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1. Introduction

For a real number α and an initial quadrilateral A0B0C0D0, one can construct the
quadrilateral A1B1C1D1 such that A1, B1, C1, and D1 divide the segments [A0B0], [B0C0],
[C0D0], and [D0 A0], respectively, in the ratio 1− α : α. Continuing this process, one obtains
the terms AnBnCnDn, n ≥ 0 whose terms are referred to as Kasner (or nested) quadrilaterals
(after E. Kasner (1878–1955) who initiated these studies). A natural problem is to find the
numbers α for which the sequence (AnBnCnDn)n≥0 is convergent.

The related dynamic geometries inspired by simple iterations (especially for triangles)
are reviewed in the article [1]:

generated by the incircle and the circumcircle of a triangle, the pedal triangle [2],
the orthic triangle, and the incentral triangle. Similar recursive systems describing dynamic
geometries are considered by S. Abbot [3], G. Z. Chang and P. J. Davis [4], R. J. Clarke [5],
J. Ding, L. R. Hitt, and X-M. Zhang [6], L. R. Hitt and X-M. Zhang [7], and D. Ismailescu
and J. Jacobs [8], or in the works by Dionisi et al. [9] and Roeschel [10]. In the paper [1],
we proved that the sequence of Kasner triangles is convergent if and only if α ∈ (0, 1), also
providing the order of convergence.

Here, we prove similar results for the Kasner quadrilaterals, given by the complex
coordinates of their vertices An(an), Bn(bn), Cn(cn), Dn(cn), n ≥ 0 (see the notation in [11]).
The iterations are defined recursively for n ≥ 0 as:

an+1 = αan + (1− α)bn

bn+1 = αbn + (1− α)cn

cn+1 = αcn + (1− α)dn

dn+1 = αdn + (1− α)an.

(1)

In this paper, we investigate the dynamic geometry generated by the sequence
(AnBnCnDn)n≥0, when α is a complex number. Notice that when α is complex, the quadri-
laterals AnBnCnDn are not always nested. The work extends results for triangles in [12],
preparing the ground for the study of the general case of Kasner polygons.
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2. Preliminaries

The system (1) can be written in matrix form as

Xn+1 =


an+1
bn+1
cn+1
dn+1

 =


α 1− α 0 0
0 α 1− α 0
0 0 α 1− α

1− α 0 0 α




an
bn
cn
dn

 = TXn, (2)

where Xn = (an, bn, cn, dn)T , n ≥ 0. In this notation, one can write

Xn = TnX0. (3)

The matrix T has the characteristic polynomial

pT(u) = (u− α)4 − (1− α)4

= u4 − 4u3α + 6u2α2 − 6uα3 + α4 − (1− α)4

= (u− 1)(u− 2α + 1)
(

u2 − 2αu + 2α2 − 2α + 1
)

,

whose roots can be written as u0 = 1 and

u1 = α + (1− α) i = (1− i)
(

α− 1− i
2

)
(4)

u2 = α− (1− α) = 2
(

α− 1
2

)
(5)

u3 = α− (1− α) i = (1 + i)
(

α− 1 + i
2

)
. (6)

A direct computation shows that

T = F−1


1 0 0 0
0 u1 0 0
0 0 u2 0
0 0 0 u3

F, (7)

where the matrices F and F−1 are given by

F =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

, F−1 =
1
4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

. (8)

By using (7), for every positive integer n, we have the following relations

Tn = F−1


1 0 0 0
0 un

1 0 0
0 0 un

2 0
0 0 0 un

3

F (9)

=
1
4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




1 0 0 0
0 un

1 0 0
0 0 un

2 0
0 0 0 un

3




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

.
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By Formula (3), one obtains

an = g0 + Mun
1 + Nun

2 + Pun
3

bn = g0 + (Mi)un
1 + (−N)un

2 + (−Pi)un
3

cn = g0 + (−M)un
1 + Nun

2 + (−P)un
3

dn = g0 + (−Mi)un
1 + (−N)un

2 + (Pi)un
3 , (10)

where g0 = a0+b0+c0+d0
4 , where multiplying (9) by (a0, b0, c0, d0)

T we obtain

M =
a0 − b0i− c0 + d0i

4
, N =

a0 − b0 + c0 − d0

4
, P =

a0 + b0i− c0 − d0i
4

. (11)

From these formulae (but also from (1)), notice that an + bn + cn + dn = 4g0, n ≥ 0;
hence, all polygons AnBnCnDn have the same centroid G0. Clearly, when M, N, P 6= 0,
the terms un

1 , un
2 , and un

3 appear explicitly in (10).

3. Dynamical Properties in the Case of Real Parameter

In this section, we study the convergence of the sequence of the Kasner quadrilaterals
when α is a real number. By Formula (10), the sequences (an)n≥0, (bn)n≥0, (cn)n≥0, and
(dn)n≥0 are convergent if and only if |u1| < 1, |u2| < 1, and |u3| < 1, that is,

|u1| =
∣∣∣∣(1− i)

(
α− 1− i

2

)∣∣∣∣ = √2
∣∣∣∣α− 1− i

2

∣∣∣∣ < 1,

|u2| = 2
∣∣∣∣α− 1

2

∣∣∣∣ < 1,

|u3| =
∣∣∣∣(1 + i)

(
α− 1 + i

2

)∣∣∣∣ = √2
∣∣∣∣α− 1 + i

2

∣∣∣∣ < 1. (12)

First, one can easily check that the condition |u2| < 1 is equivalent to α ∈ (0, 1).
Then, because α is real, we clearly have |u1| = |u3|; hence, the conditions |u1| < 1 and

|u3| < 1 become equivalent to |u1u3| < 1, that is,

|u1u3| = 2
∣∣∣∣α− 1− i

2

∣∣∣∣∣∣∣∣α− 1 + i
2

∣∣∣∣ = 2
(

α2 − α +
1
2

)
< 1,

which is equivalent to α(1− α) < 0, that is, α ∈ (0, 1).

4. Dynamical Properties in the Case of Complex Parameter

We now discuss the dynamics obtained when α is a complex number.
It is convenient to define the following points

z1 =
1
2
− 1

2
i, z2 =

1
2

, z3 =
1
2
+

1
2

i, (13)

representing the centres of the open disks

D1

(
z1,

√
2

2

)
, D2

(
z2,

1
2

)
, D3

(
z3,

√
2

2

)
, (14)

and of the circles depicted in Figure 1

C1

(
z1,

√
2

2

)
, C2

(
z2,

1
2

)
, C3

(
z3,

√
2

2

)
. (15)
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Figure 1. Plots of the circles C1, C2, and C3 defined in Formula (15).

Considering the real numbers r1, r2, r3, θ1, θ2, θ3, by (4), (5), and (6), we obtain

u1 = r1e2πiθ1 =
√

2(α− z1)e−
πi
4 ,

u2 = r2e2πiθ2 = 2(α− z2),

u3 = r3e2πiθ3 =
√

2(α− z3)e
πi
4 . (16)

By (16), we deduce that for a given j = 1, 2, 3, if α ∈ Dj, then we have rj < 1. Moreover,
if α ∈ Cj, then it follows that rj = 1. The distinct behaviours below emerge:

1. If α ∈ D1 ∩ D2 ∩ D3, then 0 < r1, r2, r3 < 1.
One can easily check the set inclusion D1 ∩ D3 ⊆ D2.

2. If α is in the interior of the complement of D1 ∩ D3, then max{r1, r3} > 1.
3. If α ∈ C1 ∩ C2 ∩ C3, then α ∈ {0, 1}.

The boundary of the shaded region in Figure 1 consists of two arcs

U1 = C1 ∩ D3, U3 = C3 ∩ D1,

which can be parametrised as

α(t) =

{
z1 +

√
2

2 (cos t + i sin t), t ∈
[

π
4 , 3π

4
]

z3 +
√

2
2 (cos t + i sin t), t ∈

[ 5π
4 , 7π

4
]
.

(17)

To describe the orbits of the sequences (an)n≥0, (bn)n≥0, (cn)n≥0, and (dn)n≥0, one first
needs to understand the behaviour of the sequence (zn)n≥0, where z ∈ C (see, for example,
Lemma 2.1 in [13], or Lemma 5.2 in [14]), which is shown in Figure 2.

Lemma 1. Let z = re2πiθ , where r ≥ 0, θ ∈ R. The orbit of (zn)n≥0 is:
(a) A spiral convergent to 0 for r < 1;
(b) A divergent spiral for r > 1;
(c) A regular k−gon if z is a primitive k−th root of unity, k ≥ 3;
(d) A dense subset of the unit circle if r = 1 and θ ∈ R \Q.
When θ = j/k ∈ Q is irreducible, then the terms of the spirals obtained in (a) and (b) align

along k rays.
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Figure 2. The terms zn, n = 0, . . . , 70 obtained for (a) r = 0.98 and x =
√

5/10; (b) r = 1.01 and
x = 1/8; (c) r = 1 and x = 1/8; (d) r = 1 and x =

√
5/10. Arrows indicate the orbit’s direction,

and the dotted line represents the unit circle. The point z = r exp(2πix) is shown as a square.

To prove part (d), we use that zn = e2πi nθ = e2πi (nθ+m) for n ≥ 0 and m integers.
By Kronecker’s Lemma ([15], Theorem 442), the set {nθ + m : m, n ∈ Z, n ≥ 0} is dense in
the set of real numbers R; hence, the set {zn : n ≥ 0} is dense within the unit circle.

As linear combinations of (un
1 )n≥0, (un

2 )n≥0, and (un
3 )n≥0, the sequences (an)n≥0, (bn)n≥0,

(cn)n≥0, and (dn)n≥0, given by the explicit Formula (10) in the complex plane, exhibit the
following behaviour.

Lemma 2. The patterns produced by Formula (10) are summarized below:

1. Convergent if 0 < r1, r2, r3 < 1;
2. Divergent if max{r1, r3} > 1;
3. Periodic if r1 = r3 = 1 (that is, when α = 0 or α = 1);
4. There are two distinct patterns when 0 < min{r1, r3} < max{r1, r3} = 1.

Denoting θ = θ1 if r1 = 1 or θ = θ3 if r3 = 1, then the orbit:

(a) Has k convergent subsequences if θ = j
k is an irreducible fraction;

(b) Is dense within a circle when θ is irrational.

The details of the geometric patterns obtained in each case are presented below.
In all figures, we consider the initial polygon of complex coordinates

A0(−4 + 12i), B0(0), C0(8), D0(12 + 1i), (18)

for which Formula (11) gives the values

G = 4 + 5i, M = −5 + 6i, N = −2 + i, P = −1. (19)

The position of α relative to relevant boundaries is indicated in the left diagram with a
star, while the iterations of the polygon are displayed on the right, where the star indicates
the position of the centroid. All the simulations have been implemented in Matlab® 2021b.

4.1. Convergent Orbits

If 0 < r1, r2, r3 < 1, then by (16), the sequences un
1 , un

2 , and un
3 are convergent if and

only if α ∈ D1 ∩ D3. Hence, by (10), we obtain that (an)n≥0, (bn)n≥0, (cn)n≥0, and (dn)n≥0
converge to g0. We can formulate the following result.
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Theorem 1. The following assertions hold:

(1) The sequence (AnBnCnDn)n≥0 is convergent if and only if α ∈ D1 ∩ D2.
(2) When the sequence (AnBnCnDn)n≥0 is convergent, its limit is the degenerated quadrilateral

at G0, the centroid of the initial quadrilateral A0B0C0D0.

Proof. The intersection D1 ∩ D3 is shaded in Figure 1.
(1) Clearly, α ∈ D1 ∩ D3 is equivalent to r1 < 1 and r3 < 1 (in this case, one also has

α ∈ D2). The relation (10) shows that the sequences (an)n≥0, (bn)n≥0, (cn)n≥0, and (dn)n≥0
are convergent if and only if (un

1 )n≥0, (un
2 )n≥0, and (un

3 )n≥0 are convergent, which happens
when un

1 → 0, un
2 → 0, and un

3 → 0.
(2) Adding the equation in the system (1), one obtains that for every integer n ≥ 0,

we have an + bn + cn + dn = a0 + b0 + c0 + d0 = 4g0, where g0 is the complex coordinates
of the centroid G0 of the initial quadrilateral A0B0C0D0. Assume that an → a∗, bn → b∗,
cn → c∗, and dn → d∗. From system (1), we obtain

a∗ = αa∗ + (1− α)b∗

b∗ = αb∗ + (1− α)c∗

c∗ = αc∗ + (1− α)d∗

d∗ = αd∗ + (1− α)a∗.

(20)

Because α 6= 1, the only solution of this system is a∗ = b∗ = c∗ = d∗ = g0.

For 0 < α < 1, one has α ∈ D1 ∩D3, and moreover, in this case, the vertices An+1, Bn+1,
Cn+1, Dn+1 are interior points of the segments [An, Bn], [Bn, Cn], [Cn, Dn], and [Dn, An],
respectively. Such an example is depicted in Figure 3.

Figure 3. Convergent orbits (right) obtained for α = 0.25 (left).

On the other hand, when the parameter α ∈ D1 ∩D3 is not real, the orbit is convergent,
but the points are not aligned any more, as illustrated in Figure 4.

Figure 4. Convergent orbits (right) obtained for α = 1
2 +

√
3

12 i (left).
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4.2. Periodic Orbits

If r1 = r2 = r3 = 1, then |α− z1| = |α− z3| =
√

2
2 and |α− z2| = 1

2 , which can only
happen for α ∈ C1 ∩ C2 ∩ C3 = {0, 1}.

Case 1. α = 0. From the system (1), for all n ≥ 0, one obtains

an+4 = bn+3 = cn+2 = dn+1 = an.

Similarly, bn+4 = bn, cn+4 = cn, and dn+4 = dn, so the sequence terms satisfy
an : a0, b0, c0, d0, a0, b0, c0, . . .
bn : b0, c0, d0, a0, b0, c0, d0, . . .
cn : c0, d0, a0, b0, c0, d0, a0, . . .
dn : d0, a0, b0, c0, d0, a0, b0, . . . .

(21)

Case 2. α = 1. From the system (1), for all n ≥ 0, one obtains

an+1 = an, bn+1 = bn, cn+1 = cn, dn+1 = dn,

so, in this case, the sequences are actually constant.

4.3. Divergent Orbits

If max{r1, r3} > 1, then α ∈ int
[
(D1 ∩ D3)

c]; hence, by (16), either un
1 or un

3 are
divergent. By Formula (10), the sequences (an)n≥0, (bn)n≥0, (cn)n≥0, and (dn)n≥0 are
divergent (as long as the corresponding coefficients M, N, P in (10) are not all vanishing).

Figure 5 shows a divergent iteration. The diagram on the left we plot the position of α,
while on the right side we illustrate the polygons AnBnCnDn, n = 0, . . . , 10.

Figure 5. Divergent orbits (right) obtained for α = z1 +
√

2
2 (cos 2.5 + i sin 2.5) (left).

4.4. Orbits with a Finite Number of Convergent Subsequences

If 0 < min{r1, r3} < max{r1, r3} = 1, then one either has α ∈ C1 ∩ D3 for r1 = 1,
or α ∈ C3 ∩ D1 for r3 = 1. The orbit has a finite number of limit points if the complex
argument θ of u1 if r1 = 1 or of u3 if r3 = 1 is rational.

4.4.1. Upper Arc of C1

First, assume that r1 = max{r1, r3} = 1, i.e., α is on the upper arc C1 ∩ D3.

As α ∈ C1, there is t ∈
[

1
8 , 3

8

]
with α = z1 +

√
2

2 e2πit, so by (16), we obtain

u1 = e2πiθ1 =
√

2(α− z1)e−
πi
4 = e2πi(t− 1

8 ). (22)

When θ1 = p
q is an irreducible fraction, the orbit has a finite number of convergent

subsequences. Therefore, we have the following result.
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Theorem 2. If for the integers 0 < p < q, we have θ1 = p
q ∈

[
0, 1

4

]
is an irreducible fraction,

then u1 = e2πi p
q and by Formula (10), the sequences (an)n≥0, (bn)n≥0, (cn)n≥0, and (dn)n≥0 have

subsequences which converge to the vertices of a regular q−gon centred at G0 of radius |M|.

Proof. In this case, we have unq+j
1 = uj

1 for j = 0, . . . , q− 1 and un
2 → 0 and un

3 → 0, so
using the notations of (10) and (11), one obtains the relations

lim
n→∞

anq+j = lim
n→∞

(
g0 + Munq+j

1 + Nunq+j
2 + Punq+j

3

)
= g0 + Muj

1

lim
n→∞

bnq+j = lim
n→∞

(
g0 + (Mi)unq+j

1 + (−N)unq+j
2 + (−Pi)unq+j

3

)
= g0 + (Mi)uj

1

lim
n→∞

cnq+j = lim
n→∞

(
g0 + (−M)unq+j

1 + Nunq+j
2 + (−P)unq+j

2

)
= g0 + (−M)uj

1 (23)

lim
n→∞

dnq+j = lim
n→∞

(
g0 + (−Mi)unq+j

1 + (−N)unq+j
2 + (Pi)unq+j

3

)
= g0 + (−Mi)uj

1,

which ends the proof. This case is depicted in Figure 6. The sequences (an)n≥0, (bn)n≥0,
(cn)n≥0, and (dn)n≥0 are plotted in Figure 7. Moreover, one can check that for θ1 = 1/5 the
limit polygon is a pentagon centred at G0, of radius |M| ' 7.81 (by (19)).

Figure 6. First 200 iterations (right) obtained for θ1 = p/q = 1/5 where α = z1 +
√

2
2 e2πi( 1

8 +
1
5 ) (left).

Figure 7. Iterations obtained for θ1 = 1
5 . (a) (an)199

n=0; (b) (bn)199
n=0; (c) (cn)199

n=0; (d) (dn)199
n=0.
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4.4.2. Lower Arc of C3

Similarly, if r3 = max{r1, r3} = 1, then α is on the arc C3 ∩ D1 defined by (17).
Therefore, there is t ∈

[ 5π
8 , 7π

8
]

with α = z3 +
√

2
2 e2πit, and by (16), we obtain

u3 = e2πiθ3 =
√

2(α− z3)e
πi
4 = e2πi(t+ 1

8 ). (24)

The following result can be proved similarly to Theorem 2.

Theorem 3. If for the integers 0 < p < q, we have θ3 = p
q ∈

[ 3
4 , 1
]

is an irreducible fraction, then

u1 = e2πi p
q and by Formula (10), the sequences (an)n≥0, (bn)n≥0, (cn)n≥0, and (dn)n≥0 have q

subsequences convergent to the vertices of four regular q−gons centred at G0 of radius |P|.

The first 200 iterations obtained when θ3 = 5
6 are presented in Figure 8.

Figure 8. First 200 iterations (right) obtained for θ3 = p/q = 5/6 where α = z3 +
√

2
2 e2πi( 5

6−
1
8 ) (left).

The sequences (an)n≥0, (bn)n≥0, (cn)n≥0, and (dn)n≥0 are plotted in Figure 9. Similarly
to (23), the limit polygon is a hexagon centred at G, which has radius |P| = 1.

Figure 9. Iterations obtained for θ3 = 5
6 . (a) (an)199

n=0; (b) (bn)199
n=0; (c) (cn)199

n=0; (d) (dn)199
n=0.

4.5. Dense Orbits

When 0 < min{r1, r3} < max{r1, r3} = 1 but θ1 or θ3 are irrational modulo 2π,
the orbits of (an)n≥0, (bn)n≥0, (cn)n≥0, and (dn)n≥0 are dense within circles.
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4.5.1. Upper Arc of C1

First, assume that 0 < r3 < r1 = 1, i.e., α is on the upper arc C1 ∩ D3. Using the
notations in (22), the following result can be deduced from Lemma 1 (d).

Theorem 4. If r1 = 1 and θ1 ∈
[
0, 1

4

]
is irrational, then the set of limit points for each of the

sequences (an)n≥0, (bn)n≥0, (cn)n≥0, and (dn)n≥0 is the circle centred at G0 of radius |M|.

Proof. By (10), we have an = g0 + Mun
1 + Nun

2 + Pun
3 , with M, N, and P constants given

by (11). Because |u2| < 1, |u3| < 1, we have an = g0 + Mun
1 + zn, where limn→∞ zn = 0.

Let z be an arbitrary point on the circle of centre G0 and radius |M|. If M = 0, then
limn→∞ an = g0. Otherwise, denoting z′ = z−g0

M , we have z′ ∈ C(0, 1). Because u1 = e2πiθ1

with θ1 irrational, by Lemma (1), it follows that there is a subsequence n1 < n2 < · · · such
that limk→∞ unk

1 = z′. For ε > 0, one can find K1(ε) and K2(ε) such that

|unk
1 − z′| < 1

|M|+ 1
ε, k ≥ K1(ε) and |znk | <

1
|M|+ 1

ε, k ≥ K2(ε),

hence, for k ≥ max{K1(ε), K1(ε)}, one obtains

|ank − z| = |g0 + Munk
1 + znk − g0 −Mz′| ≤ |M| · |unk

1 − z′|+ |znk | < ε,

hence limk→∞ ank = z. This shows that z is a limit point for the sequence (an)n≥0. Analo-
gously, this is proved for (bn)n≥0, (cn)n≥0 and (dn)n≥0.

Figure 10 illustrates the position of α and the polygons obtained for n = 10 iterations,
respectively, when α ∈ C1 ∩ D3. Figure 11 depicts the vertices of the original quadrilateral
of affixes (an)n≥0, (bn)n≥0, (cn)n≥0, and (dn)n≥0, and 200 iterations.

Figure 10. Orbits for n = 10 iterations (right), for α = z1 +
√

2
2 (cos 1 + i sin 1) (left).

Figure 11. Orbits for θ1 = 1
2π . (a) (an)n≥0; (b) (bn)n≥0; (c) (cn)n≥0; (d) (dn)n≥0.
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4.5.2. Lower Arc of C3

When 0 < r1 < r3 = 1, α is on the arc C3 ∩ D1 defined by (17), as in Figure 12. Using
the notations in (24), we can formulate the following result.

Theorem 5. If r3 = 1 and θ3 ∈
[ 3

4 , 1
]

is irrational, then the set of limit points for each of the
sequences (an)n≥0, (bn)n≥0, (cn)n≥0, and (dn)n≥0 is the circle centred at G0 of radius |P|.

Proof. The proof follows the similar lines as for Theorem 4, but now by (10), one has
an = g0 + Mun

1 + Nun
2 + Pun

3 . Because |u1| < 1, |u2| < 1, we obtain an = g0 + zn + Pun
3 ,

where limn→∞ zn = 0. Figure 12 shows the position of α and the first n = 10 iterations,
respectively, when α ∈ C3 ∩ D1. Figure 13 plots the vertices of the original quadrilateral of
affixes (an)n≥0, (bn)n≥0, (cn)n≥0, and (dn)n≥0, and 200 iterations.

Figure 12. Dense orbits obtained after n = 10 iterations (right), generated for α = z3 +
√

2
2 e2πi( 3

π−
1
8 )

(left), when u3 = e2πiθ3 , with θ3 = 3
π .

Figure 13. Orbits for θ3 = 3
π . (a) (an)n≥0; (b) (bn)n≥0; (c) (cn)n≥0; (d) (dn)n≥0.
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