

Article On the Dynamic Geometry of Kasner Quadrilaterals with Complex Parameter

Dorin Andrica ¹ and Ovidiu Bagdasar ^{2,3,*}

- ¹ Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
- ² School of Computing and Engineering, University of Derby, Derby DE22 1GB, UK
- ³ Department of Mathematics, Faculty of Exact Sciences, "1 Decembrie 1918" University of Alba Iulia, 510009 Alba Iulia, Romania
- * Correspondence: o.bagdasar@derby.ac.uk

Abstract: We explore the dynamics of the sequence of Kasner quadrilaterals $(A_n B_n C_n D_n)_{n\geq 0}$ defined via a complex parameter α . We extend the results concerning Kasner triangles with a fixed complex parameter obtained in earlier works and determine the values of α for which the generated dynamics are convergent, divergent, periodic, or dense.

Keywords: dynamical systems; Kasner quadrilaterals; convergence; orbits; nested quadrilaterals

MSC: 51P99; 60A99

1. Introduction

For a real number α and an initial quadrilateral $A_0B_0C_0D_0$, one can construct the quadrilateral $A_1B_1C_1D_1$ such that A_1 , B_1 , C_1 , and D_1 divide the segments $[A_0B_0]$, $[B_0C_0]$, $[C_0D_0]$, and $[D_0A_0]$, respectively, in the ratio $1 - \alpha : \alpha$. Continuing this process, one obtains the terms $A_nB_nC_nD_n$, $n \ge 0$ whose terms are referred to as Kasner (or nested) quadrilaterals (after E. Kasner (1878–1955) who initiated these studies). A natural problem is to find the numbers α for which the sequence $(A_nB_nC_nD_n)_{n\ge 0}$ is convergent.

The related dynamic geometries inspired by simple iterations (especially for triangles) are reviewed in the article [1]:

generated by the incircle and the circumcircle of a triangle, the pedal triangle [2], the orthic triangle, and the incentral triangle. Similar recursive systems describing dynamic geometries are considered by S. Abbot [3], G. Z. Chang and P. J. Davis [4], R. J. Clarke [5], J. Ding, L. R. Hitt, and X-M. Zhang [6], L. R. Hitt and X-M. Zhang [7], and D. Ismailescu and J. Jacobs [8], or in the works by Dionisi et al. [9] and Roeschel [10]. In the paper [1], we proved that the sequence of Kasner triangles is convergent if and only if $\alpha \in (0, 1)$, also providing the order of convergence.

Here, we prove similar results for the Kasner quadrilaterals, given by the complex coordinates of their vertices $A_n(a_n)$, $B_n(b_n)$, $C_n(c_n)$, $D_n(c_n)$, $n \ge 0$ (see the notation in [11]). The iterations are defined recursively for $n \ge 0$ as:

$$\begin{cases} a_{n+1} = \alpha a_n + (1-\alpha)b_n \\ b_{n+1} = \alpha b_n + (1-\alpha)c_n \\ c_{n+1} = \alpha c_n + (1-\alpha)d_n \\ d_{n+1} = \alpha d_n + (1-\alpha)a_n. \end{cases}$$
(1)

In this paper, we investigate the dynamic geometry generated by the sequence $(A_nB_nC_nD_n)_{n\geq 0}$, when α is a complex number. Notice that when α is complex, the quadrilaterals $A_nB_nC_nD_n$ are not always nested. The work extends results for triangles in [12], preparing the ground for the study of the general case of Kasner polygons.

Citation: Andrica, D.; Bagdasar, O. Dynamic Geometry of Kasner Quadrilaterals with Complex Parameter. *Mathematics* **2022**, *10*, 3334. https://doi.org/10.3390/ math10183334

Academic Editors: Valer-Daniel Breaz and Ioan-Lucian Popa

Received: 10 August 2022 Accepted: 10 September 2022 Published: 14 September 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

2. Preliminaries

The system (1) can be written in matrix form as

$$X_{n+1} = \begin{pmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \\ d_{n+1} \end{pmatrix} = \begin{pmatrix} \alpha & 1-\alpha & 0 & 0 \\ 0 & \alpha & 1-\alpha & 0 \\ 0 & 0 & \alpha & 1-\alpha \\ 1-\alpha & 0 & 0 & \alpha \end{pmatrix} \begin{pmatrix} a_n \\ b_n \\ c_n \\ d_n \end{pmatrix} = TX_n,$$
(2)

where $X_n = (a_n, b_n, c_n, d_n)^T$, $n \ge 0$. In this notation, one can write

$$X_n = T^n X_0. aga{3}$$

The matrix *T* has the characteristic polynomial

$$p_T(u) = (u - \alpha)^4 - (1 - \alpha)^4$$

= $u^4 - 4u^3\alpha + 6u^2\alpha^2 - 6u\alpha^3 + \alpha^4 - (1 - \alpha)^4$
= $(u - 1)(u - 2\alpha + 1)(u^2 - 2\alpha u + 2\alpha^2 - 2\alpha + 1),$

whose roots can be written as $u_0 = 1$ and

$$u_1 = \alpha + (1 - \alpha) \, i = (1 - i) \left(\alpha - \frac{1 - i}{2} \right) \tag{4}$$

$$u_2 = \alpha - (1 - \alpha) = 2\left(\alpha - \frac{1}{2}\right) \tag{5}$$

$$u_3 = \alpha - (1 - \alpha) \, i = (1 + i) \left(\alpha - \frac{1 + i}{2} \right). \tag{6}$$

A direct computation shows that

$$T = F^{-1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & u_1 & 0 & 0 \\ 0 & 0 & u_2 & 0 \\ 0 & 0 & 0 & u_3 \end{pmatrix} F,$$
(7)

where the matrices *F* and F^{-1} are given by

$$F = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{pmatrix}, \quad F^{-1} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix}.$$
 (8)

By using (7), for every positive integer n, we have the following relations

$$T^{n} = F^{-1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & u_{1}^{n} & 0 & 0 \\ 0 & 0 & u_{2}^{n} & 0 \\ 0 & 0 & 0 & u_{3}^{n} \end{pmatrix} F$$

$$= \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & u_{1}^{n} & 0 & 0 \\ 0 & 0 & u_{2}^{n} & 0 \\ 0 & 0 & 0 & u_{3}^{n} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{pmatrix}.$$
(9)

By Formula (3), one obtains

$$a_{n} = g_{0} + Mu_{1}^{n} + Nu_{2}^{n} + Pu_{3}^{n}$$

$$b_{n} = g_{0} + (Mi)u_{1}^{n} + (-N)u_{2}^{n} + (-Pi)u_{3}^{n}$$

$$c_{n} = g_{0} + (-M)u_{1}^{n} + Nu_{2}^{n} + (-P)u_{3}^{n}$$

$$d_{n} = g_{0} + (-Mi)u_{1}^{n} + (-N)u_{2}^{n} + (Pi)u_{3}^{n},$$
(10)

where $g_0 = \frac{a_0 + b_0 + c_0 + d_0}{4}$, where multiplying (9) by $(a_0, b_0, c_0, d_0)^T$ we obtain

$$M = \frac{a_0 - b_0 i - c_0 + d_0 i}{4}, \quad N = \frac{a_0 - b_0 + c_0 - d_0}{4}, \quad P = \frac{a_0 + b_0 i - c_0 - d_0 i}{4}.$$
 (11)

From these formulae (but also from (1)), notice that $a_n + b_n + c_n + d_n = 4g_0$, $n \ge 0$; hence, all polygons $A_n B_n C_n D_n$ have the same centroid G_0 . Clearly, when $M, N, P \ne 0$, the terms u_1^n, u_2^n , and u_3^n appear explicitly in (10).

3. Dynamical Properties in the Case of Real Parameter

In this section, we study the convergence of the sequence of the Kasner quadrilaterals when α is a real number. By Formula (10), the sequences $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$, and $(d_n)_{n\geq 0}$ are convergent if and only if $|u_1| < 1$, $|u_2| < 1$, and $|u_3| < 1$, that is,

$$|u_{1}| = \left| (1-i) \left(\alpha - \frac{1-i}{2} \right) \right| = \sqrt{2} \left| \alpha - \frac{1-i}{2} \right| < 1,$$

$$|u_{2}| = 2 \left| \alpha - \frac{1}{2} \right| < 1,$$

$$|u_{3}| = \left| (1+i) \left(\alpha - \frac{1+i}{2} \right) \right| = \sqrt{2} \left| \alpha - \frac{1+i}{2} \right| < 1.$$
(12)

First, one can easily check that the condition $|u_2| < 1$ is equivalent to $\alpha \in (0, 1)$.

Then, because α is real, we clearly have $|u_1| = |u_3|$; hence, the conditions $|u_1| < 1$ and $|u_3| < 1$ become equivalent to $|u_1u_3| < 1$, that is,

$$|u_1u_3| = 2\left|\alpha - \frac{1-i}{2}\right|\left|\alpha - \frac{1+i}{2}\right| = 2\left(\alpha^2 - \alpha + \frac{1}{2}\right) < 1,$$

which is equivalent to $\alpha(1 - \alpha) < 0$, that is, $\alpha \in (0, 1)$.

4. Dynamical Properties in the Case of Complex Parameter

We now discuss the dynamics obtained when α is a complex number. It is convenient to define the following points

$$z_1 = \frac{1}{2} - \frac{1}{2}i, \quad z_2 = \frac{1}{2}, \quad z_3 = \frac{1}{2} + \frac{1}{2}i,$$
 (13)

representing the centres of the open disks

$$D_1\left(z_1, \frac{\sqrt{2}}{2}\right), \quad D_2\left(z_2, \frac{1}{2}\right), \quad D_3\left(z_3, \frac{\sqrt{2}}{2}\right),$$
 (14)

and of the circles depicted in Figure 1

$$C_1\left(z_1, \frac{\sqrt{2}}{2}\right), \quad C_2\left(z_2, \frac{1}{2}\right), \quad C_3\left(z_3, \frac{\sqrt{2}}{2}\right).$$
 (15)

Figure 1. Plots of the circles *C*₁, *C*₂, and *C*₃ defined in Formula (15).

Considering the real numbers r_1 , r_2 , r_3 , θ_1 , θ_2 , θ_3 , by (4), (5), and (6), we obtain

$$u_{1} = r_{1}e^{2\pi i\theta_{1}} = \sqrt{2}(\alpha - z_{1})e^{-\frac{\pi i}{4}},$$

$$u_{2} = r_{2}e^{2\pi i\theta_{2}} = 2(\alpha - z_{2}),$$

$$u_{3} = r_{3}e^{2\pi i\theta_{3}} = \sqrt{2}(\alpha - z_{3})e^{\frac{\pi i}{4}}.$$
(16)

By (16), we deduce that for a given j = 1, 2, 3, if $\alpha \in D_j$, then we have $r_j < 1$. Moreover, if $\alpha \in C_j$, then it follows that $r_j = 1$. The distinct behaviours below emerge:

- 1. If $\alpha \in D_1 \cap D_2 \cap D_3$, then $0 < r_1, r_2, r_3 < 1$.
- One can easily check the set inclusion $D_1 \cap D_3 \subseteq D_2$.
- 2. If α is in the interior of the complement of $D_1 \cap D_3$, then max{ r_1, r_3 } > 1.
- 3. If $\alpha \in C_1 \cap C_2 \cap C_3$, then $\alpha \in \{0, 1\}$.

The boundary of the shaded region in Figure 1 consists of two arcs

$$U_1 = C_1 \cap D_3, \quad U_3 = C_3 \cap D_1,$$

which can be parametrised as

$$\alpha(t) = \begin{cases} z_1 + \frac{\sqrt{2}}{2}(\cos t + i\sin t), & t \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right] \\ z_3 + \frac{\sqrt{2}}{2}(\cos t + i\sin t), & t \in \left[\frac{5\pi}{4}, \frac{7\pi}{4}\right]. \end{cases}$$
(17)

To describe the orbits of the sequences $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$, and $(d_n)_{n\geq 0}$, one first needs to understand the behaviour of the sequence $(z^n)_{n\geq 0}$, where $z \in \mathbb{C}$ (see, for example, Lemma 2.1 in [13], or Lemma 5.2 in [14]), which is shown in Figure 2.

Lemma 1. Let $z = re^{2\pi i\theta}$, where $r \ge 0$, $\theta \in \mathbb{R}$. The orbit of $(z^n)_{n\ge 0}$ is:

(a) A spiral convergent to 0 for r < 1;

(b) A divergent spiral for r > 1;

(c) A regular k–gon if z is a primitive k–th root of unity, $k \ge 3$;

(*d*) A dense subset of the unit circle if r = 1 and $\theta \in \mathbb{R} \setminus \mathbb{Q}$.

When $\theta = j/k \in \mathbb{Q}$ *is irreducible, then the terms of the spirals obtained in (a) and (b) align along k rays.*

Figure 2. The terms z^n , n = 0, ..., 70 obtained for (**a**) r = 0.98 and $x = \sqrt{5}/10$; (**b**) r = 1.01 and x = 1/8; (**c**) r = 1 and x = 1/8; (**d**) r = 1 and $x = \sqrt{5}/10$. Arrows indicate the orbit's direction, and the dotted line represents the unit circle. The point $z = r \exp(2\pi i x)$ is shown as a square.

To prove part (d), we use that $z^n = e^{2\pi i n\theta} = e^{2\pi i (n\theta+m)}$ for $n \ge 0$ and *m* integers. By Kronecker's Lemma ([15], Theorem 442), the set $\{n\theta + m : m, n \in \mathbb{Z}, n \ge 0\}$ is dense in the set of real numbers \mathbb{R} ; hence, the set $\{z^n : n \ge 0\}$ is dense within the unit circle.

As linear combinations of $(u_1^n)_{n\geq 0}$, $(u_2^n)_{n\geq 0}$, and $(u_3^n)_{n\geq 0}$, the sequences $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$, and $(d_n)_{n\geq 0}$, given by the explicit Formula (10) in the complex plane, exhibit the following behaviour.

Lemma 2. The patterns produced by Formula (10) are summarized below:

- 1. Convergent if $0 < r_1, r_2, r_3 < 1$;
- 2. *Divergent if* $\max\{r_1, r_3\} > 1$;
- 3. Periodic if $r_1 = r_3 = 1$ (that is, when $\alpha = 0$ or $\alpha = 1$);
- 4. There are two distinct patterns when $0 < \min\{r_1, r_3\} < \max\{r_1, r_3\} = 1$. Denoting $\theta = \theta_1$ if $r_1 = 1$ or $\theta = \theta_3$ if $r_3 = 1$, then the orbit:
 - (a) Has k convergent subsequences if $\theta = \frac{1}{k}$ is an irreducible fraction;
 - (b) Is dense within a circle when θ is irrational.

The details of the geometric patterns obtained in each case are presented below. In all figures, we consider the initial polygon of complex coordinates

$$A_0(-4+12i), \quad B_0(0), \quad C_0(8), \quad D_0(12+1i),$$
 (18)

for which Formula (11) gives the values

$$G = 4 + 5i, \quad M = -5 + 6i, \quad N = -2 + i, \quad P = -1.$$
 (19)

The position of α relative to relevant boundaries is indicated in the left diagram with a star, while the iterations of the polygon are displayed on the right, where the star indicates the position of the centroid. All the simulations have been implemented in Matlab[®] 2021b.

4.1. Convergent Orbits

If $0 < r_1, r_2, r_3 < 1$, then by (16), the sequences u_1^n , u_2^n , and u_3^n are convergent if and only if $\alpha \in D_1 \cap D_3$. Hence, by (10), we obtain that $(a_n)_{n \ge 0}$, $(b_n)_{n \ge 0}$, $(c_n)_{n \ge 0}$, and $(d_n)_{n \ge 0}$ converge to g_0 . We can formulate the following result.

Theorem 1. *The following assertions hold:*

(1) The sequence $(A_n B_n C_n D_n)_{n\geq 0}$ is convergent if and only if $\alpha \in D_1 \cap D_2$.

(2) When the sequence $(A_n B_n C_n D_n)_{n \ge 0}$ is convergent, its limit is the degenerated quadrilateral at G_0 , the centroid of the initial quadrilateral $A_0 B_0 C_0 D_0$.

Proof. The intersection $D_1 \cap D_3$ is shaded in Figure 1.

(1) Clearly, $\alpha \in D_1 \cap D_3$ is equivalent to $r_1 < 1$ and $r_3 < 1$ (in this case, one also has $\alpha \in D_2$). The relation (10) shows that the sequences $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$, and $(d_n)_{n\geq 0}$ are convergent if and only if $(u_1^n)_{n\geq 0}$, $(u_2^n)_{n\geq 0}$, and $(u_3^n)_{n\geq 0}$ are convergent, which happens when $u_1^n \to 0$, $u_2^n \to 0$, and $u_3^n \to 0$.

(2) Adding the equation in the system (1), one obtains that for every integer $n \ge 0$, we have $a_n + b_n + c_n + d_n = a_0 + b_0 + c_0 + d_0 = 4g_0$, where g_0 is the complex coordinates of the centroid G_0 of the initial quadrilateral $A_0B_0C_0D_0$. Assume that $a_n \to a^*$, $b_n \to b^*$, $c_n \to c^*$, and $d_n \to d^*$. From system (1), we obtain

$$\begin{cases}
 a^* = \alpha a^* + (1 - \alpha) b^* \\
 b^* = \alpha b^* + (1 - \alpha) c^* \\
 c^* = \alpha c^* + (1 - \alpha) d^* \\
 d^* = \alpha d^* + (1 - \alpha) a^*.
 \end{cases}$$
(20)

Because $\alpha \neq 1$, the only solution of this system is $a^* = b^* = c^* = d^* = g_0$. \Box

For $0 < \alpha < 1$, one has $\alpha \in D_1 \cap D_3$, and moreover, in this case, the vertices A_{n+1}, B_{n+1} , C_{n+1}, D_{n+1} are interior points of the segments $[A_n, B_n]$, $[B_n, C_n]$, $[C_n, D_n]$, and $[D_n, A_n]$, respectively. Such an example is depicted in Figure 3.

Figure 3. Convergent orbits (**right**) obtained for $\alpha = 0.25$ (**left**).

On the other hand, when the parameter $\alpha \in D_1 \cap D_3$ is not real, the orbit is convergent, but the points are not aligned any more, as illustrated in Figure 4.

Figure 4. Convergent orbits (**right**) obtained for $\alpha = \frac{1}{2} + \frac{\sqrt{3}}{12}i$ (**left**).

4.2. Periodic Orbits

If $r_1 = r_2 = r_3 = 1$, then $|\alpha - z_1| = |\alpha - z_3| = \frac{\sqrt{2}}{2}$ and $|\alpha - z_2| = \frac{1}{2}$, which can only happen for $\alpha \in C_1 \cap C_2 \cap C_3 = \{0, 1\}$.

Case 1. $\alpha = 0$. From the system (1), for all $n \ge 0$, one obtains

$$a_{n+4} = b_{n+3} = c_{n+2} = d_{n+1} = a_n$$

Similarly, $b_{n+4} = b_n$, $c_{n+4} = c_n$, and $d_{n+4} = d_n$, so the sequence terms satisfy

$$\begin{cases}
a_n : a_0, b_0, c_0, d_0, a_0, b_0, c_0, \dots \\
b_n : b_0, c_0, d_0, a_0, b_0, c_0, d_0, \dots \\
c_n : c_0, d_0, a_0, b_0, c_0, d_0, a_0, \dots \\
d_n : d_0, a_0, b_0, c_0, d_0, a_0, b_0, \dots
\end{cases}$$
(21)

Case 2. $\alpha = 1$. From the system (1), for all $n \ge 0$, one obtains

$$a_{n+1} = a_n$$
, $b_{n+1} = b_n$, $c_{n+1} = c_n$, $d_{n+1} = d_n$,

so, in this case, the sequences are actually constant.

4.3. Divergent Orbits

If max{ r_1, r_3 } > 1, then $\alpha \in int[(D_1 \cap D_3)^c]$; hence, by (16), either u_1^n or u_3^n are divergent. By Formula (10), the sequences $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$, and $(d_n)_{n\geq 0}$ are divergent (as long as the corresponding coefficients M, N, P in (10) are not all vanishing).

Figure 5 shows a divergent iteration. The diagram on the left we plot the position of α , while on the right side we illustrate the polygons $A_n B_n C_n D_n$, n = 0, ..., 10.

Figure 5. Divergent orbits (**right**) obtained for $\alpha = z_1 + \frac{\sqrt{2}}{2}(\cos 2.5 + i \sin 2.5)$ (**left**).

4.4. Orbits with a Finite Number of Convergent Subsequences

If $0 < \min\{r_1, r_3\} < \max\{r_1, r_3\} = 1$, then one either has $\alpha \in C_1 \cap D_3$ for $r_1 = 1$, or $\alpha \in C_3 \cap D_1$ for $r_3 = 1$. The orbit has a finite number of limit points if the complex argument θ of u_1 if $r_1 = 1$ or of u_3 if $r_3 = 1$ is rational.

4.4.1. Upper Arc of C_1

First, assume that
$$r_1 = \max\{r_1, r_3\} = 1$$
, i.e., α is on the upper arc $C_1 \cap D_3$.
As $\alpha \in C_1$, there is $t \in \left[\frac{1}{8}, \frac{3}{8}\right]$ with $\alpha = z_1 + \frac{\sqrt{2}}{2}e^{2\pi i t}$, so by (16), we obtain
 $u_1 = e^{2\pi i \theta_1} = \sqrt{2}(\alpha - z_1)e^{-\frac{\pi i}{4}} = e^{2\pi i \left(t - \frac{1}{8}\right)}.$ (22)

When $\theta_1 = \frac{p}{q}$ is an irreducible fraction, the orbit has a finite number of convergent subsequences. Therefore, we have the following result.

Theorem 2. If for the integers $0 , we have <math>\theta_1 = \frac{p}{q} \in \left[0, \frac{1}{4}\right]$ is an irreducible fraction, then $u_1 = e^{2\pi i \frac{p}{q}}$ and by Formula (10), the sequences $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$, and $(d_n)_{n\geq 0}$ have subsequences which converge to the vertices of a regular q-gon centred at G_0 of radius |M|.

Proof. In this case, we have $u_1^{nq+j} = u_1^j$ for j = 0, ..., q-1 and $u_2^n \to 0$ and $u_3^n \to 0$, so using the notations of (10) and (11), one obtains the relations

$$\lim_{n \to \infty} a_{nq+j} = \lim_{n \to \infty} \left(g_0 + M u_1^{nq+j} + N u_2^{nq+j} + P u_3^{nq+j} \right) = g_0 + M u_1^j$$

$$\lim_{n \to \infty} b_{nq+j} = \lim_{n \to \infty} \left(g_0 + (Mi) u_1^{nq+j} + (-N) u_2^{nq+j} + (-Pi) u_3^{nq+j} \right) = g_0 + (Mi) u_1^j$$

$$\lim_{n \to \infty} c_{nq+j} = \lim_{n \to \infty} \left(g_0 + (-M) u_1^{nq+j} + N u_2^{nq+j} + (-P) u_2^{nq+j} \right) = g_0 + (-M) u_1^j$$
(23)
$$\lim_{n \to \infty} d_{nq+j} = \lim_{n \to \infty} \left(g_0 + (-Mi) u_1^{nq+j} + (-N) u_2^{nq+j} + (Pi) u_3^{nq+j} \right) = g_0 + (-Mi) u_1^j,$$

which ends the proof. This case is depicted in Figure 6. The sequences $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$, and $(d_n)_{n\geq 0}$ are plotted in Figure 7. Moreover, one can check that for $\theta_1 = 1/5$ the limit polygon is a pentagon centred at G_0 , of radius $|M| \simeq 7.81$ (by (19)). \Box

Figure 6. First 200 iterations (**right**) obtained for $\theta_1 = p/q = 1/5$ where $\alpha = z_1 + \frac{\sqrt{2}}{2}e^{2\pi i \left(\frac{1}{8} + \frac{1}{5}\right)}$ (**left**).

Figure 7. Iterations obtained for $\theta_1 = \frac{1}{5}$. (a) $(a_n)_{n=0}^{199}$; (b) $(b_n)_{n=0}^{199}$; (c) $(c_n)_{n=0}^{199}$; (d) $(d_n)_{n=0}^{199}$.

4.4.2. Lower Arc of C_3

Similarly, if $r_3 = \max\{r_1, r_3\} = 1$, then α is on the arc $C_3 \cap D_1$ defined by (17). Therefore, there is $t \in \left[\frac{5\pi}{8}, \frac{7\pi}{8}\right]$ with $\alpha = z_3 + \frac{\sqrt{2}}{2}e^{2\pi i t}$, and by (16), we obtain

$$u_3 = e^{2\pi i \theta_3} = \sqrt{2}(\alpha - z_3)e^{\frac{\pi i}{4}} = e^{2\pi i \left(t + \frac{1}{8}\right)}.$$
(24)

The following result can be proved similarly to Theorem 2.

Theorem 3. If for the integers $0 , we have <math>\theta_3 = \frac{p}{q} \in [\frac{3}{4}, 1]$ is an irreducible fraction, then $u_1 = e^{2\pi i \frac{p}{q}}$ and by Formula (10), the sequences $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$, and $(d_n)_{n\geq 0}$ have q subsequences convergent to the vertices of four regular q-gons centred at G_0 of radius |P|.

The first 200 iterations obtained when $\theta_3 = \frac{5}{6}$ are presented in Figure 8.

Figure 8. First 200 iterations (**right**) obtained for $\theta_3 = p/q = 5/6$ where $\alpha = z_3 + \frac{\sqrt{2}}{2}e^{2\pi i \left(\frac{5}{6} - \frac{1}{8}\right)}$ (**left**).

The sequences $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$, and $(d_n)_{n\geq 0}$ are plotted in Figure 9. Similarly to (23), the limit polygon is a hexagon centred at *G*, which has radius |P| = 1.

Figure 9. Iterations obtained for $\theta_3 = \frac{5}{6}$. (a) $(a_n)_{n=0}^{199}$; (b) $(b_n)_{n=0}^{199}$; (c) $(c_n)_{n=0}^{199}$; (d) $(d_n)_{n=0}^{199}$.

4.5. Dense Orbits

When $0 < \min\{r_1, r_3\} < \max\{r_1, r_3\} = 1$ but θ_1 or θ_3 are irrational modulo 2π , the orbits of $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$, and $(d_n)_{n\geq 0}$ are dense within circles.

4.5.1. Upper Arc of C_1

First, assume that $0 < r_3 < r_1 = 1$, i.e., α is on the upper arc $C_1 \cap D_3$. Using the notations in (22), the following result can be deduced from Lemma 1 (d).

Theorem 4. If $r_1 = 1$ and $\theta_1 \in [0, \frac{1}{4}]$ is irrational, then the set of limit points for each of the sequences $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$, and $(d_n)_{n\geq 0}$ is the circle centred at G_0 of radius |M|.

Proof. By (10), we have $a_n = g_0 + Mu_1^n + Nu_2^n + Pu_3^n$, with *M*, *N*, and *P* constants given by (11). Because $|u_2| < 1$, $|u_3| < 1$, we have $a_n = g_0 + Mu_1^n + z_n$, where $\lim_{n \to \infty} z_n = 0$.

Let *z* be an arbitrary point on the circle of centre G_0 and radius |M|. If M = 0, then $\lim_{n\to\infty} a_n = g_0$. Otherwise, denoting $z' = \frac{z-g_0}{M}$, we have $z' \in C(0, 1)$. Because $u_1 = e^{2\pi i \theta_1}$ with θ_1 irrational, by Lemma (1), it follows that there is a subsequence $n_1 < n_2 < \cdots$ such that $\lim_{k\to\infty} u_1^{n_k} = z'$. For $\varepsilon > 0$, one can find $K_1(\varepsilon)$ and $K_2(\varepsilon)$ such that

$$|u_1^{n_k}-z'|<rac{1}{|M|+1}arepsilon,\quad k\geq K_1(arepsilon) ext{ and } |z_{n_k}|<rac{1}{|M|+1}arepsilon,\quad k\geq K_2(arepsilon),$$

hence, for $k \ge \max\{K_1(\varepsilon), K_1(\varepsilon)\}$, one obtains

$$|a_{n_k}-z| = |g_0 + Mu_1^{n_k} + z_{n_k} - g_0 - Mz'| \le |M| \cdot |u_1^{n_k} - z'| + |z_{n_k}| < \varepsilon,$$

hence $\lim_{k\to\infty} a_{n_k} = z$. This shows that z is a limit point for the sequence $(a_n)_{n\geq 0}$. Analogously, this is proved for $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$ and $(d_n)_{n\geq 0}$. \Box

Figure 10 illustrates the position of α and the polygons obtained for n = 10 iterations, respectively, when $\alpha \in C_1 \cap D_3$. Figure 11 depicts the vertices of the original quadrilateral of affixes $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$, and $(d_n)_{n\geq 0}$, and 200 iterations.

Figure 10. Orbits for n = 10 iterations (**right**), for $\alpha = z_1 + \frac{\sqrt{2}}{2}(\cos 1 + i \sin 1)$ (**left**).

Figure 11. Orbits for $\theta_1 = \frac{1}{2\pi}$. (a) $(a_n)_{n \ge 0}$; (b) $(b_n)_{n \ge 0}$; (c) $(c_n)_{n \ge 0}$; (d) $(d_n)_{n \ge 0}$.

4.5.2. Lower Arc of C_3

When $0 < r_1 < r_3 = 1$, α is on the arc $C_3 \cap D_1$ defined by (17), as in Figure 12. Using the notations in (24), we can formulate the following result.

Theorem 5. If $r_3 = 1$ and $\theta_3 \in \begin{bmatrix} 3\\4\\4 \end{bmatrix}$ is irrational, then the set of limit points for each of the sequences $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$, and $(d_n)_{n\geq 0}$ is the circle centred at G_0 of radius |P|.

Proof. The proof follows the similar lines as for Theorem 4, but now by (10), one has $a_n = g_0 + Mu_1^n + Nu_2^n + Pu_3^n$. Because $|u_1| < 1$, $|u_2| < 1$, we obtain $a_n = g_0 + z_n + Pu_3^n$, where $\lim_{n\to\infty} z_n = 0$. Figure 12 shows the position of α and the first n = 10 iterations, respectively, when $\alpha \in C_3 \cap D_1$. Figure 13 plots the vertices of the original quadrilateral of affixes $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$, and $(d_n)_{n\geq 0}$, and 200 iterations. \Box

Figure 12. Dense orbits obtained after n = 10 iterations (**right**), generated for $\alpha = z_3 + \frac{\sqrt{2}}{2}e^{2\pi i \left(\frac{3}{\pi} - \frac{1}{8}\right)}$ (**left**), when $u_3 = e^{2\pi i \theta_3}$, with $\theta_3 = \frac{3}{\pi}$.

Figure 13. Orbits for $\theta_3 = \frac{3}{\pi}$. (a) $(a_n)_{n \ge 0}$; (b) $(b_n)_{n \ge 0}$; (c) $(c_n)_{n \ge 0}$; (d) $(d_n)_{n \ge 0}$.

Author Contributions: All authors claim to have contributed significantly and equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by "1 Decembrie 1918" University of Alba Iulia through scientific research funds.

Acknowledgments: The authors wish to thank the referees for their valuable feedback and constructive comments, which helped to improve the quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Andrica, D.; Bagdasar, O.; Marinescu, D.Ş. Dynamic geometry of Kasner triangles with a fixed weight. *Int. J. Geom.* **2022**, *11*, 101–110.
- 2. Kingston, J.G.; Synge, J.L. The sequence of pedal triangles. Am. Math. Mon. 1988, 95, 609-620. [CrossRef]
- 3. Abbot, S. Average sequences and triangles. *Math. Gaz.* **1996**, *80*, 222–224. Available online: https://www.jstor.org/stable/3620354 (accessed on 12 March 2022). [CrossRef]
- 4. Chang, G.Z.; Davis P.J. Iterative processes in elementary geometry. Am. Math. Mon. 1983, 90, 421–431. [CrossRef]
- 5. Clarke, R.J. Sequences of polygons. Math. Mag. 1979, 90, 102–105. [CrossRef]
- Ding, J.; Hitt, L.R.; Zhang, X.-M. Markov chains and dynamic geometry of polygons. *Linear Algebra Appl.* 2003, 367, 255–270. [CrossRef]
- 7. Hitt, L.R.; Zhang, X.-M. Dynamic geometry of polygons. Elem. Math. 2001, 56, 21–37. [CrossRef]
- 8. Ismailescu, D.; Jacobs, J. On sequences of nested triangles. Period. Math. Hung. 2006, 53, 169–184. [CrossRef]
- 9. Donisi, S.; Martini, H.; Vincenzi, G.; Vitale, G. Polygons derived from polygons via iterated constructions. *Electron. J. Differ. Geom. Dyn. Syst.* **2016**, *18*, 14–31. Available online: http://www.mathem.pub.ro/dgds/v18/D18-do-b77.pdf (accessed on 7 April 2022).
- 10. Roeschel, O. Polygons and iteratively regularizing affine transformations. Beitr. Algebra Geom. 2017, 58, 69–79. [CrossRef]
- 11. Andreescu, T.; Andrica, D. Complex Numbers from A to ... Z, 2nd ed.; Birkhäuser: Boston, MA, USA, 2014.
- 12. Andrica, D.; Bagdasar, O. On the dynamic geometry of Kasner triangles with complex parameter. In Proceedings of the 7th IACMC 2022, Zarqa University, Zarqa, Jordan, 11–13 May 2022; Nature Springer: Berlin, Germany, 2022; *accepted*.
- 13. Bagdasar, O.; Larcombe, P.J. On the characterization of periodic complex Horadam sequences. *Fibonacci Quart.* **2013**, *51*, 28–37. Available online: https://www.fq.math.ca/Papers1/51-1/BagdasarLarcombe.pdf (accessed on 10 December 2021).
- 14. Andrica, D.; Bagdasar, O. Recurrent Sequences: Key Results, Applications and Problems; Nature Springer: Berlin, Germany, 2020.
- 15. Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers, 5th ed.; Oxford University Press: Oxford, UK, 1979.