearized
form of the Rosseland radiative heat flux was incorporated by Viskanta and Grosh [29],
Perdikis and Raptis [30], and Cortell [31] to study boundary layer heat transport with the
hypothesis of a small thermal difference in the system. Pantokratoras [32] considered a
large temperature difference in the system and studied the Rosseland radiation without
any simplification, and it is known as full nonlinear thermal radiation (FNTR). Recently,
Mahanthesh [33] considered the quadratic form of the Rosseland radiation. Subsequently,
Thriveni and Mahanthesh [34] investigated the effects of quadratic thermal radiation (QTR)
on a mixed quadratic convective transport of hybrid nanofluids and determined that
QTR improves heat transport of the fluid system. The effects of QTR are examined by
Shaw et al. [35] to study the magneto heat transfer characteristics in nanofluids, Purna
Chandra et al. [36] to study the heat transport in the Ree–Eyring fluid and Rana et al. [37]
to study heat transport in MWCNT-MgO/EG.

However, there are no concrete studies available to compare the three different forms of
Rosseland thermal radiation on the flow and heat transport on a disk surface. The novelty of
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the present study was to perform a comparative study of three different forms of Rosseland
thermal radiation on a ternary nanofluid. Therefore, we performed a comparative thermal
analysis subjected to the three different forms of Rosseland thermal radiation (namely,
linear thermal radiation (LTR), quadratic thermal radiation (QTR), and full nonlinear
thermal radiation (FNTR)) on the stagnation-point magneto-dynamics of H2O− Al2O3 −
Al − Ag ternary nanofluid on an extended disk with multiple slip effects. This study is
not yet reported in the literature. The mathematical formulation is carried out by using
conservation laws of mass, flow, and heat transport and simplifying them by applying
von Karman variables. The consequent nonlinear problem is solved by an efficient finite
element method [38–41]. We provide the Nusselt number and fraction factor data for
both clean fluid and ternary nanofluid subjected to three different forms of Rosseland
thermal radiation.

2. Formulation of the Problem

Stagnation-point three-dimensional laminar dynamics of ternary composite nanofluid
induced by spinning and extending the disk and free-stream velocity are considered.
Ternary fluid is flowing over a stretchable disk surface, it is a hydraulically open system,
and flow occurs due to the free-stream velocity and stretching of the disk surface. The
testing fluid is water (H2O) conveying cylindrical aluminum oxide (Al2O3), spherical
aluminum (Al), and platelet silver (Ag) nanoparticles (NPs). A single-phase nanofluid
model is used. The single-phase nanofluid model treats the nanoparticle suspension
as a single liquid rather than a multiphase fluid due to the small volume fraction of
nanoparticles. It also includes the effective thermophysical properties of the nanofluid.
Therefore, we have employed the single-phase nanofluid. Considering the magnetic field
perpendicular to the disk, the induced magnetic field is mistreated. The viscous dissipation
and Joule dissipation effects are ignored. The base fluid properties are assumed to be
constant. The Rosseland radiative flux and non-uniform heat sources are accounted for,
thus the governing equations for incompressible ternary nanofluid become (see [18,19]):

Continuity Equation:

∇·
→
U = 0 (1)

Momentum Equation:

ρtnl

∂
→
U

∂t
+

(→
U·∇

)→
U

 = −∇p + µtnl∇2
→
U +

→
J ×

→
B (2)

Energy Equation:

(
ρCp

)
tnl

(
∂T
∂t

+

(→
U·∇

)
T
)
= ktnl∇2T −∇qr + q′′′ , (3)

The radiative heat flux qr (see [28–30]):

qr = −
4σ∗

3k∗
∇T4 (4)

The non-uniform heat source q′′′ (see [42,43]):

q′′′ = Qt(T − T∞) + Qe(Tw − T∞) exp
(
−nz

r

√
Re
)

(5)

Operators in the cylindrical system are

(
∇,∇2

)
=

(
∂

∂r
êr +

1
r

∂

∂ϕ
êϕ +

∂

∂z
êz,

∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂ϕ2 +
∂2

∂z2

)
(6)



Mathematics 2022, 10, 3342 4 of 19

where t is the time, (êr, êϕ, êz) unit vectors along (r, ϕ, z) cylindrical co-ordinates,
→
U is

the velocity vector,
→
J is the current density,

→
B is the magnetic field, p is the pressure, T

is the temperature, ρCp is the specific heat, k∗ is the Rosseland mean absorption, σ∗ is the
Stefan–Boltzmann constant, Qt is the temperature-dependent source coefficient, n is the
nonnegative constant, Qe is the exponential-space-dependent coefficient, Re is the Reynolds
number, and subscripts tnl, w and ∞ denote the ternary nanoliquid, wall of the disk, and
ambient state, respectively.

Figure 1 depicts that the disk rotates with an angular velocity Ω in the z-direction. The
disk is extended axially with a velocity uw = cr, where c > 0. The system has a free-stream
velocity ue = ar, where a > 0 and free-stream temperature T∞.
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The axisymmetric, time-dependent, component equations are as follows (see [44,45]):

∂u
∂r

+
v
r
+

∂w
∂z

= 0, (7)

ρtnl

(
u

∂u
∂r

+ w
∂u
∂z
− v2

r

)
= −∂p

∂r
+ µtnl

(
∂2u
∂r2 +

1
r

∂u
∂r
− u

r2 +
∂2u
∂z2

)
− σB2

0u, (8)

ρtnl

(
u

∂v
∂r

+ w
∂v
∂z

+
uv
r

)
= µtnl

(
∂2v
∂r2 +

1
r

∂v
∂r
− v

r2 +
∂2v
∂z2

)
− σB2

0v, (9)

ρtnl

(
u

∂w
∂r

+ w
∂w
∂z

)
= −∂p

∂z
+ µtnl

(
∂2w
∂r2 +

1
r

∂w
∂r

+
∂2w
∂z2

)
(10)

The prime focus of the study is to compare the three different forms of Rosseland’s ra-
diative heat flux (namely, linear, quadratic, and full nonlinear forms) in the energy equation.
More details of three different forms of Rosseland thermal radiation after boundary layer
approximation are given in Chapter 2 of [33]. The energy equation with linear thermal
radiation (LTR) is:

(
ρCp

)
tnl

(
u

∂T
∂r

+ w
∂T
∂z

)
=

(
ktnl +

16σ∗T3
∞

3k∗

)(
∂2T
∂z2

)
+ Qt(T − T∞) + Qe(Tw − T∞) exp

(
−nz

r

√
Re
)

(11)

with quadratic thermal radiation (QTR) is:
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(
ρCp

)
tnl

(
u ∂T

∂r ,+w ∂T
∂z

)
=
(

ktnl − 32σ∗T3
∞

3k∗

)(
∂2T
∂z2

)
+ 48σ∗T2

∞
3k∗

[(
∂T
∂z

)2
+ T ∂2T

∂z2

]
+ Qt(T − T∞)

+Qe(Tw − T∞) exp
(
− nz

r

√
Re
) (12)

with full nonlinear thermal radiation (FNTR) is:(
ρCp

)
tnl

(
u ∂T

∂r + w ∂T
∂z

)
= ktnl

(
∂2T
∂z2

)
+ 16σ∗T2

∞
3k∗

[
T3 ∂2T

∂z2 + 3T2
(

∂T
∂z

)2
]
+ Qt(T − T∞)

+Qe(Tw − T∞) exp
(
− nz

r

√
Re
) (13)

Apposite multiple-slippage boundary conditions are as follows (see [18,19]):

u = cr + L1
∂u
∂z

, v = rΩ + L1
∂v
∂z

, w = 0, T = Tw + L2
∂T
∂z

, at z = 0 (14a)

u→ ue = ar, v→ ve = 0, w→ we = −2az, T → T∞ as z→ ∞ (14b)

where Li (i = 1, 2) are the slip coefficients.
As suggested by Animasaun et al. [7], the effective properties of H2O− Al2O3 − Al −

Ag nanofluid are listed below (see for more details [7–9]):

ρtnl = (1− φ)ρl + φnp1ρnp1 + φnp2ρnp2 + φnp3ρnp3, (15)

(ρCp)tnl = (1− φ)(ρCp)l + φnp1(ρCp)np1 + φnp2(ρCp)np2 + φnp3(ρCp)np3, (16)

µtnl =
φnp1µnl1 + φnp2µnl2 + φnp3µnl3

φ
, (17a)

µnl1
µl

= 1 + 2.5φ + 6.2φ2 (17b)

µnl2
µl

= 1 + 13.5φ + 904.4φ2 (17c)

µnl3
µl

= 1 + 37.1φ + 612.6φ2 (17d)

ktnl =
φnp1knl1 + φnp2knl2 + φnp3knl3

φ
, (18a)

knl1
kl

=
knp1 + 2kl − 2φ

(
kl − knp1

)
knp1 + 2kl + φ

(
kl − knp1

) (18b)

knl2
kl

=
knp2 + 3.9kl − 3.9φ

(
kl − knp2

)
knp2 + 2kl + φ

(
kl − knp2

) (18c)

knl3
kl

=
knp3 + 4.7kl − 4.7φ

(
kl − knp3

)
knp3 + 2kl + φ

(
kl − knp3

) (18d)

where subscripts l, np1, np2, and np3 indicate base liquid, the volume fraction of silver
NPs, the volume fraction of aluminum NPs, and the volume fraction of aluminum oxide
NPs, respectively. The total fraction φ is

φ = φnp1 + φnp2 + φnp3 (19)

The thermophysical properties of nanoparticles are chosen from Animasaun et al. [7]
and are valid at the temperature of 300 K. Ternary fluid is a composition of water, spherical-
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shaped silver, cylindrical-shaped aluminum oxide, and platelet-shaped aluminum nanopar-
ticles. Thus, the present results are not valid for other shapes of nanoparticles and valid for
a temperature of 300 K.

The main aim of the present study is to obtain a self-similar solution by applying von
Karman similarity variables. These similarity variables lead to dimensionless parameters
and are useful to study the different forces acting on the system. Therefore, consider the
von Karman variables:

F(ξ) =
u
rc

, G(ξ) =
v

rΩ
,H(ξ) =

w√
Ωνl

,θ(ξ) =
T − T∞

Tw − T∞
, and ξ =

z
r

√
Re (20)

The pressure gradient terms in (8) and (10) are eliminated using Bernoulli’s equa-
tion together with boundary layer approximations. Applying similarity variables to the
governing equations led to the following ordinary differential equations system:

H′ + 2F = 0, (21)

F′′ − A1

(
HF′ + F2 +

Ha
A2

(F− λ)− G2 − λ2
)
= 0, (22)

G′′ − A1

(
G′H + 2FG +

Ha
A2

G
)
= 0, (23)

(A3 + Rd)θ′′ − PrA4θ′H + PrQTθ + PrQE exp(−nξ) = 0, (24a)

{A3 + Rd + 3Rd(θr − 1)θ}θ′′ + 3Rd(θr − 1)θ′2 − PrA4θ′H + PrQTθ+PrQE exp(−nξ) = 0 (24b)

[A3 + Rd{1 + (θr − 1)θ}3] θ′′ + 3Rd(θr − 1){θ(θr − 1) + 1}2θ′2 − PrA4θ′H + PrQTθ + PrQE exp(−nξ) = 0 (24c)

H(ξ) = 0, F(ξ) = 1 + α1F′(ξ), G(ξ) = ω + α1G′(ξ),

θ(ξ) = 1 + α2θ′(ξ), at ξ = 0 (25)

F(ξ)→ λ, G(ξ)→ 0, θ(ξ)→ 0 as ξ → ∞ (26)

Here, we mention that Equation (24a–c) corresponds to the dimensionless energy

equation for LTR, QTR, and FNTR cases, correspondingly. In the above system, Ha =
σB2

0
ρl a

denotes the magnetic parameter, Rd = 4σ∗T3
∞

3klk∗
denotes the radiation parameter, Pr =

µlCpl
kl

denotes the Prandtl number, λ = a
c denotes the stretching ratio, θr = Tw

T∞
denotes the

temperature ratio, QT = Qt
(ρCp)lc

denotes the THS number, QE = Qe

(ρCp)lc
denotes the ESHS

number, α1 = L1

√
2Ω
νl

denotes the velocity slip parameter, α2 = L2

√
2Ω
νl

denotes the

thermal slip parameter, and ω = Ω
c denotes the rotation parameter and the symbols used

for simplicity:

A1 =

(
φA2

φnp1 A11 + φnp2 A12 + φnp3 A13

)
, A11 = 1 + 2.5φ + 6.2φ2,

A12 = 1 + 13.5φ + 904.4φ2 , A13 = 1 + 37.1φ + 612.6φ2,

A2 = (1− φ) + φnp1
ρnp1

ρl
+ φnp2

ρnp2

ρl
+ φnp3

ρnp3

ρl
,

A3 =
φnp1 A31 + φnp2 A32 + φnp3 A33

φ
,A31 =

knp1 + 2kl − 2φ
(
kl − knp1

)
knp1 + 2kl + φ

(
kl − knp1

)
A32 =

knp2 + 3.9kl − 3.9φ
(
kl − knp2

)
knp2 + 3.9kl + φ

(
kl − knp2

) , A33 =
knp3 + 4.7kl − 4.7φ

(
kl − knp3

)
knp3 + 4.7kl + φ

(
kl − knp3

)
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A4 = (1− φ) + φnp1

(
ρCp

)
np1

(ρCp)l
+ φnp2

(
ρCp

)
np2

(ρCp)l
+ φnp3

(
ρCp

)
np3

(ρCp)l
.

The shear stress at z = 0 along the tangential and radial directions is given by
(see [44,45]):

τϕ =

[
µtnl

(
∂v
∂z

+
1
z

∂w
∂ϕ

)]
z=0

(27)

τr =

[
µtnl

(
∂u
∂z

+
∂w
∂r

)]
z=0

(28)

The total heat flux at z = 0 is:

qw =

[
qr − ktnl

∂T
∂z

]
z=0

(29)

The wall-friction factors along the tangential and radial directions and the Nusselt
number, Sherwood number, and local motile number are computed using (see [44,45]):

CG =
τϕ

1
2 ρl(rc)2 (30)

CF =
τr

1
2 ρl(rc)2 , (31)

Nu =
rqw

kl(Tw − T∞)
(32)

Self-similar forms of (33)–(37) are given below:

Re1/2CG =
µtnl
µl

G′(0) (33)

Re1/2CF =
µtnl
µl

F′(0), (34)

Nur = Re−1/2Nu = −(A3 + Rd)θ′(0), (35a)

Nur = Re−1/2Nu = −
(

A3 + Rd + 3Rd(θr − 1)
(
1 + α2θ′(0)

))
θ′(0), (35b)

Nur = Re−1/2Nu = −
[

A3 + Rd
{

θr + (θr − 1)α2θ′(0)
}3
]
θ′(0), (35c)

where Nur stands for reduced Nusselt number and Re = ruw/νl is the local Reynolds
number. Equation (35a–c) corresponds to the dimensionless Nusselt number for the LTR,
QTR, and FNTR cases, correspondingly.

3. Numerical Approach

Equations (21)–(26) do not possess analytical solutions as they are nonlinear and
coupled. Therefore, the FEM is used to handle them for approximate solutions (more
details are provided in [38–41]). In FEM, the problem is discretized into a finite number of
elements and then consequent algebraic equations are solved. To this end, implement the
variational formulations into (21)–(26) with an element Ωe = (ξe, ξe+1), and this leads to
the following system:

[
M11] [

M12] [
M13] [

M14][
M21] [

M22] [
M23] [

M24][
M31] [

M32] [
M33] [

M34][
M41] [

M42] [
M43] [

M44]



H
F
G
θ

 =


{c}1

{c}2

{c}3

{c}4

 (36)
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where [Mmn] and {c}m(m, n = 1, . . . , 4) are defined as:

M11
ij =

∫ ξe+1

ξe
Ni

dNj

dξ
dξ, (37a)

M12
ij = −2

∫ ξe+1

ξe
Ni Njdξ, (37b)

M13
ij = 0, (37c)

M14
ij = 0, (37d)

M21
ij = 0, (38a)

M22
ij = −

∫ ξe+1

ξe

dNi
dξ

dNj

dξ
dξ − A1

{∫ ξe+1

ξe
(Ni H

dNj

dξ
+ NiFNj +

Ha
A2

Ni Nj)dξ

}
, (38b)

M23
ij = A1

∫ ξe+1

ξe
NiGNjdξ, (38c)

M24
ij = 0, (38d)

M31
ij = 0, (39a)

M32
ij = −2A1

∫ ξe+1

ξe
NiGNjdξ, (39b)

M33
ij = −

∫ ξe+1

ξe

dNi
dξ

dNj

dξ
dξ − A1

∫ ξe+1

ξe
Ni H

dNj

dξ
dξ − A1

Ha
A2

∫ ξe+1

ξe
Ni Njdξ, (39c)

M34
ij = 0, (39d)

c1
i = 0, (40a)

c2
i = −

(
Ni

dF
dξ

)ξe+1

ξe

, (40b)

c3
i = −

(
Ni

dG
dξ

)ξe+1

ξe

(40c)

For the LTR case,
M41

ij = M42
ij = M43

ij = 0, (41a)

M44
ij = −(A3 + Rd)

∫ ξe+1

ξe

dNi
dξ

dNj

dξ
dξ − PrA4

∫ ξe+1

ξe
Ni H

dNj

dξ
dξ + PrQT

∫ ξe+1

ξe
Ni Njdξ (41b)

c4
i = −

(
Ni(A3 + Rd)

dθ

dζ

)ξe+1

ξe

− PrQE

∫ ξe+1

ξe
exp(−nξ)Nidξ (41c)

For the QTR case,
M41

ij = M42
ij = M43

ij = 0, (42a)

M44
ij = −

∫ ξe+1

ξe

dNi
dξ

(
A3 + Rd + 3Rd(θr − 1)θ

)dNj

dξ
dξ − PrA4

∫ ξe+1

ξe
Ni H

dNj

dξ
dξ + PrQT

∫ ξe+1

ξe
Ni Njdξ (42b)

c4
i = −

(
Ni
(

A3 + Rd + 3Rd(θr − 1)θ
) dθ

dξ

)ξe+1

ξe

− PrQE

∫ ξe+1

ξe
exp(−nξ)Nidξ, (42c)

For the FNTR case,
M41

ij = M42
ij = M43

ij = 0, (43a)
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M44
ij = −

∫ ξe+1

ξe

dNi
dξ

(
A3 + Rd

{
1 + (θr − 1)θ

}3
)dNj

dξ
dξ − PrA4

∫ ξe+1

ξe
Ni H

dNj

dξ
dξ + PrQT

∫ ξe+1

ξe
Ni Njdξ, (43b)

c4
i = −

(
Ni

(
A3 + Rd

{
1 + (θr − 1)θ

}3
) dθ

dξ

)ξe+1

ξe

− PrQE

∫ ξe+1

ξe
exp(−nξ)Nidξ. (43c)

where Θ = ∑2
i=1 Θi Ni and Θ (F, G, θ) is a dependent variable and Ni is a linear shape

function. Subsequent linear equations are solved with an accuracy of 10−8 using the
Gauss elimination method. Table 1 presents the comparison of our FEM results with those
reported in [18,19], and good agreement is noticed.

Table 1. Comparison of the FEM results with those in Irfan Mustafa et al. [19] and Turkyilmazoglu [18]
for λ = φ = Rd = α1 = α2 = QT = QE = 0 and Pr = 1.

Present Results (FEM) Irfan Mustafa et al. [19] Turkyilmazoglu [18]

Ha ω F’(0) −G’(0) −θ’(0) F’(0) −G’(0) −θ’(0) F’(0) −G’(0) −θ’(0)

0 0 −1.173721 0 0.851998 −1.1737 0 0.852 −1.1737 0 0.852

1 −0.948314 1.486952 0.875663 −0.9483 1.487 0.8757 −0.9483 1.487 0.8757

2 −0.326244 3.127827 0.930411 −0.3263 3.1278 0.9304 −0.3262 3.1278 0.9304

5 3.193732 9.253538 1.129141 3.1937 9.2536 1.1292 3.1937 9.2535 1.1291

10 12.72090 22.913401 1.425927 12.7206 22.9139 1.426 12.7209 22.9134 1.4259

20 40.90735 59.686430 1.874175 40.9056 59.6895 1.8743 40.9057 60.0129 1.8944

2 0 −1.830489 0 0.726113 −1.8305 0 0.7261 −1.8305 0 0.7261

1 −1.663452 2.023942 0.742231 −1.6635 2.0239 0.7422 −1.6634 2.0239 0.7422

2 −1.175346 4.113492 0.785373 −1.1754 4.1135 0.7854 −1.1753 4.1135 0.7854

5 1.892947 11.140596 0.980285 1.8928 11.1407 0.9803 1.8929 11.1406 0.9803

10 10.83338 25.722553 1.299221 10.8329 25.7231 1.2993 10.8334 25.7225 1.2992

20 38.18798 64.060430 1.797315 38.1857 64.0635 1.7974 38.188 64.0604 1.7973

4. Results and Discussion

Numerical computation of the von Karman three-dimensional flow problem for
ternary hybrid nanofluid (H2O− Al2O3 − Al − Ag) subject to non-uniform heat sources
(temperature-related heat source (THS) and exponential space-related heat source (ESHS))
using FEM is performed. The main emphasis is given to the comparison of thermal charac-
teristics under three different forms of Rosseland thermal radiation (LTR, QTR, and FNTR
cases). The effects of the Hartmann parameter (Ha), radiation parameter (Rd), rotation
parameter (ω), velocity slip number (α1), THS number (Qt), temperature ratio (θr), ESHS
number (Qe), and temperature slip number (α2) are scrutinized for 1% of cylindrical alu-
minum oxide (Al2O3), spherical aluminum (Al), and platelet silver (Ag) nanoparticles
(NPs). The computations are made for Ha = λ = ω = Rd = 0.5, θr = 2, α1 = 0.4,
α2 = 0.6, Qt = Qe = 0.1 and Pr = 6.0674.

Figures 2–4 are designed to analyze the effects of the Hartmann number (Ha), rotation
parameter (ω), THS number (Qt), ESHS number (Qe), radiation parameter (Rd), and
temperature slip number (α2) on the temperature distribution (θ(ξ)) for the LTR, QTR and
FNTR cases. In these figures, the solid curves represent the LTR results calculated using
Equation (23a), the dashed curves represent the QTR results calculated using Equation
(23b) and the dashed curves represent the FNTR results calculated using Equation (23c).
At a fixed value of other parameters, as the magnetic field strength Ha increases, the
temperature distribution θ(ξ) increases along with the thickness of the temperature layer
(see Figure 2a). As the magnetism parameter increases, the increase in the Lorentz force
progressively accelerates. As the movement of the fluid slows down and allows the fluid to



Mathematics 2022, 10, 3342 10 of 19

absorb more and more heat, as a result, the temperature distribution is improved. Figure 2b
depicts that temperature distribution θ(ξ) reduces for cumulative values of the rotation
parameter (ω). As the rotation parameter rises, the Coriolis force in the system upsurges.
As a result, the thermal energy distribution θ(ξ) escalated throughout the boundary layer.
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The behavior of the distribution of thermal energy θ(ξ) for the impact of THS and
ESHS is portrayed in Figure 3a,b, selecting both Qt and Qe as 0, 0.1, and 0.2. In these figures,
Qt = 0 and Qe = 0 represent the absence of internal heat sources. It has been revealed that,
among THS and ESHS, the ESHS has substantial backing on the growth of the temperature
boundary layer. As expected, θ(ξ) rises across the boundary layer region for cumulative
values of both Qt and Qe. Mathematically, the terms PrQTθ and PrQE exp(−nξ) supple-
ment to the growth of θ values. Physically, the heat source phenomenon adds extra heat
internally into the flow system and, subsequently, the growth of the thermal layer escalated.
Furthermore, the impact of internal heat sources is comparatively protuberant in the FNTR
case compared to other cases. The behavior of the thermal energy θ(ξ) for various radiation
and thermal slip numbers is portrayed in Figure 4a,b, selecting both Rd and α2 as 0, 0.5,
and 1.0. The temperature on the disk surface attained its maximum when Rd is maximum
and in the case of FNTR. The radiation feature is comparatively protuberant for the FNTR
case compared to the QTR and LTR cases. As the radiation parameter values elevated, the
thermal energy distribution was exaggerated in the region of the thermal layer. Physically,
as Rd value increases, the radiative heat flux in the system upsurges, due to which θ(ξ)
increases. However, the θ(ξ) is greater on the surface of the disk. Furthermore, Rd = 0
represents the absence of thermal radiation in which the thermal energy θ(ξ) is minimal
across the region of the boundary layer. Furthermore, θ(ξ) reduces for cumulative values
of α2 (see Figure 4b). When α2 = 0, this epitomizes the isothermal condition and the
temperature θ(ξ) in the disk remains as a unit value for distinct forms of Rosseland thermal
radiation (LTR, QTR, and FNTR cases).

Figure 5a,b shows the radial velocity (F(ξ)), and azimuthal velocity (G(ξ)) for distinct
values of the Hartmann number (Ha). As the values of Ha increase, both radial and
azimuthal velocity distributions upsurged. As the values of Ha increased, the intensity of
the Lorentz force in the flow domain intensified. The Lorentz force hinders the movement of
the fluid as a result, and the velocity field is reduced. The impact of the rotation parameter
(ω) on F(ξ) and G(ξ) is described in Figure 6, since the rotation parameter (ω) increases the
velocity throughout the region. Physically, the rotation of the disk improves the propulsion
of the ternary nanofluid which, in turn, increases the velocity along the axial and azimuth
directions. The phenomenon of disk rotation helps to control the rheological aspects of the
ternary nanofluid. Figure 7 illustrates the role of velocity slip conditions on radial velocity
(F(ξ)), and azimuthal velocity (G(ξ)). As expected, the velocity layer becomes thinner for
higher sliding conditions on the disk surface.
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The impacts of Qe, Qt, Rd and α2 on the reduced Nusselt number (Nur) to examine the
heat transport for LTR, QTR and FNTR are presented through contour plots (see Figure 8).
As seen in Figure 8, by increasing the values of Qe and Qt, the reduced Nusselt number
(Nur) was reduced for all cases of LTR, QTR and FNTR. As the temperature layer becomes
thinner for higher values of Qe and Qt, consequently, the rate of heat transport at the
surface of the disk decreases. It is also seen that the Nur values have reached the maximum
for high values of α2 and relatively low values of Rd. Furthermore, the Nur values are
maximum for the FNTR case compared to the QTR and LTR cases.
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1 −0.50045179 0.51971352 −0.82555654 0.86619275 
2 −0.54567020 0.55984084 −0.90225322 0.93384518 
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Figure 8. (a–f): Impact of Qe & Qt and Rd & α2 on Nur for the LTR, QTR and FNTR cases.

Table 2 exhibits the influence of disk rotation on the radial shear stress ( µtnl
µl

F′(0)) and

torque (− µtnl
µl

G′(0)) in the presence and absence of composite nanoparticles. In compliance
with our previous results, the higher the rotation number, the larger the shear stresses. In
addition, the shear stress along the axial and azimuth directions was less when the disk
stopped rotating. Table 3 presents the µtnl

µl
F′(0) and − µtnl

µl
G′(0) values for discrete values of

Ha for clean and ternary fluids. It is observed that the radial shear stress ( µtnl
µl

F′(0)) becomes

lower in the presence of a magnetic field, whereas − µtnl
µl

G′(0) is lower for nonmagnetic
ternary fluid. From Tables 2 and 3, the shear stresses are greater for ternary nanofluid
(H2O− Al2O3 − Al − Ag) than for the clean fluid (H2O).

Table 2. The values of µtnl
µl

F′(0), and − µtnl
µl

G′(0) for different values of ω.

ω
Ordinary Fluid Ternary Hybrid Nanofluid

µtnl
µl

F’(0) − µtnl
µl

G’(0) µtnl
µl

F’(0) − µtnl
µl

G’(0)

0 −0.48335771 0 −0.80181321 0

0.5 −0.47267704 0.49575328 −0.78005578 0.82705398

1 −0.44127131 0.99612731 −0.71609273 1.66346764

2 −0.32387576 2.02544265 −0.47705420 3.39391449

5 0.29644174 5.43355235 0.79109231 9.22650722

10 1.62531874 11.9972247 3.55128606 20.72895781

Table 3. The values of µtnl
µl

F′(0), and − µtnl
µl

G′(0) for different values of Ha.

Ha
Ordinary Fluid Ternary Hybrid Nanofluid

µtnl
µl

F’(0) − µtnl
µl

G’(0) µtnl
µl

F’(0) − µtnl
µl

G’(0)

0 −0.44000805 0.46833571 −0.72812791 0.78341243

1 −0.50045179 0.51971352 −0.82555654 0.86619275

2 −0.54567020 0.55984084 −0.90225322 0.93384518

5 −0.63580852 0.64310922 −1.06445868 1.08249169

10 −0.72164089 0.72523676 −1.22988132 1.23960372

20 −0.81295698 0.81447006 −1.41722049 1.42170302



Mathematics 2022, 10, 3342 15 of 19

Table 4 exhibits the radiation effects on Nur of clean fluid and ternary fluid for the LTR,
QTR, and FNTR cases. The radiation phenomenon causes a deterioration in the behavior of
heat transport (Nur). Also, the Nur is higher for the H2O− Al2O3 − Al − Ag ternary fluid
than the H2O clean fluid. Tables 5 and 6 are presented to compare the consequence of THS
and ESHS on Nur for the cases of LTR, QTR, and FNTR. The Nur becomes augmented to
increase in the Qt and Qe values. The variation of Nur is more evident for higher Qe values
than Qt. Furthermore, the Nur value attained its maximum in the FNTR case compared to
the QTR and LTR cases.

Table 4. Nur values versus Rd for the LTR, QTR, and FNTR cases.

Rd
Ternary Hybrid Nanofluid Ordinary Fluid

LTR QTR FNTR LTR QTR FNTR

0 0.15091875 0.15091875 0.15091875 0.05445781 0.05445781 0.05445781

0.1 0.17995238 0.24000444 0.29735945 0.07998212 0.13362429 0.18632552

0.2 0.20901834 0.32747204 0.43718884 0.10578007 0.21300510 0.31494829

0.3 0.23805570 0.41287182 0.57063906 0.13174893 0.29127314 0.43846205

0.4 0.26701725 0.49610146 0.69830505 0.15780823 0.36796898 0.55692548

Table 5. Nur values versus Qt for the LTR, QTR, and FNTR cases.

Qt
Ternary Hybrid Nanofluid Ordinary Fluid

LTR QTR FNTR LTR QTR FNTR

0 0.79588316 1.20631721 1.53242058 0.69972271 1.10659613 1.43171775

0.03 0.77345459 1.17869507 1.50220551 0.67709330 1.07814361 1.40017445

0.05 0.75809732 1.15973799 1.48139333 0.66157103 1.05857777 1.37840077

0.07 0.7424036 1.14033011 1.46002499 0.64568557 1.03851389 1.35600646

0.09 0.72636188 1.12045629 1.43808131 0.62942404 1.01793444 1.33296913

Table 6. Nur values versus Qe for the LTR, QTR, and FNTR cases.

Qe
Ternary Hybrid Nanofluid Ordinary Fluid

LTR QTR FNTR LTR QTR FNTR

0 1.24641322 1.63250225 1.91053090 1.143942226 1.528179426 1.80588358

0.03 1.18938033 1.57415993 1.85447686 1.086339262 1.468735168 1.748172095

0.05 1.15135844 1.53485444 1.81633487 1.047937272 1.428627273 1.708811472

0.07 1.11333651 1.49522849 1.77758997 1.009535296 1.388148552 1.668764217

0.09 1.07531456 1.4552881 1.73825741 0.971133316 1.347308633 1.628058621

5. Concluding Remarks

The comparative study of linear (LTR), quadratic (QTR), and nonlinear radiation
(FNTR) effects on the characteristics of heat transport subject to THS, magnetism, and ESHS
for the stagnation-point three-dimensional transport of H2O− Al2O3 − Al − Ag was per-
formed. The single-phase fluid model and generalized slip conditions were implemented.
The self-similarity governing equations were solved using the FEM. The key findings are
as follows:

• With an increase in the rotation of the disk, both the axial and azimuth velocities
increased significantly; consequently, the thickness of the layers widened.

• The magnetic parameter resulted in a deteriorated velocity of the ternary nanofluids;
consequently, a decay in the velocity layer on the disk surface is noted.
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• The nonlinear form of Rosseland thermal radiation possesses a maximum heat trans-
port rate at the disk compared to the other two forms of thermal radiation.

• The phenomenon of exponential heat source has a substantial and positive effect on the
thermal field compared to the phenomenon of a temperature-dependent heat source.

• For a lower radiation parameter and a higher thermal slip parameter, the Nusselt
number has attained a maximum.

• For a maximum Nusselt number, both heat sources maintained as relatively small.
• Radial shear stress is minimal when the disk does not rotate.

The present study explored some interesting flow and heat transport phenomena on a
rotating and stretching disk surface. The heat transport phenomenon with the appearance
of thermal radiation finds applications in nuclear power plants, solar systems, astrophys-
ical flows, gas production, spacecraft, electricity generation, etc. Therefore, the present
study may find relevance in solar collectors, nuclear reactors, and applications involving
heating and cooling processes. However, attention has been confined to Newtonian ternary
nanofluid to explore the three different forms of Rosseland thermal radiation. Future
studies may consider non-Newtonian fluids and different thermal boundary conditions
and will be communicated imminently.
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Nomenclature

a, c positive constants
→
B magnetic field vector
B0 magnetic field of uniform strength
CF wall friction along the radial direction
Cp specific heat
CG wall friction in the azimuth direction
êr, êϕ, êz unit vectors
F, G, H dimensionless radial, azimuth, and axial velocity
Ha magnetic parameter
→
J current density vector
k∗ Rosseland mean absorption
k thermal conductivity (Wm−1K−1)
L1 velocity slip coefficient
L2 thermal slip coefficient
n exponential index
Nur reduced Nusselt number
Nu Nusselt number
Pr Prandtl number
p pressure (Nm−2)

qw heat flux at the disk surface (Wm−2)
q′′′ non-uniform heat source
Qt coefficient of temperature-dependent heat source
Qe coefficient of exponential space-dependent heat source
QT temperature-dependent heat source parameter
QE exponential space-dependent heat source parameter
Rd radiation parameter
Re Reynolds number
t Time
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T fluid temperature (K)
→
U velocity vector (m/s)
u, v, w velocity components along r, ϕ, z directions (m/s)
ue, ve, we free-stream velocities along r, ϕ, z directions (m/s)
uw stretching velocity (m/s)
r, ϕ, z cylindrical coordinates in radial, azimuthal, and tangential directions
Acronyms
LTR linear thermal radiation
QTR quadratic thermal radiation
FNTR full nonlinear thermal radiation
NPs nanoparticles
Greek symbols
ν kinematic viscosity (m2s−1)

σ electrical conductivity
σ∗ Stefan–Boltzmann constant
θr temperature ratio
θ dimensionless temperature
µ dynamic viscosity (kgm−1s−1)

ρ density (kgm−3)

Ω angular velocity (s−1)

λ stretching ratio
ξ similarity variable
α1 velocity slip parameter
α2 thermal slip parameter
ω rotation parameter
φ nanoparticle volume fraction
τr, τϕ radial and azimuthal wall shear stress
Ωe finite element

ρCp fluid heat capacity
(

Jm−3K−1
)

Subscripts
tnl ternary nanofluid
l water (liquid)
w wall (disk surface)
∞ ambient state
np1 volume fraction of aluminum oxide nanoparticles
np2 volume fraction of alumina nanoparticles
np3 volume fraction of silver nanoparticles
nl1 aluminum oxide nanoliquid
nl2 alumina nanoliquid
nl3 silver nanoliquid
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