Article

# On the Dynamic Geometry of Kasner Quadrilaterals with Complex Parameter 

Dorin Andrica ${ }^{1(D)}$ and Ovidiu Bagdasar 2,3,*(D)<br>1 Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania<br>2 School of Computing and Engineering, University of Derby, Derby DE22 1GB, UK<br>3 Department of Mathematics, Faculty of Exact Sciences, "1 Decembrie 1918" University of Alba Iulia, 510009 Alba Iulia, Romania<br>* Correspondence: o.bagdasar@derby.ac.uk

Citation: Andrica, D.; Bagdasar, O. Dynamic Geometry of Kasner Quadrilaterals with Complex Parameter. Mathematics 2022, 10, 3334. https://doi.org/10.3390/ math10183334

Academic Editors: Valer-Daniel Breaz and Ioan-Lucian Popa

Received: 10 August 2022
Accepted: 10 September 2022
Published: 14 September 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).


#### Abstract

We explore the dynamics of the sequence of Kasner quadrilaterals $\left(A_{n} B_{n} C_{n} D_{n}\right)_{n \geq 0}$ defined via a complex parameter $\alpha$. We extend the results concerning Kasner triangles with a fixed complex parameter obtained in earlier works and determine the values of $\alpha$ for which the generated dynamics are convergent, divergent, periodic, or dense.


Keywords: dynamical systems; Kasner quadrilaterals; convergence; orbits; nested quadrilaterals
MSC: 51P99; 60A99

## 1. Introduction

For a real number $\alpha$ and an initial quadrilateral $A_{0} B_{0} C_{0} D_{0}$, one can construct the quadrilateral $A_{1} B_{1} C_{1} D_{1}$ such that $A_{1}, B_{1}, C_{1}$, and $D_{1}$ divide the segments $\left[A_{0} B_{0}\right],\left[B_{0} C_{0}\right]$, [ $C_{0} D_{0}$ ], and $\left[D_{0} A_{0}\right.$ ], respectively, in the ratio $1-\alpha: \alpha$. Continuing this process, one obtains the terms $A_{n} B_{n} C_{n} D_{n}, n \geq 0$ whose terms are referred to as Kasner (or nested) quadrilaterals (after E. Kasner (1878-1955) who initiated these studies). A natural problem is to find the numbers $\alpha$ for which the sequence $\left(A_{n} B_{n} C_{n} D_{n}\right)_{n \geq 0}$ is convergent.

The related dynamic geometries inspired by simple iterations (especially for triangles) are reviewed in the article [1]:
generated by the incircle and the circumcircle of a triangle, the pedal triangle [2], the orthic triangle, and the incentral triangle. Similar recursive systems describing dynamic geometries are considered by S. Abbot [3], G. Z. Chang and P. J. Davis [4], R. J. Clarke [5], J. Ding, L. R. Hitt, and X-M. Zhang [6], L. R. Hitt and X-M. Zhang [7], and D. Ismailescu and J. Jacobs [8], or in the works by Dionisi et al. [9] and Roeschel [10]. In the paper [1], we proved that the sequence of Kasner triangles is convergent if and only if $\alpha \in(0,1)$, also providing the order of convergence.

Here, we prove similar results for the Kasner quadrilaterals, given by the complex coordinates of their vertices $A_{n}\left(a_{n}\right), B_{n}\left(b_{n}\right), C_{n}\left(c_{n}\right), D_{n}\left(c_{n}\right), n \geq 0$ (see the notation in [11]). The iterations are defined recursively for $n \geq 0$ as:

$$
\left\{\begin{array}{l}
a_{n+1}=\alpha a_{n}+(1-\alpha) b_{n}  \tag{1}\\
b_{n+1}=\alpha b_{n}+(1-\alpha) c_{n} \\
c_{n+1}=\alpha c_{n}+(1-\alpha) d_{n} \\
d_{n+1}=\alpha d_{n}+(1-\alpha) a_{n}
\end{array}\right.
$$

In this paper, we investigate the dynamic geometry generated by the sequence $\left(A_{n} B_{n} C_{n} D_{n}\right)_{n \geq 0}$, when $\alpha$ is a complex number. Notice that when $\alpha$ is complex, the quadrilaterals $A_{n} B_{n} C_{n} D_{n}$ are not always nested. The work extends results for triangles in [12], preparing the ground for the study of the general case of Kasner polygons.

## 2. Preliminaries

The system (1) can be written in matrix form as

$$
X_{n+1}=\left(\begin{array}{l}
a_{n+1}  \tag{2}\\
b_{n+1} \\
c_{n+1} \\
d_{n+1}
\end{array}\right)=\left(\begin{array}{cccc}
\alpha & 1-\alpha & 0 & 0 \\
0 & \alpha & 1-\alpha & 0 \\
0 & 0 & \alpha & 1-\alpha \\
1-\alpha & 0 & 0 & \alpha
\end{array}\right)\left(\begin{array}{l}
a_{n} \\
b_{n} \\
c_{n} \\
d_{n}
\end{array}\right)=T X_{n}
$$

where $X_{n}=\left(a_{n}, b_{n}, c_{n}, d_{n}\right)^{T}, n \geq 0$. In this notation, one can write

$$
\begin{equation*}
X_{n}=T^{n} X_{0} \tag{3}
\end{equation*}
$$

The matrix $T$ has the characteristic polynomial

$$
\begin{aligned}
p_{T}(u) & =(u-\alpha)^{4}-(1-\alpha)^{4} \\
& =u^{4}-4 u^{3} \alpha+6 u^{2} \alpha^{2}-6 u \alpha^{3}+\alpha^{4}-(1-\alpha)^{4} \\
& =(u-1)(u-2 \alpha+1)\left(u^{2}-2 \alpha u+2 \alpha^{2}-2 \alpha+1\right)
\end{aligned}
$$

whose roots can be written as $u_{0}=1$ and

$$
\begin{align*}
& u_{1}=\alpha+(1-\alpha) i=(1-i)\left(\alpha-\frac{1-i}{2}\right)  \tag{4}\\
& u_{2}=\alpha-(1-\alpha)=2\left(\alpha-\frac{1}{2}\right)  \tag{5}\\
& u_{3}=\alpha-(1-\alpha) i=(1+i)\left(\alpha-\frac{1+i}{2}\right) . \tag{6}
\end{align*}
$$

A direct computation shows that

$$
T=F^{-1}\left(\begin{array}{cccc}
1 & 0 & 0 & 0  \tag{7}\\
0 & u_{1} & 0 & 0 \\
0 & 0 & u_{2} & 0 \\
0 & 0 & 0 & u_{3}
\end{array}\right) F,
$$

where the matrices $F$ and $F^{-1}$ are given by

$$
F=\left(\begin{array}{cccc}
1 & 1 & 1 & 1  \tag{8}\\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i
\end{array}\right), \quad F^{-1}=\frac{1}{4}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right) .
$$

By using (7), for every positive integer $n$, we have the following relations

$$
\begin{align*}
T^{n} & =F^{-1}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & u_{1}^{n} & 0 & 0 \\
0 & 0 & u_{2}^{n} & 0 \\
0 & 0 & 0 & u_{3}^{n}
\end{array}\right) F  \tag{9}\\
& =\frac{1}{4}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & u_{1}^{n} & 0 & 0 \\
0 & 0 & u_{2}^{n} & 0 \\
0 & 0 & 0 & u_{3}^{n}
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i
\end{array}\right) .
\end{align*}
$$

By Formula (3), one obtains

$$
\begin{align*}
a_{n} & =g_{0}+M u_{1}^{n}+N u_{2}^{n}+P u_{3}^{n} \\
b_{n} & =g_{0}+(M i) u_{1}^{n}+(-N) u_{2}^{n}+(-P i) u_{3}^{n} \\
c_{n} & =g_{0}+(-M) u_{1}^{n}+N u_{2}^{n}+(-P) u_{3}^{n} \\
d_{n} & =g_{0}+(-M i) u_{1}^{n}+(-N) u_{2}^{n}+(P i) u_{3}^{n} \tag{10}
\end{align*}
$$

where $g_{0}=\frac{a_{0}+b_{0}+c_{0}+d_{0}}{4}$, where multiplying (9) by $\left(a_{0}, b_{0}, c_{0}, d_{0}\right)^{T}$ we obtain

$$
\begin{equation*}
M=\frac{a_{0}-b_{0} i-c_{0}+d_{0} i}{4}, \quad N=\frac{a_{0}-b_{0}+c_{0}-d_{0}}{4}, \quad P=\frac{a_{0}+b_{0} i-c_{0}-d_{0} i}{4} \tag{11}
\end{equation*}
$$

From these formulae (but also from (1)), notice that $a_{n}+b_{n}+c_{n}+d_{n}=4 g_{0}, n \geq 0$; hence, all polygons $A_{n} B_{n} C_{n} D_{n}$ have the same centroid $G_{0}$. Clearly, when $M, N, P \neq 0$, the terms $u_{1}^{n}, u_{2}^{n}$, and $u_{3}^{n}$ appear explicitly in (10).

## 3. Dynamical Properties in the Case of Real Parameter

In this section, we study the convergence of the sequence of the Kasner quadrilaterals when $\alpha$ is a real number. By Formula (10), the sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$ are convergent if and only if $\left|u_{1}\right|<1,\left|u_{2}\right|<1$, and $\left|u_{3}\right|<1$, that is,

$$
\begin{align*}
& \left|u_{1}\right|=\left|(1-i)\left(\alpha-\frac{1-i}{2}\right)\right|=\sqrt{2}\left|\alpha-\frac{1-i}{2}\right|<1, \\
& \left|u_{2}\right|=2\left|\alpha-\frac{1}{2}\right|<1, \\
& \left|u_{3}\right|=\left|(1+i)\left(\alpha-\frac{1+i}{2}\right)\right|=\sqrt{2}\left|\alpha-\frac{1+i}{2}\right|<1 . \tag{12}
\end{align*}
$$

First, one can easily check that the condition $\left|u_{2}\right|<1$ is equivalent to $\alpha \in(0,1)$.
Then, because $\alpha$ is real, we clearly have $\left|u_{1}\right|=\left|u_{3}\right|$; hence, the conditions $\left|u_{1}\right|<1$ and $\left|u_{3}\right|<1$ become equivalent to $\left|u_{1} u_{3}\right|<1$, that is,

$$
\left|u_{1} u_{3}\right|=2\left|\alpha-\frac{1-i}{2}\right|\left|\alpha-\frac{1+i}{2}\right|=2\left(\alpha^{2}-\alpha+\frac{1}{2}\right)<1
$$

which is equivalent to $\alpha(1-\alpha)<0$, that is, $\alpha \in(0,1)$.

## 4. Dynamical Properties in the Case of Complex Parameter

We now discuss the dynamics obtained when $\alpha$ is a complex number.
It is convenient to define the following points

$$
\begin{equation*}
z_{1}=\frac{1}{2}-\frac{1}{2} i, \quad z_{2}=\frac{1}{2}, \quad z_{3}=\frac{1}{2}+\frac{1}{2} i, \tag{13}
\end{equation*}
$$

representing the centres of the open disks

$$
\begin{equation*}
D_{1}\left(z_{1}, \frac{\sqrt{2}}{2}\right), \quad D_{2}\left(z_{2}, \frac{1}{2}\right), \quad D_{3}\left(z_{3}, \frac{\sqrt{2}}{2}\right) \tag{14}
\end{equation*}
$$

and of the circles depicted in Figure 1

$$
\begin{equation*}
C_{1}\left(z_{1}, \frac{\sqrt{2}}{2}\right), \quad C_{2}\left(z_{2}, \frac{1}{2}\right), \quad C_{3}\left(z_{3}, \frac{\sqrt{2}}{2}\right) . \tag{15}
\end{equation*}
$$



Figure 1. Plots of the circles $C_{1}, C_{2}$, and $C_{3}$ defined in Formula (15).
Considering the real numbers $r_{1}, r_{2}, r_{3}, \theta_{1}, \theta_{2}, \theta_{3}$, by (4), (5), and (6), we obtain

$$
\begin{align*}
& u_{1}=r_{1} e^{2 \pi i \theta_{1}}=\sqrt{2}\left(\alpha-z_{1}\right) e^{-\frac{\pi i}{4}} \\
& u_{2}=r_{2} e^{2 \pi i \theta_{2}}=2\left(\alpha-z_{2}\right), \\
& u_{3}=r_{3} e^{2 \pi i \theta_{3}}=\sqrt{2}\left(\alpha-z_{3}\right) e^{\frac{\pi i}{4}} \tag{16}
\end{align*}
$$

By (16), we deduce that for a given $j=1,2,3$, if $\alpha \in D_{j}$, then we have $r_{j}<1$. Moreover, if $\alpha \in C_{j}$, then it follows that $r_{j}=1$. The distinct behaviours below emerge:

1. If $\alpha \in D_{1} \cap D_{2} \cap D_{3}$, then $0<r_{1}, r_{2}, r_{3}<1$.

One can easily check the set inclusion $D_{1} \cap D_{3} \subseteq D_{2}$.
2. If $\alpha$ is in the interior of the complement of $D_{1} \cap D_{3}$, then $\max \left\{r_{1}, r_{3}\right\}>1$.
3. If $\alpha \in C_{1} \cap C_{2} \cap C_{3}$, then $\alpha \in\{0,1\}$.

The boundary of the shaded region in Figure 1 consists of two arcs

$$
U_{1}=C_{1} \cap D_{3}, \quad U_{3}=C_{3} \cap D_{1}
$$

which can be parametrised as

$$
\alpha(t)= \begin{cases}z_{1}+\frac{\sqrt{2}}{2}(\cos t+i \sin t), & t \in\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]  \tag{17}\\ z_{3}+\frac{\sqrt{2}}{2}(\cos t+i \sin t), & t \in\left[\frac{5 \pi}{4}, \frac{7 \pi}{4}\right]\end{cases}
$$

To describe the orbits of the sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$, one first needs to understand the behaviour of the sequence $\left(z^{n}\right)_{n \geq 0}$, where $z \in \mathbb{C}$ (see, for example, Lemma 2.1 in [13], or Lemma 5.2 in [14]), which is shown in Figure 2.

Lemma 1. Let $z=r e^{2 \pi i \theta}$, where $r \geq 0, \theta \in \mathbb{R}$. The orbit of $\left(z^{n}\right)_{n \geq 0}$ is:
(a) A spiral convergent to 0 for $r<1$;
(b) A divergent spiral for $r>1$;
(c) A regular $k$-gon if $z$ is a primitive $k$-th root of unity, $k \geq 3$;
(d) A dense subset of the unit circle if $r=1$ and $\theta \in \mathbb{R} \backslash \mathbb{Q}$.

When $\theta=j / k \in \mathbb{Q}$ is irreducible, then the terms of the spirals obtained in (a) and (b) align along $k$ rays.


Figure 2. The terms $z^{n}, n=0, \ldots, 70$ obtained for (a) $r=0.98$ and $x=\sqrt{5} / 10 ;$ (b) $r=1.01$ and $x=1 / 8$; (c) $r=1$ and $x=1 / 8$; (d) $r=1$ and $x=\sqrt{5} / 10$. Arrows indicate the orbit's direction, and the dotted line represents the unit circle. The point $z=r \exp (2 \pi i x)$ is shown as a square.

To prove part (d), we use that $z^{n}=e^{2 \pi i n \theta}=e^{2 \pi i(n \theta+m)}$ for $n \geq 0$ and $m$ integers. By Kronecker's Lemma ([15], Theorem 442), the set $\{n \theta+m: m, n \in \mathbb{Z}, n \geq 0\}$ is dense in the set of real numbers $\mathbb{R}$; hence, the set $\left\{z^{n}: n \geq 0\right\}$ is dense within the unit circle.

As linear combinations of $\left(u_{1}^{n}\right)_{n \geq 0},\left(u_{2}^{n}\right)_{n \geq 0}$, and $\left(u_{3}^{n}\right)_{n \geq 0}$, the sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0}$, $\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$, given by the explicit Formula (10) in the complex plane, exhibit the following behaviour.

Lemma 2. The patterns produced by Formula (10) are summarized below:

1. Convergent if $0<r_{1}, r_{2}, r_{3}<1$;
2. Divergent if $\max \left\{r_{1}, r_{3}\right\}>1$;
3. Periodic if $r_{1}=r_{3}=1$ (that is, when $\alpha=0$ or $\alpha=1$ );
4. There are two distinct patterns when $0<\min \left\{r_{1}, r_{3}\right\}<\max \left\{r_{1}, r_{3}\right\}=1$.

Denoting $\theta=\theta_{1}$ if $r_{1}=1$ or $\theta=\theta_{3}$ if $r_{3}=1$, then the orbit:
(a) Has $k$ convergent subsequences if $\theta=\frac{j}{k}$ is an irreducible fraction;
(b) Is dense within a circle when $\theta$ is irrational.

The details of the geometric patterns obtained in each case are presented below. In all figures, we consider the initial polygon of complex coordinates

$$
\begin{equation*}
A_{0}(-4+12 i), \quad B_{0}(0), \quad C_{0}(8), \quad D_{0}(12+1 i) \tag{18}
\end{equation*}
$$

for which Formula (11) gives the values

$$
\begin{equation*}
G=4+5 i, \quad M=-5+6 i, \quad N=-2+i, \quad P=-1 . \tag{19}
\end{equation*}
$$

The position of $\alpha$ relative to relevant boundaries is indicated in the left diagram with a star, while the iterations of the polygon are displayed on the right, where the star indicates the position of the centroid. All the simulations have been implemented in Matlab ${ }^{\circledR}$ 2021b.

### 4.1. Convergent Orbits

If $0<r_{1}, r_{2}, r_{3}<1$, then by (16), the sequences $u_{1}^{n}, u_{2}^{n}$, and $u_{3}^{n}$ are convergent if and only if $\alpha \in D_{1} \cap D_{3}$. Hence, by (10), we obtain that $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$ converge to $g_{0}$. We can formulate the following result.

Theorem 1. The following assertions hold:
(1) The sequence $\left(A_{n} B_{n} C_{n} D_{n}\right)_{n \geq 0}$ is convergent if and only if $\alpha \in D_{1} \cap D_{2}$.
(2) When the sequence $\left(A_{n} B_{n} C_{n} D_{n}\right)_{n \geq 0}$ is convergent, its limit is the degenerated quadrilateral at $G_{0}$, the centroid of the initial quadrilateral $A_{0} B_{0} C_{0} D_{0}$.

Proof. The intersection $D_{1} \cap D_{3}$ is shaded in Figure 1.
(1) Clearly, $\alpha \in D_{1} \cap D_{3}$ is equivalent to $r_{1}<1$ and $r_{3}<1$ (in this case, one also has $\alpha \in D_{2}$ ). The relation (10) shows that the sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$ are convergent if and only if $\left(u_{1}^{n}\right)_{n \geq 0},\left(u_{2}^{n}\right)_{n \geq 0}$, and $\left(u_{3}^{n}\right)_{n \geq 0}$ are convergent, which happens when $u_{1}^{n} \rightarrow 0, u_{2}^{n} \rightarrow 0$, and $u_{3}^{n} \rightarrow 0$.
(2) Adding the equation in the system (1), one obtains that for every integer $n \geq 0$, we have $a_{n}+b_{n}+c_{n}+d_{n}=a_{0}+b_{0}+c_{0}+d_{0}=4 g_{0}$, where $g_{0}$ is the complex coordinates of the centroid $G_{0}$ of the initial quadrilateral $A_{0} B_{0} C_{0} D_{0}$. Assume that $a_{n} \rightarrow a^{*}, b_{n} \rightarrow b^{*}$, $c_{n} \rightarrow c^{*}$, and $d_{n} \rightarrow d^{*}$. From system (1), we obtain

$$
\left\{\begin{array}{l}
a^{*}=\alpha a^{*}+(1-\alpha) b^{*}  \tag{20}\\
b^{*}=\alpha b^{*}+(1-\alpha) c^{*} \\
c^{*}=\alpha c^{*}+(1-\alpha) d^{*} \\
d^{*}=\alpha d^{*}+(1-\alpha) a^{*}
\end{array}\right.
$$

Because $\alpha \neq 1$, the only solution of this system is $a^{*}=b^{*}=c^{*}=d^{*}=g_{0}$.
For $0<\alpha<1$, one has $\alpha \in D_{1} \cap D_{3}$, and moreover, in this case, the vertices $A_{n+1}, B_{n+1}$, $C_{n+1}, D_{n+1}$ are interior points of the segments $\left[A_{n}, B_{n}\right],\left[B_{n}, C_{n}\right],\left[C_{n}, D_{n}\right]$, and $\left[D_{n}, A_{n}\right]$, respectively. Such an example is depicted in Figure 3.


Figure 3. Convergent orbits (right) obtained for $\alpha=0.25$ (left).
On the other hand, when the parameter $\alpha \in D_{1} \cap D_{3}$ is not real, the orbit is convergent, but the points are not aligned any more, as illustrated in Figure 4.



Figure 4. Convergent orbits (right) obtained for $\alpha=\frac{1}{2}+\frac{\sqrt{3}}{12} i$ (left).

### 4.2. Periodic Orbits

If $r_{1}=r_{2}=r_{3}=1$, then $\left|\alpha-z_{1}\right|=\left|\alpha-z_{3}\right|=\frac{\sqrt{2}}{2}$ and $\left|\alpha-z_{2}\right|=\frac{1}{2}$, which can only happen for $\alpha \in C_{1} \cap C_{2} \cap C_{3}=\{0,1\}$.

Case 1. $\alpha=0$. From the system (1), for all $n \geq 0$, one obtains

$$
a_{n+4}=b_{n+3}=c_{n+2}=d_{n+1}=a_{n}
$$

Similarly, $b_{n+4}=b_{n}, c_{n+4}=c_{n}$, and $d_{n+4}=d_{n}$, so the sequence terms satisfy

$$
\begin{cases}a_{n}: & a_{0}, b_{0}, c_{0}, d_{0}, a_{0}, b_{0}, c_{0}, \ldots  \tag{21}\\ b_{n}: & b_{0}, c_{0}, d_{0}, a_{0}, b_{0}, c_{0}, d_{0}, \ldots \\ c_{n}: & c_{0}, d_{0}, a_{0}, b_{0}, c_{0}, d_{0}, a_{0}, \ldots \\ d_{n}: & d_{0}, a_{0}, b_{0}, c_{0}, d_{0}, a_{0}, b_{0}, \ldots\end{cases}
$$

Case 2. $\alpha=1$. From the system (1), for all $n \geq 0$, one obtains

$$
a_{n+1}=a_{n}, \quad b_{n+1}=b_{n}, \quad c_{n+1}=c_{n}, \quad d_{n+1}=d_{n},
$$

so, in this case, the sequences are actually constant.

### 4.3. Divergent Orbits

If $\max \left\{r_{1}, r_{3}\right\}>1$, then $\alpha \in \operatorname{int}\left[\left(D_{1} \cap D_{3}\right)^{c}\right]$; hence, by (16), either $u_{1}^{n}$ or $u_{3}^{n}$ are divergent. By Formula (10), the sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$ are divergent (as long as the corresponding coefficients $M, N, P$ in (10) are not all vanishing).

Figure 5 shows a divergent iteration. The diagram on the left we plot the position of $\alpha$, while on the right side we illustrate the polygons $A_{n} B_{n} C_{n} D_{n}, n=0, \ldots, 10$.



Figure 5. Divergent orbits (right) obtained for $\alpha=z_{1}+\frac{\sqrt{2}}{2}(\cos 2.5+i \sin 2.5)(\mathbf{l e f t})$.

### 4.4. Orbits with a Finite Number of Convergent Subsequences

If $0<\min \left\{r_{1}, r_{3}\right\}<\max \left\{r_{1}, r_{3}\right\}=1$, then one either has $\alpha \in C_{1} \cap D_{3}$ for $r_{1}=1$, or $\alpha \in C_{3} \cap D_{1}$ for $r_{3}=1$. The orbit has a finite number of limit points if the complex argument $\theta$ of $u_{1}$ if $r_{1}=1$ or of $u_{3}$ if $r_{3}=1$ is rational.

### 4.4.1. Upper Arc of $C_{1}$

First, assume that $r_{1}=\max \left\{r_{1}, r_{3}\right\}=1$, i.e., $\alpha$ is on the upper arc $C_{1} \cap D_{3}$.
As $\alpha \in C_{1}$, there is $t \in\left[\frac{1}{8}, \frac{3}{8}\right]$ with $\alpha=z_{1}+\frac{\sqrt{2}}{2} e^{2 \pi i t}$, so by (16), we obtain

$$
\begin{equation*}
u_{1}=e^{2 \pi i \theta_{1}}=\sqrt{2}\left(\alpha-z_{1}\right) e^{-\frac{\pi i}{4}}=e^{2 \pi i\left(t-\frac{1}{8}\right)} . \tag{22}
\end{equation*}
$$

When $\theta_{1}=\frac{p}{q}$ is an irreducible fraction, the orbit has a finite number of convergent subsequences. Therefore, we have the following result.

Theorem 2. If for the integers $0<p<q$, we have $\theta_{1}=\frac{p}{q} \in\left[0, \frac{1}{4}\right]$ is an irreducible fraction, then $u_{1}=e^{2 \pi i \frac{p}{q}}$ and by Formula (10), the sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$ have subsequences which converge to the vertices of a regular $q$-gon centred at $G_{0}$ of radius $|M|$.

Proof. In this case, we have $u_{1}^{n q+j}=u_{1}^{j}$ for $j=0, \ldots, q-1$ and $u_{2}^{n} \rightarrow 0$ and $u_{3}^{n} \rightarrow 0$, so using the notations of (10) and (11), one obtains the relations

$$
\begin{align*}
\lim _{n \rightarrow \infty} a_{n q+j} & =\lim _{n \rightarrow \infty}\left(g_{0}+M u_{1}^{n q+j}+N u_{2}^{n q+j}+P u_{3}^{n q+j}\right)=g_{0}+M u_{1}^{j} \\
\lim _{n \rightarrow \infty} b_{n q+j} & =\lim _{n \rightarrow \infty}\left(g_{0}+(M i) u_{1}^{n q+j}+(-N) u_{2}^{n q+j}+(-P i) u_{3}^{n q+j}\right)=g_{0}+(M i) u_{1}^{j} \\
\lim _{n \rightarrow \infty} c_{n q+j} & =\lim _{n \rightarrow \infty}\left(g_{0}+(-M) u_{1}^{n q+j}+N u_{2}^{n q+j}+(-P) u_{2}^{n q+j}\right)=g_{0}+(-M) u_{1}^{j}  \tag{23}\\
\lim _{n \rightarrow \infty} d_{n q+j} & =\lim _{n \rightarrow \infty}\left(g_{0}+(-M i) u_{1}^{n q+j}+(-N) u_{2}^{n q+j}+(P i) u_{3}^{n q+j}\right)=g_{0}+(-M i) u_{1}^{j},
\end{align*}
$$

which ends the proof. This case is depicted in Figure 6. The sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0}$, $\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$ are plotted in Figure 7. Moreover, one can check that for $\theta_{1}=1 / 5$ the limit polygon is a pentagon centred at $G_{0}$, of radius $|M| \simeq 7.81$ (by (19)).


Figure 6. First 200 iterations (right) obtained for $\theta_{1}=p / q=1 / 5$ where $\alpha=z_{1}+\frac{\sqrt{2}}{2} e^{2 \pi i\left(\frac{1}{8}+\frac{1}{5}\right)}$ (left).


Figure 7. Iterations obtained for $\theta_{1}=\frac{1}{5}$. (a) $\left(a_{n}\right)_{n=0}^{199} ;(\mathbf{b})\left(b_{n}\right)_{n=0}^{199} ;$ (c) $\left(c_{n}\right)_{n=0}^{199} ;(\mathbf{d})\left(d_{n}\right)_{n=0}^{199}$.

### 4.4.2. Lower Arc of $C_{3}$

Similarly, if $r_{3}=\max \left\{r_{1}, r_{3}\right\}=1$, then $\alpha$ is on the arc $C_{3} \cap D_{1}$ defined by (17). Therefore, there is $t \in\left[\frac{5 \pi}{8}, \frac{7 \pi}{8}\right]$ with $\alpha=z_{3}+\frac{\sqrt{2}}{2} e^{2 \pi i t}$, and by (16), we obtain

$$
\begin{equation*}
u_{3}=e^{2 \pi i \theta_{3}}=\sqrt{2}\left(\alpha-z_{3}\right) e^{\frac{\pi i}{4}}=e^{2 \pi i\left(t+\frac{1}{8}\right)} . \tag{24}
\end{equation*}
$$

The following result can be proved similarly to Theorem 2.
Theorem 3. If for the integers $0<p<q$, we have $\theta_{3}=\frac{p}{q} \in\left[\frac{3}{4}, 1\right]$ is an irreducible fraction, then $u_{1}=e^{2 \pi i \frac{p}{q}}$ and by Formula (10), the sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$ have $q$ subsequences convergent to the vertices of four regular $\bar{q}-$ gons centred at $G_{0}$ of radius $|\bar{P}|$.

The first 200 iterations obtained when $\theta_{3}=\frac{5}{6}$ are presented in Figure 8.


Figure 8. First 200 iterations (right) obtained for $\theta_{3}=p / q=5 / 6$ where $\alpha=z_{3}+\frac{\sqrt{2}}{2} e^{2 \pi i\left(\frac{5}{6}-\frac{1}{8}\right)}$ (left).
The sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$ are plotted in Figure 9. Similarly to (23), the limit polygon is a hexagon centred at $G$, which has radius $|P|=1$.




Figure 9. Iterations obtained for $\theta_{3}=\frac{5}{6}$. (a) $\left(a_{n}\right)_{n=0}^{199} ;(\mathbf{b})\left(b_{n}\right)_{n=0}^{199} ;(\mathbf{c})\left(c_{n}\right)_{n=0}^{199} ;(\mathbf{d})\left(d_{n}\right)_{n=0}^{199}$.

### 4.5. Dense Orbits

When $0<\min \left\{r_{1}, r_{3}\right\}<\max \left\{r_{1}, r_{3}\right\}=1$ but $\theta_{1}$ or $\theta_{3}$ are irrational modulo $2 \pi$, the orbits of $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$ are dense within circles.

### 4.5.1. Upper Arc of $C_{1}$

First, assume that $0<r_{3}<r_{1}=1$, i.e., $\alpha$ is on the upper arc $C_{1} \cap D_{3}$. Using the notations in (22), the following result can be deduced from Lemma 1 (d).

Theorem 4. If $r_{1}=1$ and $\theta_{1} \in\left[0, \frac{1}{4}\right]$ is irrational, then the set of limit points for each of the sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$ is the circle centred at $G_{0}$ of radius $|M|$.

Proof. By (10), we have $a_{n}=g_{0}+M u_{1}^{n}+N u_{2}^{n}+P u_{3}^{n}$, with $M, N$, and $P$ constants given by (11). Because $\left|u_{2}\right|<1,\left|u_{3}\right|<1$, we have $a_{n}=g_{0}+M u_{1}^{n}+z_{n}$, where $\lim _{n \rightarrow \infty} z_{n}=0$.

Let $z$ be an arbitrary point on the circle of centre $G_{0}$ and radius $|M|$. If $M=0$, then $\lim _{n \rightarrow \infty} a_{n}=g_{0}$. Otherwise, denoting $z^{\prime}=\frac{z-g_{0}}{M}$, we have $z^{\prime} \in \mathcal{C}(0,1)$. Because $u_{1}=e^{2 \pi i \theta_{1}}$ with $\theta_{1}$ irrational, by Lemma (1), it follows that there is a subsequence $n_{1}<n_{2}<\cdots$ such that $\lim _{k \rightarrow \infty} u_{1}^{n_{k}}=z^{\prime}$. For $\varepsilon>0$, one can find $K_{1}(\varepsilon)$ and $K_{2}(\varepsilon)$ such that

$$
\left|u_{1}^{n_{k}}-z^{\prime}\right|<\frac{1}{|M|+1} \varepsilon, \quad k \geq K_{1}(\varepsilon) \text { and }\left|z_{n_{k}}\right|<\frac{1}{|M|+1} \varepsilon, \quad k \geq K_{2}(\varepsilon),
$$

hence, for $k \geq \max \left\{K_{1}(\varepsilon), K_{1}(\varepsilon)\right\}$, one obtains

$$
\left|a_{n_{k}}-z\right|=\left|g_{0}+M u_{1}^{n_{k}}+z_{n_{k}}-g_{0}-M z^{\prime}\right| \leq|M| \cdot\left|u_{1}^{n_{k}}-z^{\prime}\right|+\left|z_{n_{k}}\right|<\varepsilon
$$

hence $\lim _{k \rightarrow \infty} a_{n_{k}}=z$. This shows that $z$ is a limit point for the sequence $\left(a_{n}\right)_{n \geq 0}$. Analogously, this is proved for $\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$ and $\left(d_{n}\right)_{n \geq 0}$.

Figure 10 illustrates the position of $\alpha$ and the polygons obtained for $n=10$ iterations, respectively, when $\alpha \in C_{1} \cap D_{3}$. Figure 11 depicts the vertices of the original quadrilateral of affixes $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$, and 200 iterations.


Figure 10. Orbits for $n=10$ iterations (right), for $\alpha=z_{1}+\frac{\sqrt{2}}{2}(\cos 1+i \sin 1)$ (left).


Figure 11. Orbits for $\theta_{1}=\frac{1}{2 \pi}$. (a) $\left(a_{n}\right)_{n \geq 0} ;(\mathbf{b})\left(b_{n}\right)_{n \geq 0} ;$ (c) $\left(c_{n}\right)_{n \geq 0} ;$ (d) $\left(d_{n}\right)_{n \geq 0}$.

### 4.5.2. Lower Arc of $C_{3}$

When $0<r_{1}<r_{3}=1, \alpha$ is on the arc $C_{3} \cap D_{1}$ defined by (17), as in Figure 12. Using the notations in (24), we can formulate the following result.

Theorem 5. If $r_{3}=1$ and $\theta_{3} \in\left[\frac{3}{4}, 1\right]$ is irrational, then the set of limit points for each of the sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$ is the circle centred at $G_{0}$ of radius $|P|$.

Proof. The proof follows the similar lines as for Theorem 4, but now by (10), one has $a_{n}=g_{0}+M u_{1}^{n}+N u_{2}^{n}+P u_{3}^{n}$. Because $\left|u_{1}\right|<1,\left|u_{2}\right|<1$, we obtain $a_{n}=g_{0}+z_{n}+P u_{3}^{n}$, where $\lim _{n \rightarrow \infty} z_{n}=0$. Figure 12 shows the position of $\alpha$ and the first $n=10$ iterations, respectively, when $\alpha \in C_{3} \cap D_{1}$. Figure 13 plots the vertices of the original quadrilateral of affixes $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$, and 200 iterations.


Figure 12. Dense orbits obtained after $n=10$ iterations (right), generated for $\alpha=z_{3}+\frac{\sqrt{2}}{2} e^{2 \pi i\left(\frac{3}{\pi}-\frac{1}{8}\right)}$ (left), when $u_{3}=e^{2 \pi i \theta_{3}}$, with $\theta_{3}=\frac{3}{\pi}$.


Figure 13. Orbits for $\theta_{3}=\frac{3}{\pi}$. (a) $\left(a_{n}\right)_{n \geq 0}$; (b) $\left(b_{n}\right)_{n \geq 0}$; (c) $\left(c_{n}\right)_{n \geq 0}$; (d) $\left(d_{n}\right)_{n \geq 0}$.
Author Contributions: All authors claim to have contributed significantly and equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by "1 Decembrie 1918" University of Alba Iulia through scientific research funds.

Acknowledgments: The authors wish to thank the referees for their valuable feedback and constructive comments, which helped to improve the quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

## References

1. Andrica, D.; Bagdasar, O.; Marinescu, D.Ş. Dynamic geometry of Kasner triangles with a fixed weight. Int. J. Geom. 2022, 11, 101-110.
2. Kingston, J.G.; Synge, J.L. The sequence of pedal triangles. Am. Math. Mon. 1988, 95, 609-620. [CrossRef]
3. Abbot, S. Average sequences and triangles. Math. Gaz. 1996, 80, 222-224. Available online: https://www.jstor.org/stable/3620354 (accessed on 12 March 2022). [CrossRef]
4. Chang, G.Z.; Davis P.J. Iterative processes in elementary geometry. Am. Math. Mon. 1983, 90, 421-431. [CrossRef]
5. Clarke, R.J. Sequences of polygons. Math. Mag. 1979, 90, 102-105. [CrossRef]
6. Ding, J.; Hitt, L.R.; Zhang, X.-M. Markov chains and dynamic geometry of polygons. Linear Algebra Appl. 2003, 367, 255-270. [CrossRef]
7. Hitt, L.R.; Zhang, X.-M. Dynamic geometry of polygons. Elem. Math. 2001, 56, 21-37. [CrossRef]
8. Ismailescu, D.; Jacobs, J. On sequences of nested triangles. Period. Math. Hung. 2006, 53, 169-184. [CrossRef]
9. Donisi, S.; Martini, H.; Vincenzi, G.; Vitale, G. Polygons derived from polygons via iterated constructions. Electron. J. Differ. Geom. Dyn. Syst. 2016, 18, 14-31. Available online: http://www.mathem.pub.ro/dgds/v18/D18-do-b77.pdf (accessed on 7 April 2022).
10. Roeschel, O. Polygons and iteratively regularizing affine transformations. Beitr. Algebra Geom. 2017, 58, 69-79. [CrossRef]
11. Andreescu, T.; Andrica, D. Complex Numbers from A to ... Z, 2nd ed.; Birkhäuser: Boston, MA, USA, 2014.
12. Andrica, D.; Bagdasar, O. On the dynamic geometry of Kasner triangles with complex parameter. In Proceedings of the 7th IACMC 2022, Zarqa University, Zarqa, Jordan, 11-13 May 2022; Nature Springer: Berlin, Germany, 2022; accepted.
13. Bagdasar, O.; Larcombe, P.J. On the characterization of periodic complex Horadam sequences. Fibonacci Quart. 2013, 51, 28-37. Available online: https:/ / www.fq.math.ca/Papers1/51-1/BagdasarLarcombe.pdf (accessed on 10 December 2021).
14. Andrica, D.; Bagdasar, O. Recurrent Sequences: Key Results, Applications and Problems; Nature Springer: Berlin, Germany, 2020.
15. Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers, 5th ed.; Oxford University Press: Oxford, UK, 1979.
