

 mathematics-10-03315

mathematics-10-03315

Mathematics 2022, 10(18), 3315; doi:10.3390/math10183315

Article

Oppositional Pigeon-Inspired Optimizer for Solving the Non-Convex Economic Load Dispatch Problem in Power Systems

Rajakumar Ramalingam 1[image: Orcid], Dinesh Karunanidy 1[image: Orcid], Sultan S. Alshamrani 2[image: Orcid], Mamoon Rashid 3,*[image: Orcid], Swamidoss Mathumohan 4 and Ankur Dumka 5,6

1

Department of Computer Science and Technology, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India

2

Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

3

Department of Computer Engineering, Faculty of Science and Technology, Vishwakarma University, Pune 411048, Maharashtra, India

4

Department of CSE, Unnamalai Institute of Technology, Kovilpatti 628502, Tamil Nadu, India

5

Department of Computer Science and Engineering, Women Institute of Technology, Dehradun 248007, Uttarakhand, India

6

Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun 248007, Uttarakhand, India

*

Correspondence: mamoon.rashid@vupune.ac.in; Tel.: +91-7814346505

Academic Editor: Jian Dong

Received: 29 July 2022 / Accepted: 9 September 2022 / Published: 13 September 2022

Abstract

:

Economic Load Dispatch (ELD) belongs to a non-convex optimization problem that aims to reduce total power generation cost by satisfying demand constraints. However, solving the ELD problem is a challenging task, because of its parity and disparity constraints. The Pigeon-Inspired Optimizer (PIO) is a recently proposed optimization algorithm, which belongs to the family of swarm intelligence algorithms. The PIO algorithm has the benefit of conceptual simplicity, and provides better outcomes for various real-world problems. However, this algorithm has the drawback of premature convergence and local stagnation. Therefore, we propose an Oppositional Pigeon-Inspired Optimizer (OPIO) algorithm—to overcome these deficiencies. The proposed algorithm employs Oppositional-Based Learning (OBL) to enhance the quality of the individual, by exploring the global search space. The proposed algorithm would be used to determine the load demand of a power system, by sustaining the various equality and inequality constraints, to diminish the overall generation cost. In this work, the OPIO algorithm was applied to solve the ELD problem of small- (13-unit, 40-unit), medium- (140-unit, 160-unit) and large-scale (320-unit, 640-unit) test systems. The experimental results of the proposed OPIO algorithm demonstrate its efficiency over the conventional PIO algorithm, and other state-of-the-art approaches in the literature. The comparative results demonstrate that the proposed algorithm provides better results—in terms of improved accuracy, higher convergence rate, less computation time, and reduced fuel cost—than the other approaches.

Keywords:

economic load dispatch; pigeon-inspired optimizer; oppositional-based learning; swarm intelligence algorithm; oppositional-based pigeon-inspired optimizer

MSC:

68W50; 60G05; 60G51; 90C27

1. Introduction

With the rapid growth in technologies, ELD is considered one of the foremost challenging optimization problems in power systems. The main motive for addressing the ELD problem is to reduce the cost of power generation, by sustaining the different constraints involved in the generation units [1]. Several researchers have applied mathematical models, knowledge discovery and optimization techniques to resolve the ELD problem. The standard techniques, like lambda-generation techniques, and base-point techniques from [2], provide optimal solutions, by incorporating the incremental cost curves of linear functions. However, these methods have failed to solve highly non-linear functions, and provide unsatisfactory solutions which result in huge losses in power generation costs. The non-smooth functionalities of generating units contain various features, like prohibited zones, different fuel options, value-point effects, ramp-rate limits and a start-up cost function which converts linear into non-linear characteristics [3]. Owing to the large-scale generating units, conventional methods have provided unreliable solutions, and have taken a lot of computational time to solve ELD problems. In later studies, dynamic programming techniques [4] have been used for ELD problems, but these have required high computational efforts to solve large-scale generating units.

In recent studies, many researchers have utilized various optimization algorithms to solve non-convex ELD problems with only value-point effects, viz., Particle Swarm Optimization with Sequential Quadratic Programming (PSO-SQP) [5], Genetic Algorithm (GA) [6], Evolutionary Programming (EP) [7], Improved Group Search Optimization (IGSO) [8], Incremental Artificial Bee Colony with Local Search (IABC-LS) [9], Hybrid Grey Wolf Optimizer (HGWO) [10], Self-Organizing Hierarchical Particle Swarm Optimization (SOH-PSO) [11], Genetic Algorithm with Pattern Search and SQP (GA-PS-SQP) [12], Modified Shuffled Frog-Leaping Algorithm (MSFLA) [13], Firefly Optimization (FA) [14], Chaotic Self-Adaptive Particle Swarm Optimization Algorithm (CSAPSO) [15], Combined Social Engineering Particle Swarm Optimization (SEPSO) [16], Starling Murmuration Optimizer (SMO) [17], Improved Moth-Flame optimization (IMFO) [18] and Diversity-Maintained Differential Evolution (DMDE) [19]. Among these search techniques, GA is considered to be the least efficient technique, because its optimal individuals are generally trapped in intensification rather than diversification, and it also suffers from the determination of control parameters, which results in excessive simulation time. Several new techniques, like IGSO, MSFLA, FA, HGWO, SOH-PSO, GA-PS-SQP and CSAPSO, have virtuoso competence in finding optimal solutions for non-convex generating units; however, the simulation time of the system is quite long; specifically, for CSAPSO, several iterations are carried out to specify the control parameter values; this limitation results in the technique having excessive execution time, and a large number of runs.

In addition, some sets of optimization algorithms are considered to solve non-convex ELD problems with only multi-fuel possibilities. These algorithms include Integer Coded Differential Evolution-Dynamic Programming (ICDEDP) [20], Chaotic Ant Swarm Optimization (CASO) [21], Bacteria Foraging Optimization (BFO) [22], Ant Colony Optimization (ACO) [23], Biogeography-Based Optimization (BBO) [24] and Krill Herd (KH) [25]. Among these techniques, ACO is the technique initially utilized for solving optimization problems in the engineering domain, specifically in path-identifying and parameter-tuning in electrical engineering. Although ACO and CASO have the cap potential of leading complicated constraints and non-convex goal features, in addition to their simplicity of simulation for optimization problems, they nevertheless suffer from numerous negative aspects, together with low-quality optimization individual and lengthy simulation time. The modified DE method, namely the ICDEDP technique, can be considered a more efficient technique than the other techniques, because it can obtain a good-quality solution within a short span of simulation; this DE technique has been globally utilized in power system optimization problems. In addition, other techniques—such as BBO, KH and BFO—have good capability in determining the optimal solutions for non-convex problems; however, the simulation times of these techniques are longer, due to the vast number of control parameters.

In contrast to the aforementioned sets, the techniques in the set of neural networks including the Adaptive Hopfield Neural Network (AHNN) [26], the Enhanced Augmented Lagrange Hopfield Network (EALHN) [27] and the Augmented Lagrange Hopfield Network (ALHN) [28] can impact on large-scale problems, but fail to deal with the ELD problem with a non-convex objective function. In EALHN and ALHN, the Lagrange function is merged with the Hopfield network to enhance efficacy. This process will help the techniques to converge towards the optimal more smoothly, and to obtain a good-quality solution. However, in real-time power systems, both value points and fuel points need to be considered, for accurate and practical ELD solutions.

In some studies, both the constraints of value points and different fuel possibilities are considered for realistic ELD solutions comprising the Improved Particle Swarm Optimization (IPSO) [29], the Crisscross Optimization Algorithm (COA) [30], Differential Evolution and Particle Swarm Optimization (DEPSO) [31], the Oppositional Grey Wolf Optimization algorithm (OGWO) [32], Estimation of Distribution and Differential Evolution Cooperation (ED-DE) [33], the Real-Coded Chemical Reaction Algorithm (RCCRO) [34], Synergic Predator–Prey Optimization (SPPO) [35], the One Rank Cuckoo Search Algorithm (ORCSA) [36], the Real-Coded Genetic Algorithm (RCGA) [37] and the Improved Genetic Algorithm [38]. By utilizing the pros of each search technique, these improved novel techniques have adequate capability in finding good-quality solutions with better simulation time. However, the improved technique can lead to more complications with vast control parameters, and it can suffer from inappropriate selection of these parameters; in addition, its performance is degraded when applied to large-scale power systems entailing n number of generating units with various fuel possibilities and value-point effects.

A large portion of the above studies have focused on the adjustments of stochastic search techniques. Nonetheless, they have, once in a while, given consideration to the method of handling constraints. In reality, dealing with the constraints of ELD problems is significant when working with stochastic search techniques, for enhancing the optimization results. Our study aimed to fill the research gap, by contributing more towards addressing the constraints of ELD problems. Our contributions were twofold: initially, an enhanced PIO algorithm was introduced, to enrich the performance of the standard PIO algorithm; subsequently, a constraint-handling technique was utilized, to appropriately handle the equality constraints.

The Pigeon-Inspired Optimizer algorithm was inspired by the homing bias of pigeons, and was proposed by Duan and Qiao in 2014. This optimization algorithm was used because of its optimum performance at high merging speeds [39]. However, the PIO algorithm suffers in regard to global exploration and premature convergence. In addition, its performance is degraded when applied to high-dimensional problems. This problem can be overcome by using the Opposition-Based Learning technique. The OBL technique is widely used by researchers to boost convergence speed, by exploring the search space. In this work, a new metaheuristic algorithm—namely, the Oppositional Pigeon-Inspired Optimizer technique (OPIO)—was utilized, to solve non-convex ELD problems with various fuel possibilities and value-point effects.

The major contribution of this work is illustrated as follows:

(1) The proposed OPIO algorithm solves the non-convex ELD problem with multi-fuel possibilities and value-point effects, through two operators: namely, map and compass operator, and landmark operator. These operators enhance the local search ability by adopting the search boundary limits. Later, the Opposition-Based Learning strategy helps to explore the search space, as well as to enhance the exploration ability for target search agents. This process improves the search capability, and eradicates premature convergence, though the large-scale test system holds both multiple fuel possibilities and value-point effects.

(2) The proposed OPIO algorithm has a unique adjustable parameter: jump rate J r . Parameter J r helps to determine the global optimal solution, by influencing the adjustable value, within the range of 0 to 0.4. This parameter promotes the OPIO algorithm, to be robust and adaptable in solving ELD problems with different constraints.

(3) To validate the efficiency of the proposed OPIO algorithm, we used several test cases, which varied according to three scales: small-scale (i.e., 13, 40); medium-scale (i.e., 140, 160); and large-scale (i.e., 320, 640) generation units. The results of the various test cases confirmed that the proposed technique is a better potential solution than the state-of-the-art metaheuristic algorithms in the literature. The OPIO algorithm provided better performance in the 320- and 640-unit generation systems. This shows that the formulated technique is a superior and reliable solution for large-scale ELD problems over multiple trials.

The rest of this work is categorized as follows: Section 2 delivers the mathematical formulation of the ELD problem, with objective functions and multiple constraints. The proposed Oppositional Pigeon-Inspired Optimizer algorithm is presented in detail in Section 3. In Section 4, the implementation of the OPIO algorithm, in solving the ELD problem, is presented. Section 5 provides proposed OPIO algorithm experimentation details, from six different test cases that varied from small-scale to large-scale systems, and the outcomes are compared with state-of-the-art metaheuristics algorithms. The conclusion of this work is presented in Section 6.

2. ELD Problem Formulation

The main motive of ELD is to reduce the overall power generation cost, by solving different disparity and parity constraints, to provide optimal generation among power producing units [32]. The objective function and the different constraints of the ELD problem are presented in this section.

2.1. Fitness Function

The fitness function of the ELD problem is to reduce the total power production cost by solving various constraints, and to gratify the load demand over some reasonable stage. A quadratic function is formulated, to approximate the fuel cost of the power-producing unit. The mathematical formulation of the power-generating unit is formulated as below:

 min ∑ j = 1 n F c (Ψ j)

(1)

Here F c denotes the fuel cost of the generator (in $/h); Ψ j denotes the output power of generator j (in MW); n stands for the overall power-generating unit in the power system.

In view of the value-point effects, ELD cost functions will have non-smooth points which provide inefficient results in practical generators. To process the practical generators, sinusoidal functions are included in the quadratic functions. The cost function, with value points of unit j , is represented as follows:

 F c = k j Ψ j 2 + l j Ψ j + m j + | a j × sin (b j × (Ψ j l o w − Ψ j)) |

(2)

Here, k j , l j and m j stand for the fuel cost coefficients of generator j ; a j and b j stand for the value-point loading coefficients of generator j ; Ψ j l o w is the low-level range power production of generator j .

The overall fuel cost function of n generator in real-time ELD is mathematically formulated as follows:

 min ∑ j = 1 n F ^ c (Ψ j) = ∑ j = 1 n [k j Ψ j 2 + l j Ψ j + m j + | a j × sin (b j × (Ψ j l o w − Ψ j)) |]

(3)

where F ^ c stands for the real-time fuel cost of the generator.

To attain an accurate and more appropriate solution for the ELD problem, both various fuel possibilities and value-point effects are added with the cost functions. Most thermal generating units utilize multiple fuel possibilities, using the load and suitability of the power generation units. The cost function of generating unit j , with various fuel possibilities (q) and value-point effects, is mathematically formulated and presented as follows:

 F c Ψ j = k j 1 Ψ j 2 + l j 1 Ψ j + m j 1 + a j 1 × sin b j 1 × Ψ j low − Ψ j i f Ψ j low ≤ Ψ j ≤ Ψ j 1 k j 2 Ψ j 2 + l j 2 Ψ j + m j 2 + a j 2 × sin b j 2 × Ψ j 2 − Ψ j i f Ψ j 1 ≤ Ψ j ≤ Ψ j 2 k j q Ψ j 2 + l j q Ψ j + m j q + a j q × sin b j q × Ψ j q − Ψ j low i f Ψ j q ≤ Ψ j ≤ Ψ j upper

(4)

2.2. Constraints of the ELD Problem

The fitness function in Section 2.1 is formulated with a set of constraints, which are given below.

2.2.1. Operating Unit Limit

The power-generating unit must relay within the lower and upper boundary limits:

 Ψ j l o w ≤ Ψ j ≤ Ψ j u p p e r j = 1 , 2 , … , n

(5)

where Ψ j u p p e r and Ψ j l o w denote the upper and lower boundary, respectively, of the output power of the generator j .

2.2.2. Power-Stabilizing Constraints

The overall generated power should be the same as the overall losses and overall load request of the units. This constraint is mathematically formulated as follows:

 ∑ j = 1 n Ψ j − Ψ D e m a n d − Ψ L o s s = 0

(6)

where Ψ L o s s and Ψ D e m a n d represent the overall power loss and power demand of the units. Based on Kron’s loss technique, the transmission loss is given as follows:

 Ψ L o s s = ∑ j = 1 n ∑ i = 1 n Ψ j β j i Ψ i + ∑ j = 1 n β 0 j Ψ j + β 00

(7)

where β j i represents the loss coefficient element j and i of the symmetric matrix β ; β 0 j denotes the loss coefficient vector of j symmetric matrix β ; and β 00 represents a fixed loss coefficient concerning standard operating situations.

2.2.3. Restricted Operating Regions (RORs)

Due to oscillation or steam value process in the shaft bearing, the restricted operating region is considered. To avoid these issues, choosing the best operating region will drastically increase the optimum economy of the generating units. The boundary constraints of the standard operating section of generator j are formulated as follows:

 Ψ j ∈ { Ψ j l o w ≤ Ψ j ≤ Ψ j , 1 l Ψ j , i − 1 l ≤ Ψ j ≤ Ψ j , i l Ψ j , n i l ≤ Ψ j ≤ Ψ j u p p e r i = 2 , 3 , … , n j , j = 1 , 2 , … , n

(8)

where l , u denotes the lower and upper limits of specific power generating units, and n j determines the number of restricted regions of generating unit j .

2.2.4. Ramp-Rate (RR) Constraint

In view of the lower and upper power production of the generator, the ramp-rate limit is considered. Each generating unit is controlled by the ramp-rate limit, which instructs the generator to function continually for the two nearest operating regions. This ramp-rate constraint is represented as follows:

 m a x (Ψ j l o w , Ψ j 0 − L S L j) ≤ Ψ j ≤ m i n (Ψ j u p p e r , Ψ j 0 + U S L j)

(9)

where L S L j and U S L j represent the lower and upper slope (or ramp) limit of the generating unit j , and Ψ j 0 denotes the current power generating unit j .

3. Preliminaries

In this section, we present three major mechanisms; firstly, the generic working process of the Pigeon-Inspired Optimizer is presented, secondly, the core concept of the Opposition-Based Learning technique is discussed; and, finally, the proposed methodology, with its working process, is presented.

3.1. Overview of Pigeon-Inspired Optimizer

The Pigeon-Inspired Optimizer (PIO) belongs to the family of swarm intelligence algorithms that were proposed by Haibin Duan and Peixin Qiao (2014) [39]. The PIO algorithm mimics the homing behaviors of pigeons. Most researchers apply SI algorithms to solve their domain-related NP-hard problems, in which search space is vast. SI algorithms are inspired by the social behavior of the swarm, with intellectual learning to determine high-quality solutions using mathematical formulations. The mathematical formulation of the swarm includes the position and velocity of the swarm iteration by iterations.

Pigeons have the ability to explore for food over the course of long intervals. In addition, pigeons exhibit intellectual homing behavior: for example, they carried messages during the First and Second World Wars. The PIO algorithm works on the basis of two unique operators, viz., map and landmark operators. This algorithm provides good optimum performance and higher merge speed than the other state-of-the-art metaheuristic algorithms like Ant Colony Optimization, Particle Swarm Optimization, Artificial Bee Colony Optimization and Differential Evolution algorithms.

3.1.1. Map and Compass Operator

Pigeons have a natural ability to perceive the orbital meadow, with the aid of a magnetic function that enables them to map. They utilize the altitude of the sun as a compass to fine-tune their current directions. Generally, pigeons depend less on the sun and on magnetic particles as they near their destinations. The map and compass operator can be mathematically formulated as follows:

 V j t + 1 = V j t × e − ρ t + r a n d × (X g − X j t)

(10)

 X j t + 1 = X j t + V j t + 1

(11)

where V j t and X j t represent the velocity and position of the j individuals in the t iterations; ρ denotes the map and compass factor; r a n d determines the uniform random variable within [0, 1]; X g denotes the global best individual; and X j t + 1 and V j t + 1 represent the new position and velocity of the j individual in the next t iteration.

3.1.2. Landmark Operator

A pigeon relies on natural landmarks once it has reached its destination. However, if the pigeon is far away from its destination, then it relies on the adjacent pigeons to adjust its position. In this algorithm, half of the pigeon population is allowed to adjust position, with the aid of the centered pigeons, while the pigeons comprising the other half of the population adjust their position in accordance with the desirable destination position. Most pigeons will not be familiar with their landmark in this view, so they will follow the top-ranked pigeons to determine their desired destination. The half-number of pigeons adjust their position with the following mathematical formulations:

 N P t + 1 = N p t 2

(12)

 X c t + 1 = ∑ X j t + 1 × F i t (X j t + 1) N p ∑ F i t (X j t + 1)

(13)

where N p t represents the number of pigeons or population size in the current iteration t ; and F i t (X c t + 1) denotes the fitness of the centered pigeons in the t + 1 iteration. The new pigeon position is represented as:

 X j t + 1 = X j t + r a n d × (X c t + 1 − X j t)

(14)

The generic flow of the PIO algorithm is represented in Algorithm 1. In this algorithm, the map and compass operator is given in the initial while loop, and another loop is used to access their route and its correction in position.

	Algorithm1: Standard Pigeon-Inspired Optimizer (PIO)

	Input: Number of Population Np problem space D, Map and compass factor ρ, Number of generations ng1, ng2 where ng1 > ng2.

	Output:Xg–Global best solution

	1: Randomly generate the solution Xj

	2: Compute the fitness of solutions (X1, X2, …, XNp)

	3: Determine the minimal fitness solution as Xg.

	4: while (ng ≥ 1) do.

	5:   Determine the velocity and position for each solution by Equations (10) and (11).

	6:   Compute fitness values of solutions (X1, X2, …, XNp)

	7: Update global best solution Xg.

	8: end while

	9: while (Np ≥ 1) do

	10:   Sort solutions by their fitness.

	11:   Np = Np/2

	12:   Compute the desired destination by Equation (13).

	13:   Update the position of the solution by Equation (14).

	14:   Update global best solution Xg

	15: end while

3.2. Opposition-Based Learning Technique

The Opposition-Based Learning technique (OBL) was introduced by Tizhoosh [40] to enhance the convergence speed of traditional metaheuristic algorithms. This method utilizes the valuation of a current population against its opposite population, to determine the better solution for a specific problem. The OBL method has been utilized in different metaheuristic algorithms, to boost convergence speed [41,42]. The mathematical formulation of the OBL is defined as follows:

Let μ (μ ∈ [p , q]) be an actual integer. The contradictory integer μ 0 is formulated as:

 μ 0 = p + q − μ 0

(15)

For d –dimensional search space, the contradictory integer μ 0 is defined as:

 μ j 0 = p j + q j − μ j

(16)

where μ 1 , μ 2 , … , μ d is a point in d-dimensional search space, i.e., μ i ∈ [p j , q j] ; j = { 1 , 2 , 3 , … , d } , and d represents the number of decision variables.

The Oppositional-Based Learning technique is generally used in two stages: firstly, in the initialization procedure; and secondly, in generating an opposite solution, using the jumping rate J r . The proposed OBL algorithm is given in Algorithm 2.

	Algorithm2: Oppositional-Based Learning Algorithm

	1: Initially the solutions are randomly initialized within the upper and lower boundary regions.

	2: Determine the opposite solutions:

	  2.1: for i = 1:N_p

	  2.2: for j = 1:d

	  2.3:  μ_(i,j)^0 = p_j + q_j − μ_(i,j)

	  2.4: end for

	  2.5: end for

	3: Sort the current solutions and opposite solutions in ascending order.

	4: Choose the N_p the number of best candidate solutions.

	5: Update the control parameters.

	6: Generate the opposite solutions from current solutions using jumping rate J_r:

	  6.1: for j = 1:N_p

	  6.2:   for I = 1:d

	  6.3:    if J_r > rand

	  6.4:     opp(j,i) = min(i) + max(i) − P(j,i);

	  6.5:    else

	  6.6:     opp(j,i) = P(j,i);

	  6.7:    end

	  6.8:   end for

	  6.9: end for

	7: Repeat steps 3 to 6 until the termination criterion is met.

4. Oppositional Pigeon-Inspired Optimizer Algorithm (Proposed)

The proposed Oppositional Pigeon-Inspired Optimizer algorithm is discussed in this section. The common search strategy of the proposed OPIO algorithm is like the PIO. However, the proposed OPIO algorithm utilizes a unique methodology to explore the search space of the pigeon, to discover the position of its hiding location. Moreover, the modified method provides better convergence in the pigeon population, which helps to achieve the optimal solution. As part of enhancement by the proposed method, in every iteration, the best pigeon is selected as the target. The selected pigeon position will be updated with the Oppositional-Based Learning, to enhance the convergence rate. However, selecting an arbitrary pigeon, from among the population, may result in a bad-quality landmark solution, with a large value for the fitness function (in the minimization problem), which leads to an unsuitable end point to move. In addition, selecting a random pigeon for the exploration phase will tend towards a bad destination, which minimizes the convergence rate. To select the best solution among the population at each iteration is a challenging task.

In this work, a priority-based election mechanism was introduced. This mechanism could be utilized for the minimization problem at each iteration for the pigeon i , so that ψ of the best pigeons in the solution set were elected. The benefit of this election mechanism was to elect the target pigeon among the list of the best pigeons in the stack. By this process, the pigeons could perform better in improvising their positions, by following the better target pigeons, and this resulted in a better convergence rate for the algorithm. Nevertheless, electing the value of ψ was significant: electing a very trivial value of ψ among the pigeons i could lead to being stuck in the local optima. In addition, selecting a large value for ψ could cause the bad target pigeon to be tricked. To eradicate these issues, in the initial iterations ψ started from a large value, for better diversification, and its number was reduced according to Equation (17); over the course of the iterations, its tendency towards the local optimum resulted in the ψ having a small value:

 ψ t = r o u n d (ψ m a x − ψ m a x − ψ m i n N g × t)

(17)

where, ψ t stood for the value for selecting the best pigeon in iteration t , and ψ m a x and ψ m i n stood for the maximum and minimum values of ψ .

4.1. Constraint-Handling Technique

The ELD problem is complicated to solve, when considering the constraints. In past decades, various techniques have been adopted, to handle the constraints. The penalty function is considered to one of the most common constraint-handling techniques: it deals with the constraint problem by including some additional value to the objective function in (4). This function has been broadly utilized by various researchers, because of its simplicity and efficiency. The objective function is the minimization of the following representation:

 F C N = F c + φ | ∑ j = 1 n Ψ j − Ψ D e m a n d − Ψ L o s s |

(18)

where F C N stands for constraint-based objective function, and φ stands for the penalty coefficient of a real integer. If constraint (6) is other than zero, then the value of the second part in Equation (17) will be other than zero too, multiplied by the penalty value φ , and, finally, will be added to the fuel cost F c . In other words, if Equation (6) does not meet the constraint, then this implies that the solution has a large objective function, and is likely to be rejected. On the other hand, if the solution meets the constraint (6), this implies that the solution holds a small objective function value, and is likely to be accepted. If the φ value is fixed with a large value, then the performance of the algorithm will be reduced, and this will lead to premature convergence. In addition, fixing the small value for φ fails to meet the inequality constraints.

4.2. Implementation of the OPIO Algorithm for the ELD Problem

In this section, the strategies for applying the OPIO algorithm, to solve the ELD problem, are examined. The main objective of the ELD optimization problem is to reduce the overall power generation cost. In the ELD problem, the total power generating unit (n) is proportional to the total decision variable of the optimization problem (d). Each position of the pigeon is represented as each anticipated power output of the generating units. In general, the ELD problem consists of some impartiality and disparity constraints, as discussed in Section 2.2. Each solution in the population should satisfy the constraints. For the smooth process of constraint handling, the value of φ is fixed as 100 in Equation (17) for the entire simulation, which attains an adequate performance with the power equality constraint.

The overall computational procedures of the proposed OPIO algorithm are described in detail as follows. In addition, the flowchart of the proposed OPIO algorithm is represented in Figure 1, and the proposed OPIO algorithm for solving the ELD problem is represented in Algorithm 3.

	Step 1:

	
Define the initial parameters with the characteristics of the generation units: φ ; number of pigeons; maximum generations (n g); other data, such as J r , ρ .

	Step 2:

	
Initially, the arbitrary values for all generating units within the lower and upper operating boundary are generated using (5), except for the last generating unit. The computation of the last unit of power generation is calculated using (6), and it is validated, to ensure whether it satisfies the inequality constraints (5) or not. If the solution satisfies the constraints, then the solution is sustained; otherwise, it is abandoned. The pigeon position X, concerning the generating units, is initialized as follows:

 X = X 1 ⋮ X i ⋮ X G = X 1 , 1 ⋯ X 1 , b ⋯ X 1 , d ⋮ ⋱ ⋮ ⋱ ⋮ X i , 1 ⋯ X i , b ⋯ X i , d ⋮ ⋱ ⋮ ⋱ ⋮ X N p , 1 ⋯ X N p , b ⋯ X N p , d i = 2 , … N p ; b = 1 , 2 , … , d

(19)

where the component X i , d is the power outcome of the b th unit in individual X i . For the OPIO algorithm, there is only one adjustable parameter: the jumping rate J r , which is fixed within the range of 0 to 0.4 for all test cases used in the experimentation.

	Step 3:

	
For each pigeon in the population, the power generating unit must satisfy the ramp-rate boundary, and not relay in the restricted operating zones. If the solution does not meet the constraints, then power outputs should be altered near to the boundary of the feasible solution.

After processing the initialization, the main procedure of the OPIO algorithm process is as follows:

	Step 4:

	
Determine the velocity of the pigeon, using Equation (10), and update the position of the pigeon, using Equation (14). If the updated position of the pigeon does not satisfy the constraints, then alter the pigeon’s position, as shown in Step 3.

	Step 5:

	
Compute the ψ factor, as in Equation (17).

	Step 6:

	
Choose the ψ of the best solutions from the population, and update the position for the selected pigeon, using the OBL technique (Algorithm 2).

	Step 7:

	
Check this step for the pigeon i :

	
The output power of the generating units must not reside in the RORs (see (8)) or contravene the operating unit limit (see (5)).

	
The lower and upper boundary rates of each of the generating units, from the preliminary state, should be in the satisfactory ranges, as given in (9). If the preliminary output power of the generating units is not specified, then the preliminary power of all power generating units should be within the satisfactory ranges.

	
If the RORs and ramp-rate limits are contravened, adjust the power outputs near to the feasible solution.

	Step 8:

	
Compute the overall power loss of the transmission lines for the pigeon i , as in (6).

	Step 9:

	
Compute the quality of the pigeon i , by interleaving its power outputs in the fitness function, as in (17).

	Step 10:

	
Repeat steps 4–9, until the stop criterion is met.

	Step 11:

	
The ELD solution is the best solution in the last iteration.

	Algorithm3: Proposed OPIO algorithm for solving ELD

	1: Generate the initial population.

	2: Determine the preliminary parameters.

	3: Arbitrarily initialize the position of the pigeon in the search boundary space.

	4: Check the RR and RORs constraints.

	5: While (ng ≥ 1) do

	6:   Determine the velocity and position of the pigeon.

	7:   Determine the φ factor.

	8:   Select φ of the best pigeons from the population.

	9:   Apply OBL technique, using Algorithm 2.

	10:   If (fit (Opp) < fit (X_(i,t))) then

	11:    Replace the Opp solution

	12:  Else

	13:   do nothing

	14:  End if

	15:   Check the feasibility of the new position of the pigeons.

	16:   Calculate the transmission loss.

	17:   Evaluate the fitness of the new position of the pigeons.

	18:   Update the global best solution.

	19: End while

	20: Output: Visualize the global best solution.

5. Results and Discussion

The proposed OPIO algorithm was applied to solve ELD issues. Three various test systems with three different fuel possibilities and non-linearities, such as ramp-rate ranges, value-point consequences and interdicted working region, were studied, to assess the execution of the formulated OPIO method. The formulated OPIO technique was written in MATLAB R2016a, implemented on a 2.6 GHz Intel I5 PC. The execution of the formulated OPIO algorithm was justified by utilizing three different test systems: small- (13-unit, 40-unit), medium- (140-unit, 160-unit) and large-scale (320-unit and 640-unit). The acquired outcomes from the formulated OPIO technique were differentiated to various state-of-the-art metaheuristic techniques reported in the literature. The different test systems, with the number of generating units and their constraints, are outlined below:

	(i)

	
Test Case 1: Small-Scale Test Systems (13-Unit and 40-unit)

	a.

	
13-unit test case: in this test case, a 13-unit generator system, with constraints such as different fuel costs and value-point effects, was considered. The power load demand (P D) of the system was fixed at P D = 2520 MW [7,43];

	b.

	
40-unit test case: this test case held a 40-unit generator system, with value-point effects considered, and the power load demand of the system was fixed at P D = 10,500 MW [7,43].

	(ii)

	
Test Case 2: Medium-Scale Test Systems (140-unit and 160-unit)

	a.

	
140-unit test case: in this test case, a 140-unit generator system, with constraints such as value-point effects, ramp-rate limits, and prohibited accomplishment unit, was considered. The power load demand (P D) of the system was fixed at P D = 49,342 MW [44];

	b.

	
160-unit test case: this test case held a 160-unit generator system, with value-point effects considered. The power load demand of the system was fixed at P D = 43,200 MW [45].

	(iii)

	
Test Case 3: Large-Scale Test Systems (320-unit and 640-unit)

	a.

	
320-unit test case: a large-scale system with a 320-unit generator system, with different fuel options and value-point loading effects, was considered here. The power load demand of the system was fixed at P D = 86,400 MW. The input data of the 10-unit system were duplicated 32 times in this system [46].

	b.

	
640-unit test case: a test case with a 640-unit generator system, with multiple fuel options and value-point load effects, was considered here. The load demand of the system was increased by up to P D = 1,72,800 MW. The input data of the 10-unit system were replicated 64 times in this system [30].

The convergence of metaheuristic algorithms mainly relies on the possibility of a proper value. The proposed technique may deliver a different solution when the choice of insert value is not appropriate. To select the proper input parameters, repeated simulation is required. For the OPIO algorithm, after a repeated number of runs, the lower and upper jumping rates were fixed within the range of 0 to 0.4. For effective simulation, we considered a population size of 50, and 100 was selected as the maximum number of iterations for the test systems.

5.1. Test Case 1a: 13-Unit

In this instance, the formulated OPIO technique was tested on a small-scale 13-unit system, which held uneven fuel cost and value-point effects. The dataset of the fuel cost and the limit utility of numerous vigorous energy providers were taken from [43], and the load order was fixed as 2520 MW. To examine the execution of the proposed OPIO technique and the conventional PIO algorithm, the assumed outcomes were differentiated from the various metaheuristic algorithms, viz., Oppositional Grey Wolf Optimization (OGWO) [32], Improved Particle Swarm Optimization (IPSO) [29], One Rank Cuckoo Search Algorithm (ORCSA) [36], Crisscross Optimization Algorithm (COA) [30], Real-Coded Genetic Algorithm (RCGA) [37], Improved Genetic Algorithm (IGA) [38] and Pigeon-Inspired Optimization (PIO) [39].

Table 1 provides the comparative results of the OPIO and PIO algorithms for active power generators along with other techniques. As shown in Table 1, the solution provided by the OPIO algorithm reached a fuel cost of 24512.45$/hr, which was less than all the compared algorithms; the outcomes of the formulated techniques conveyed that it was superior in finding the best or near-best solution. To ensure the efficacy and effectiveness of the technique, the simulation was carried out over 100 runs, on both the proposed OPIO algorithm and the conventional PIO algorithm, and its result is given in Table 2. As shown in Table 2, the OPIO produced a better solution for 97 runs, which was far better than all compared algorithms. The statistical outcomes conveyed that the formulated OPIO algorithm delivered better results compared with various algorithms. The convergence of the minimization fuel-cost function over the iteration cycles of the proposed OPIO algorithm and the standard PIO algorithm were noted, and are displayed in Figure 2. Figure 2 shows that the proposed algorithm converged faster towards the optimal solution that did not have further changes, which validated the active constancy of the formulated technique.

5.2. Test Case 1b: 40-Unit

To access the feasibility of the proposed OPIO algorithm, another small-scale test case, of a 40-unit power generation system along with value-point belongings, was used. The benchmark value of the 40-unit power system was approached from [43], and its load demand was fixed as 10,500 MW. The outputs of the power generation and fuel cost of various algorithms like OGWO, IPSO, IGA, RCGA, COA, ORCSA, PIO and OPIO are shown in Table 3: the best cost of the PIO and OPIO algorithms reached 136,588.57 $/h and 136,447.87$/h, respectively; it is also notable that the OPIO algorithm provided the best solution among the compared techniques, by achieving the load demand and other constraints.

The comparative outcomes of the overall fuel cost, success rate, standard deviation and execution time acquired by the OPIO algorithm, along with the various techniques, are given in Table 4. Based on Table 4, the OPIO algorithm achieved the best solution 96 times out of 100 trials. In addition, the mean costs of the OPIO and IPSO algorithms were equal to 136,441.87$/h and 136,542.87$/h, respectively. This clearly shows that the statistical outcomes of the OPIO algorithm were more stable than those of the OGWO, IPSO, COA, RCGA, ORCSA and PIO algorithms. In addition, the time required to achieve the minimal fuel cost for the proposed algorithm was 10.14/sec, which was minimal in relation to other algorithms. The convergence graph of the total fuel cost of the proposed OPIO algorithm and the conventional PIO algorithm is given in Figure 3. Based on Figure 3, it can be seen that the formulated OPIO procedure provides the best active rate compared to the PIO algorithm.

5.3. Test Case 2a: 140-Unit

In this instance, the formulated PIO algorithm was tested on the medium-scale of a 140-unit power generation system, and the load order was taken as 49,342 MW [46]. In this test case, non-smooth constraints, such as value-point consequence, interdicted executing section and ramp-limits were included. The execution was repeated for 100 trials, to confirm the dominance of the proposed methods with the obtained results of the OGWO, IPSO, COA, RCGA, ORCSA and PIO algorithms, which are presented in Table 5. As shown in Table 5, the OPIO reached 1,559,498.78$/h, which was the minimum, compared to the other algorithms. In other words, the obtained outcomes clearly showed that the OPIO algorithm achieved a low fuel-cost value, compared to other methods.

Moreover, the statistical outcomes of the formulated OPIO algorithm, and various conventional procedures, are given in Table 6. Based on Table 6, the formulated OPIO algorithm provided the best outcomes, in terms of best, worst and mean cost, and less execution time compared to the various procedures. However, the best and mean costs of the OPIO and COA algorithms were equal to 1,559,498.78 $/h, 1,559,499.21 $/h, 1,559,521.36 $/h and 1,559,521.88 $/h, respectively. Even though the COA algorithm competed with the OPIO algorithm, the OPIO algorithm was quite efficient in achieving the best outcome in minimal iterations, compared to the various procedures. The convergence of the formulated OPIO algorithm and the conventional PIO methods with iteration cycles is displayed in fig 4. From Figure 4, it can be seen that the OPIO technique attained the best solution within 20 iterations; this confirms that the OPIO algorithm had better convergence, because of its magnificent diversification and intensification abilities.

5.4. Test Case 2b: 160-Unit

To access the feasibility of the formulated OPIO technique, another medium-scale test case of a 160-unit test system, along with non-convex value-point properties, was used. As to validation, the viability and efficacy of the formulated technique transmission loss was unnoticeable. For this medium-scale unit, a replicated 10 different fuel-option values were taken from [41], the power load was increased by 16, and the power load was fixed as 43,200 MW. Table 7 provides the attained better cost of the proposed OPIO algorithm, with other algorithms, by satisfying the constraints. Based on Table 7, the OPIO achieved 9625.15 $/h, which was the best result, compared to the other algorithms. This confirms that the least total fuel cost was for the 160-unit generation system.

The statistical results from over 100 trials of the proposed algorithm, compared to the OGWO, IPSO, IGA, RCGA, COA, ORCSA and PIO algorithms, are shown in Table 8: as can be seen, the OPIO algorithm performance—for example, best (9625.44 $/h), mean (9647.62 $/h) and worst (9649.62 $/h)—was relatively acceptable, whereas the other algorithms deteriorated, due to an increase in the number of generators and traps in the locally optimal solutions. As per the acquired outcomes, we observed that the formulated OPIO technique was more vigorous and systematically structured, compared to the conventional and various algorithms. The active loop of formulated technique and conventional algorithm with iteration cycle is displayed in Figure 5. Figure 5 shows that the formulated procedure provided feasible convergence within 25 iterations, though there was an increase in the number of generation units compared to the standard PIO algorithm.

5.5. Test Case 3a: 320-Unit

In this instance, a wide scale 320-unit generation system, that included a value-point effect and three various fuel possibilities, was used to evaluate the execution of the formulated OPIO technique. For this 320-unit system, 32 times replicated, 10 different fuel options were taken from [41], and the power load was considered as 86,400 MW. Simulation results were carried out for 1000 iterations, for the 320-unit generation system, and its comparative results are illustrated in Table 9. Table 9 shows that the OPIO algorithm provided 19,968.95$/h, which was the minimal production cost compared to different state-of-the-art algorithms. On the other hand, the test times of the COA and OPIO algorithms were nearly equal, at 412.95/sec and 410.65/sec, respectively. However, the OPIO algorithm showed a unique performance, in attaining the best fuel cost for 96 runs out of 100 trials. This proves that the formulated OPIO algorithm was vigorous, and deliberately well-organized, compared to the PIO algorithm and the different approaches presented in this study. To ensure the efficacy of the formulated OPIO technique, the convergence over different iterations is shown in Figure 6. From Figure 6, it can be seen that the execution of the OPIO technique provided the best convergence over the standard PIO algorithm.

5.6. Test Case 3b: 640-Unit

To ensure the efficacy of the formulated OPIO method, we tested it on another large-scale generation system, a 640-unit system with value-point properties and three various fuel possibilities. This 640-unit system included the data of 10 multiple-fuel systems from [41], which were duplicated 64 times, and the load demand was fixed at 172,800 MW. The simulation results of the 640-unit system were iterated over 1000 iterations, and its comparative results are shown in Table 10, where it can be seen that the OPIO algorithm achieved minimum fuel cost related to the various state-of-the-art techniques. The statistical results achieved, by performing 100 trials of the different algorithms and their comparative outcomes, are illustrated in Table 10, which shows that the OPIO algorithm reached 39,963.78 $/h by balancing the local search and global search, as well as converging faster towards the optimal solution. Moreover, the OPIO algorithm achieved the best solution for almost 96 runs out of 100 trials, which clearly demonstrates that the proposed algorithm can sustain the best position for various runs. The convergence results of the proposed OPIO algorithm and the PIO algorithm are displayed in Figure 7. In Figure 7, the formulated OPIO technique provided better convergence, which demonstrates its superiority over the standard PIO algorithm and other state-of-the-art techniques. The overall experimentation outcomes convey that the proposed OPIO algorithm achieved better efficiency, along with a trade-off between exploration and exploitation.

5.7. The Result Analysis of Wilcoxon Signed-Rank Test

In this work, a non-parametric test—namely, the Wilcoxon signed-rank test—was utilized, to perform the statistical comparison of the proposed algorithm with the compared algorithms. The best solutions were attained by each technique for the corresponding test cases during 30 independent runs. In this study, the Wilcoxon signed-rank test was performed with a significance level α = 0.05 . The results, analyzed by the Wilcoxon signed-rank test, are presented in Table 11 for test cases of 13, 40, 140, 160, 320 and 640-generating units. In Table 11, the significance differences of the proposed algorithm and compared algorithms are marked with the value of H (i.e., H with a value of 1 specifies that there was a significance difference; otherwise, the H value is 0, if there was no significance difference). In addition, the symbol S with “+”, “=” and “_” denotes that the proposed technique was superior, equal or inferior, respectively, to the compared algorithms. Furthermore, we used four compared algorithms generically, to determine the significance difference with the proposed algorithm. It is clear from Table 11 that the proposed OPIO algorithm provided results superior to those of the COA, ORCSA and PIO algorithms, and equal to the OGWO algorithm for the test case 13-unit system. For the test case 40-unit system, the OPIO algorithm provided results superior to those of the COA, ORCSA and PIO algorithms, but not to the OGWO algorithm. Finally, w/t/l specified the win/tie/loss count by Wilcoxon signed-rank test for the six test case generating unit systems. Thus, from the above discussion, it is clear that the proposed OPIO algorithm attained better solutions, and had better exploring capability, compared to the existing algorithms.

6. Conclusions and Future Work

In this article, we have provided a novel metaheuristic algorithm named the Oppositional Pigeon-Inspired Optimizer (OPIO), which is formulated to deal with the ELD problem, with value-point consequences and numerous fuel possibilities. From the literature, it can be seen that the standard PIO algorithm is considered a promising optimization technique, which attracts the researcher by its superiority in addressing various optimization problems. However, it suffers in regard to global search ability and premature convergence when it is applied to large-scale optimization problems. Because of these issues, we merged Opposition-Based Learning into a standard PIO algorithm, which helped to eradicate early convergence, aided knowledge discovery and enhanced comprehensive searchability. The formulated OPIO algorithm was applied to non-convex ELD problems with different constraints, such as multiple fuel possibilities, value-point consequence, interdicted zones and ramp-rate. The experimentation was carried out on three different ELD test cases, viz., small-scale (13-unit and 40-unit), medium-scale (140-unit and 160-unit) and large-scale (320-unit and 640-unit) test cases. The exploratory outcomes showed the superiority of the formulated OPIO technique—in relation to higher potential solutions, better convergence rate, robustness and better computational efficiency—over the PIO algorithm and other state-of-the-art metaheuristic algorithms. In future, this work could be used in other fields of optimization, owing to the technique’s high potential for dealing with the problematic optimization issues of many practical power systems. In addition, the outcome of the results can be compared with potential algorithms such as SEPSO [16], SA-QSFS [42] and QANA [47].

Author Contributions

Conceptualization, R.R.; methodology, R.R. and D.K.; validation, S.S.A. and M.R.; formal analysis, A.D.; writing—original draft preparation, R.R.; writing—review and editing, M.R. and S.M.; supervision, R.R. and D.K; funding acquisition, S.S.A. All authors have read and agreed to the published version of the manuscript.

Funding

This study was funded by the Deanship of Scientific Research, Taif University Researchers Supporting Project number (TURSP-2020/215), Taif University, Taif, Saudi Arabia.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data in this research paper will be shared upon request to the corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Balamurugan, R. Application of Shuffled Frog Leaping Algorithm for Economic Dispatch with Multiple Fuel Options. In Proceedings of the 2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM), Chennai, India, 13–15 December 2012; pp. 191–197. [Google Scholar] [CrossRef]

	

Aravindhababu, P.; Nayar, K.R. Economic dispatch based on optimal lambda using radial basis function network. Int. J. Electr. Power Energy Syst. 2002, 24, 551–556. [Google Scholar] [CrossRef]

	

Wood, A.J.; Wollenberg, B.F.; Sheblé, G.B. Power Generation, Operation, and Control; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]

	

Liang, Z.X.; Glover, J.D. A zoom feature for a dynamic programming solution to economic dispatch including transmission losses. IEEE Trans. Power Syst. 1992, 7, 544–550. [Google Scholar] [CrossRef]

	

Victoire, T.A.A.; Jeyakumar, A.E. Hybrid PSO-SQP for economic dispatch with valve-point effect. Electr. Power Syst. Res. 2004, 71, 51–59. [Google Scholar] [CrossRef]

	

Chiang, C.L. Genetic-based algorithm for power economic load dispatch. IEE Proc. Gener. Trans. Distrib. 2007, 1, 261–269. [Google Scholar] [CrossRef]

	

Sinha, N.; Chakrabarti, R.; Chattopadhyay, P.K. Evolutionary programming techniques for economic load dispatch. IEEE Evol. Comput. 2003, 7, 83–94. [Google Scholar] [CrossRef]

	

Tan, Y.; Li, C.; Cao, Y.; Lee, K.Y.; Li, L.; Tang, S.; Zhou, L. Improved group search optimization method for optimal power flow problem considering valve-point loading effects. Neurocomputing 2015, 148, 229–239. [Google Scholar] [CrossRef]

	

Aydin, D.; Ozyon, S. Solution to non-convex economic dispatch problem with valve point effects by incremental artificial bee colony with local search. Appl. Soft Comput. 2013, 13, 2456–2466. [Google Scholar] [CrossRef]

	

Jayabarathi, T.; Raghunathan, T.; Adarsh, B.R. Ponnuthurai Nagaratnam Suganthan. Economic dispatch using hybrid grey wolf optimizer. Energy 2016, 111, 630–641. [Google Scholar] [CrossRef]

	

Chaturvedi, K.T.; Pandit, M.; Srivastava, L. Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch. IEEE Trans. Power Syst. 2008, 23, 1079–1087. [Google Scholar] [CrossRef]

	

Alsumait, J.S.; Sykulski, J.K.; Al-Othman, A.K. A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems. Appl. Energy 2010, 87, 1773–1781. [Google Scholar] [CrossRef]

	

Roy, P.; Roy, P.; Chakrabarti, A. Modified shuffled frog leaping algorithm with genetic algorithm crossover for solving economic load dispatch problem with valve-point effect. Appl. Soft Comput. 2013, 13, 4244–4252. [Google Scholar] [CrossRef]

	

Yang, X.; Hosseini, S.S.S.; Gandomi, A.H. Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl. Soft Comput. 2012, 12, 1180–1186. [Google Scholar] [CrossRef]

	

Wang, Y.; Zhou, J.; Lu, Y.; Qin, H.; Wang, Y. Chaotic self-adaptive particle swarm optimization algorithm for dynamic economic dispatch problem with valvepoint effects. Expert Syst. Appl. 2011, 38, 14231–14237. [Google Scholar]

	

Faisal, A.N.; Cao, M.; Shen, L.; Fu, R.; Šumarac, D. The combined social engineering particle swarm optimization for real-world engineering problems: A case study of model-based structural health monitoring. Appl. Soft Comput. 2022, 123, 108919. [Google Scholar]

	

Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization. Comput. Methods Appl. Mech. Eng. 2022, 392, 114616. [Google Scholar] [CrossRef]

	

Nadimi-Shahraki, M.; Ali Fatahi, H.Z.; Abualigah, L. An improved moth-flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problems. Entropy 2021, 23, 1637. [Google Scholar] [CrossRef]

	

Nadimi-Shahraki, M.; Zamani, H. DMDE: Diversity-maintained multi-trial vector differential evolution algorithm for non-decomposition large-scale global optimization. Expert Syst. Appl. 2022, 198, 116895. [Google Scholar] [CrossRef]

	

Balamurugan, R.; Subramanian, S. Hybrid integer coded differential evolution dynamic programming approach for economic load dispatch with multiple fuel options. Energy Convers. Manag. 2008, 49, 608–614. [Google Scholar] [CrossRef]

	

Cai, J.; Mab, X.; Li, Q.; Li, L.; Peng, H. A multi-objective chaotic ant swarm optimization for environmental/economic dispatch. Int. J. Electr. Power Energy Syst. 2010, 32, 337–344. [Google Scholar] [CrossRef]

	

Ghoshal, S.P.; Chatterjee, A.; Mukherjee, V. Bio-inspired fuzzy logic based tuning of power system stabilizer. Expert Syst. Appl. 2009, 36, 9281–9292. [Google Scholar] [CrossRef]

	

Pothiya, S.; Ngamroo, I.; Kongprawechnon, W. Ant colony optimisation for economic dispatch problem with non-smooth cost functions. Int. J. Electr. Power Energy Syst. 2010, 32, 478–487. [Google Scholar] [CrossRef]

	

Roy, P.K.; Ghoshal, S.P.; Thakur, S.S. Biogeography-based optimization for economic load dispatch problems. Elect. Power Compon. Syst. 2010, 38, 166–181. [Google Scholar] [CrossRef]

	

Mandal, B.; Roy, P.K.; Mandal, S. Economic load dispatch using krill herd algorithm. Int. J. Electr. Power Energy Syst. 2014, 57, 1–10. [Google Scholar] [CrossRef]

	

Lee, K.Y.; Sode-Yome, A.; Park, J.H. Adaptive Hopfield neural networks for economic load dispatch. IEEE Trans. Power Syst. 1998, 13, 519–525. [Google Scholar] [CrossRef]

	

Vo, D.N.; Ongsakul, W. Economic dispatch with multiple fuel types by enhanced augmented Lagrange Hopfield network. Appl. Energy 2012, 91, 281–289. [Google Scholar] [CrossRef]

	

Vo, N.D.; Ongsakul, W.; Polprasert, J. The augmented Lagrange Hopfield network for economic dispatch with multiple fuel options. Math. Comput. Model. 2013, 57, 30–39. [Google Scholar]

	

Barisal, A.K. Dynamic search space squeezing strategy based intelligent algorithm solutions to economic dispatch with multiple fuels. Int. J. Electr. Power Energy Syst. 2013, 45, 50–59. [Google Scholar] [CrossRef]

	

Meng, A.; Li, J.; Yin, H. An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects. Energy 2016, 113, 1147–1161. [Google Scholar] [CrossRef]

	

Sayah, S.; Hamouda, A. A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic dispatch problems. Appl. Soft Comput. 2013, 13, 1608–1619. [Google Scholar] [CrossRef]

	

Pradhan, M.; Roy, P.K.; Pal, T. Oppositional based grey wolf optimization algorithm for economic dispatch problem of power system. Ain Shams Eng. J. 2017, 9, 2015–2025. [Google Scholar] [CrossRef]

	

Wang, Y.; Li, B.; Weise, T. Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of power systems. Inf. Sci. 2010, 180, 2405–2420. [Google Scholar] [CrossRef]

	

Bhattacharjee, K.; Bhattacharya, A.; Dey, S.H.N. Chemical reaction optimization for different economic dispatch problems. IET Gener. Transm. Dis. 2014, 8, 530–541. [Google Scholar] [CrossRef]

	

Singh, N.J.; Dhillon, J.S.; Kothari, D.P. Synergic predator-prey optimization for economic thermal power dispatch problem. Appl. Soft Comput. 2016, 43, 298–311. [Google Scholar] [CrossRef]

	

Thang, T.N.; Dieu, N.V. The application of one rank cuckoo search algorithm for solving economic load dispatch problems. Appl. Soft Comput. 2015, 37, 763–773. [Google Scholar]

	

Amjady, N.; Nasiri-Rad, H. Nonconvex economic dispatch with AC constraints by a new real coded genetic algorithm. IEEE Trans. Power Syst. 2009, 24, 1489–1502. [Google Scholar] [CrossRef]

	

Chiang, C.-L. Improved Genetic Algorithm for Power Economic Dispatch of Units with Valve-Point Effects and Multiple Fuels. IEEE Trans. Power Syst. 2005, 20, 4. [Google Scholar] [CrossRef]

	

Duan, H.; Qiao, P. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cybern. 2014, 7, 24–37. [Google Scholar] [CrossRef]

	

Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International Conference on Computational Intelligence for Modeling, Control and Automation, Vienna, Austria, 28–30 November 2005; pp. 695–701. [Google Scholar]

	

Roy, P.K.; Paul, C.; Sultana, S. Oppositional teaching learning-based optimization approach for combined heat and power dispatch. Int. J. Elect. Power Energy Syst. 2014, 57, 392–403. [Google Scholar] [CrossRef]

	

Alkayem, N.F.; Shen, L.; Asteris, P.G.; Sokol, M.; Xin, Z.; Cao, M. A new self-adaptive quasi-oppositional stochastic fractal search for the inverse problem of structural damage assessment. Alex. Eng. J. 2022, 61, 1922–1936. [Google Scholar] [CrossRef]

	

Coelho, L.D.S.; Mariani, V.C. Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve point effect. IEEE Trans. Power Syst. 2006, 21, 989–996. [Google Scholar]

	

Zou, D.; Li, S.; Wang, G.G.; Li, Z.; Ouyang, H. An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects. Appl. Energy 2016, 181, 375–390. [Google Scholar] [CrossRef]

	

Srinivasa Reddy, A.; Vaisakh, K. Shuffled differential evolution for large scale economic dispatch. Electr. Power Syst. Res. 2013, 96, 237–245. [Google Scholar] [CrossRef]

	

Sahoo, S.; Mahesh Dash, K.; Prusty, R.C.; Barisal, A.K. Comparative analysis of optimal load dispatch through evolutionary algorithms. Ain Shams Eng. J. 2015, 6, 107–120. [Google Scholar] [CrossRef]

	

Mohammad, Z.H.; Nadimi-Shahraki, H.; Amir, H.G. QANA: Quantum-based avian navigation optimizer algorithm. Eng. Appl. Artif. Intell. 2021, 104, 104314. [Google Scholar]

[image: Mathematics 10 03315 g001 550]

Figure 1. Flowchart of Proposed OPIO algorithm.

Figure 1. Flowchart of Proposed OPIO algorithm.

[image: Mathematics 10 03315 g001]

[image: Mathematics 10 03315 g002 550]

Figure 2. Convergence results of the OPIO and PIO algorithms for a 13-unit system.

Figure 2. Convergence results of the OPIO and PIO algorithms for a 13-unit system.

[image: Mathematics 10 03315 g002]

[image: Mathematics 10 03315 g003 550]

Figure 3. Convergence results of the OPIO and PIO algorithms for a 40-unit system.

Figure 3. Convergence results of the OPIO and PIO algorithms for a 40-unit system.

[image: Mathematics 10 03315 g003]

[image: Mathematics 10 03315 g004 550]

Figure 4. Convergence results of the OPIO and PIO algorithms for a 140-unit system.

Figure 4. Convergence results of the OPIO and PIO algorithms for a 140-unit system.

[image: Mathematics 10 03315 g004]

[image: Mathematics 10 03315 g005 550]

Figure 5. Convergence results of the OPIO and PIO algorithms for a 160-unit system.

Figure 5. Convergence results of the OPIO and PIO algorithms for a 160-unit system.

[image: Mathematics 10 03315 g005]

[image: Mathematics 10 03315 g006 550]

Figure 6. Convergence results of the OPIO and PIO algorithms for a 320-unit system.

Figure 6. Convergence results of the OPIO and PIO algorithms for a 320-unit system.

[image: Mathematics 10 03315 g006]

[image: Mathematics 10 03315 g007 550]

Figure 7. Convergence results of the OPIO and PIO algorithms for a 640-unit system.

Figure 7. Convergence results of the OPIO and PIO algorithms for a 640-unit system.

[image: Mathematics 10 03315 g007]

[image: Table]

Table 1. Test outcomes of various algorithms for a 13-unit system with PD = 2520 MW.

Table 1. Test outcomes of various algorithms for a 13-unit system with PD = 2520 MW.

	Unit
	OGWO
	IPSO
	COA
	ORCSA
	PIO
	OPIO

(Proposed)

	1
	628.2948
	628.1678
	628.3451
	628.4524
	628.3124
	628.5647

	2
	299.0451
	298.8798
	298.5478
	298.3575
	298.3567
	298.9856

	3
	296.4501
	297.6984
	297.6874
	297.3457
	297.4254
	297.6245

	4
	159.6421
	159.2387
	159.3564
	159.2349
	159.6548
	159.7542

	5
	159.7154
	159.1254
	159.8957
	159.5796
	159.5347
	159.6589

	6
	159.5484
	159.3567
	159.3567
	159.2134
	159.8975
	159.3521

	7
	159.6879
	159.8954
	159.6542
	159.6875
	159.7543
	159.1256

	8
	159.6877
	159.6872
	159.6513
	159.3579
	159.5421
	159.2564

	9
	159.6542
	159.9877
	159.3542
	159.7765
	158.8578
	159.3658

	10
	76.4854
	77.6513
	77.6854
	77.5587
	77.3567
	77.6574

	11
	114.8742
	113.3685
	114.2314
	114.2254
	113.3687
	114.8975

	12
	91.5874
	92.6975
	92.8674
	92.6478
	92.6898
	92.8785

	13
	92.5412
	92.3515
	92.4578
	92.3542
	92.3277
	92.8547

	Fuel Cost ($/h)
	24,513.4847
	24,514.6875
	24,512.8754
	24,513.5464
	24,514.5467
	24,512.4578

	Power loss (MW)
	40.2975
	40.3051
	40.3645
	40.3897
	40.5781
	40.1584

[image: Table]

Table 2. Comparison outcomes of different algorithms for a 13-unit system.

Table 2. Comparison outcomes of different algorithms for a 13-unit system.

	Algorithms
	Best ($/H)
	Mean ($/H)
	Worst ($/H)
	Standard Deviation
	Successful Runs (%)
	Test time (S)

	OGWO
	24,512.72
	24,512.86
	24,514.65
	0.1031
	92
	5.89

	IPSO
	24,517.68
	24,517.96
	24,518.21
	0.3154
	84
	5.98

	IGA
	24,516.42
	24,517.76
	24,519.78
	NA
	82
	6.21

	RCGA
	24,514.54
	24,515.87
	24,517.89
	0.1578
	88
	6.89

	COA
	24,512.87
	24,513.65
	24,515.68
	0.1047
	93
	5.47

	ORCSA
	24,513.54
	24,513.54
	24,516.67
	NA
	87
	8.65

	PIO
	24520.54
	24521.75
	24532.95
	0.2645
	79
	11.00

	OPIO (Proposed)
	24512.45
	24512.67
	24513.54
	0.0875
	97
	5.14

[image: Table]

Table 3. Simulation outcomes of different algorithms for a 40-unit system with PD = 10,500 MW.

Table 3. Simulation outcomes of different algorithms for a 40-unit system with PD = 10,500 MW.

	Unit
	OGWO
	IPSO
	COA
	ORCSA
	PIO
	OPIO

(Proposed)

	1
	114.2743
	114.2876
	113.8502
	110.12
	111.52
	114.24

	2
	114.4501
	114.4621
	114.1203
	112.28
	112.34
	114.12

	3
	120.3567
	120.4212
	119.7458
	120.23
	119.28
	120.31

	4
	183.3685
	181.5412
	182.4127
	188.54
	182.45
	190.54

	5
	87.1256
	87.3542
	88.5864
	85.37
	87.34
	97.56

	6
	140.3645
	140.3747
	140.3289
	140.24
	139.52
	140.25

	7
	300.1254
	300.2346
	299.6517
	250.28
	198.24
	300.54

	8
	300.2349
	300.3277
	292.3428
	290.74
	186.38
	300.26

	9
	300.4501
	300.4578
	299.6433
	300.52
	193.12
	300.49

	10
	279.0451
	279.3874
	279.5423
	282.31
	179.41
	205.49

	11
	243.3277
	243.6752
	168.2597
	180.25
	162.27
	226.47

	12
	94.5874
	94.3259
	94.2355
	168.52
	94.39
	204.56

	13
	484.3051
	484.4578
	484.2511
	469.78
	486.22
	346.52

	14
	484.1584
	484.3277
	484.6425
	484.26
	487.33
	434.58

	15
	484.2314
	484.3542
	484.3266
	487.39
	483.26
	431.29

	16
	484.5412
	484.1564
	484.6501
	482.62
	484.25
	440.21

	17
	489.5781
	489.6475
	489.4523
	499.16
	494.61
	500.34

	18
	489.4578
	489.5423
	489.6244
	411.19
	489.76
	500.33

	19
	511.8785
	511.6432
	511.1289
	510.27
	512.34
	550.27

	20
	511.8754
	511.5428
	511.6451
	542.37
	513.21
	550.96

	21
	523.3228
	523.5746
	549.3347
	544.29
	543.18
	550.14

	22
	546.3738
	547.7433
	549.6455
	550.29
	548.38
	550.54

	23
	523.1035
	523.4728
	523.4589
	550.37
	521.56
	550.32

	24
	523.0678
	523.1532
	523.4313
	528.18
	525.23
	550.46

	25
	523.5181
	523.4421
	523.1204
	524.67
	529.67
	550.28

	26
	523.4767
	523.4775
	523.4217
	539.28
	540.31
	550.39

	27
	10.3344
	10.1067
	10.1265
	10.34
	12.46
	11.27

	28
	10.8011
	10.7836
	10.1024
	10.24
	10.96
	11.34

	29
	10.6445
	10.4521
	10.2301
	10.22
	10.34
	11.16

	30
	87.302
	87.9827
	87.6658
	96.42
	89.45
	97.16

	31
	190.5847
	190.2498
	190.1322
	185.24
	189.04
	190.34

	32
	190.8664
	190.3277
	189.4582
	189.26
	189.47
	190.28

	33
	190.9983
	190.4562
	190.4251
	189.37
	187.43
	190.64

	34
	200.5471
	200.2841
	199.2217
	199.16
	198.27
	200.34

	35
	200.5847
	200.6128
	200.7541
	196.54
	199.69
	200.41

	36
	164.9983
	164.9833
	164.3242
	185.28
	165.34
	200.67

	37
	110.2147
	110.2348
	110.2323
	109.58
	109.54
	110.24

	38
	110.3341
	110.4355
	109.2344
	110.76
	109.31
	110.11

	39
	110.4616
	110.5436
	110.3333
	95.17
	109.44
	110.37

	40
	511.9904
	511.2239
	550.4219
	532.59
	548.23
	550.16

	Fuel Cost ($/h)
	136,441.8527
	136,446.7842
	136,442.689
	136,549.8756
	136,588.5746
	136,441.876

	Power loss (MW)
	964.75
	963.2045
	945.2143
	958.39
	979.85
	940.12

[image: Table]

Table 4. Comparison results of various algorithms for a 40-unit system.

Table 4. Comparison results of various algorithms for a 40-unit system.

	Algorithms
	Best ($/H)
	Mean ($/H)
	Worst ($/H)
	Standard Deviation
	Successful Runs (%)
	Test Time (S)

	OGWO
	136,441.85
	136,445.87
	136,447.54
	0.1365
	94
	11.52

	IPSO
	136,446.78
	136,542.87
	136,588.55
	0.2345
	89
	12.65

	IGA
	136,454.56
	NA
	NA
	NA
	NA
	NA

	RCGA
	136,587.21
	136,687.52
	136,742.65
	0.3874
	84
	13.41

	COA
	136,442.68
	136,448.54
	136,468.54
	0.1865
	92
	12.87

	ORCSA
	136,549.87
	NA
	NA
	NA
	NA
	NA

	PIO
	136,588.57
	136,698.32
	136,721.54
	NA
	NA
	NA

	OPIO (Proposed)
	136,441.87
	136,441.95
	136,443.81
	0.1021
	96
	10.14

[image: Table]

Table 5. Test outcomes of various algorithms for a 140-unit system with PD = 49,342 MW.

Table 5. Test outcomes of various algorithms for a 140-unit system with PD = 49,342 MW.

	Unit
	PIO
	OPIO

(Proposed)
	Unit
	PIO
	OPIO

(Proposed)
	Unit
	PIO
	OPIO

(Proposed)

	1
	114.3542
	119.1244
	48
	250.2564
	250.4159
	95
	978.1244
	978.2456

	2
	189.2341
	189.2344
	49
	250.3577
	250.3648
	96
	682.3277
	682.1247

	3
	190.2134
	190.2333
	50
	250.4525
	250.3014
	97
	720.2441
	720.1689

	4
	190.2625
	190.2455
	51
	165.2134
	165.4258
	98
	718.2355
	718.2245

	5
	168.7569
	168.6479
	52
	165.3426
	165.2486
	99
	720.2466
	720.3144

	6
	190.2345
	190.3247
	53
	165.5412
	165.4857
	100
	964.2344
	964.2188

	7
	490.2625
	490.2655
	54
	165.5122
	165.5574
	101
	958.3477
	958.2177

	8
	490.3438
	490.3677
	55
	180.3211
	180.2675
	102
	1007.1255
	1007.5248

	9
	496.5255
	496.5829
	56
	180.2144
	180.5974
	103
	1006.3425
	1006.7413

	10
	496.5648
	496.5574
	57
	103.2644
	103.4428
	104
	1013.6487
	1013.6944

	11
	496.6522
	496.6548
	58
	198.4522
	198.5674
	105
	1020.6666
	1020.1024

	12
	496.7566
	496.7742
	59
	312.3248
	312.4295
	106
	954.2377
	954.2188

	13
	506.2256
	506.2389
	60
	280.9517
	282.5479
	107
	952.1244
	952.1277

	14
	509.3364
	509.4861
	61
	163.3211
	163.4287
	108
	106.3244
	1006.2384

	15
	506.2355
	506.2479
	62
	95.2347
	95.2261
	109
	1013.2311
	1013.5244

	16
	505.2144
	505.2498
	63
	160.2358
	160.4521
	110
	1021.6322
	1021.5644

	17
	506.3422
	506.3451
	64
	160.3459
	160.2349
	111
	1015.2344
	1015.2988

	18
	506.9548
	506.4692
	65
	490.2378
	490.2587
	112
	94.2155
	94.2577

	19
	505.2344
	505.6498
	66
	196.4356
	196.5477
	113
	94.3157
	94.2188

	20
	505.3214
	505.4582
	67
	490.5612
	490.6287
	114
	94.4233
	94.1024

	21
	505.4255
	505.2398
	68
	490.6458
	489.3017
	115
	244.5612
	244.1657

	22
	505.5412
	505.2179
	69
	130.2648
	130.2688
	116
	244.6124
	244.1287

	23
	505.5378
	505.2489
	70
	234.8465
	234.5144
	117
	244.8477
	244.5218

	24
	505.6522
	505.9548
	71
	137.2659
	137.2955
	118
	95.3244
	95.2476

	25
	537.4612
	537.2144
	72
	325.5641
	325.4872
	119
	95.6245
	95.2348

	26
	537.2344
	537.3499
	73
	195.2347
	195.3488
	120
	116.2377
	116.2478

	27
	549.6254
	549.2674
	74
	175.4529
	175.6247
	121
	175.4298
	175.3489

	28
	549.3244
	549.3014
	75
	175.2349
	175.4277
	122
	2.2144
	2.1758

	29
	501.2333
	501.2648
	76
	175.8945
	175.6648
	123
	4.3322
	4.1689

	30
	501.4622
	501.3478
	77
	175.5217
	175.2486
	124
	15.4625
	15.4873

	31
	506.2477
	506.2018
	78
	330.2175
	330.2487
	125
	9.2344
	9.2481

	32
	506.2344
	506.3014
	79
	531.2648
	531.1248
	126
	12.9588
	12.6475

	33
	506.2237
	506.4251
	80
	531.2647
	531.2476
	127
	10.2647
	10.6598

	34
	506.8546
	506.6517
	81
	398.4275
	436.2186
	128
	112.6599
	112.4581

	35
	500.2649
	500.2689
	82
	56.1975
	56.2874
	129
	4.2689
	43275

	36
	500.2014
	500.2478
	83
	115.2348
	115.3495
	130
	5.2644
	5.1694

	37
	241.3645
	241.2349
	84
	115.4756
	115.6248
	131
	5.6544
	5.4572

	38
	241.6477
	241.2847
	85
	115.2679
	115.7749
	132
	50.2688
	50.6489

	39
	774.2655
	774.5842
	86
	207.6548
	207.4568
	133
	5.2177
	5.1483

	40
	769.8542
	769.4158
	87
	207.1673
	207.1168
	134
	42.6588
	42.5976

	41
	3.9655
	3.2685
	88
	175.9485
	175.4906
	135
	42.7588
	42.6577

	42
	3.8522
	3.1749
	89
	175.2648
	175.2681
	136
	41.2355
	41.6572

	43
	250.3466
	250.3489
	90
	175.3348
	175.6489
	137
	17.6588
	17.2954

	44
	246.5147
	249.5681
	91
	175.2247
	175.2213
	138
	17.4955
	17.3597

	45
	250.3416
	250.3189
	92
	580.2234
	580.6477
	139
	7.2655
	7.2265

	46
	250.3429
	250.6475
	93
	645.1958
	645.2188
	140
	26.5884
	26.4621

	47
	240.3168
	249.6257
	94
	984.2655
	984.2377
	Fuel Cost ($/H)
	1,560,412.55
	1,559,498.78

[image: Table]

Table 6. Statistical comparison results of test case 2a (140-unit system with PD = 49,342 MW).

Table 6. Statistical comparison results of test case 2a (140-unit system with PD = 49,342 MW).

	Algorithms
	Best ($/H)
	Mean ($/H)
	Worst ($/H)
	Standard Deviation
	Successful Runs (%)
	Test Time (S)

	OGWO
	1,559,710.65
	1,559,715.64
	1,559,751.21
	0.1512
	95
	43.98

	IPSO
	1,560,453.89
	NA
	NA
	NA
	NA
	NA

	IGA
	1,561,254.85
	NA
	NA
	NA
	NA
	NA

	RCGA
	1,559,957.62
	1,560,521.35
	1,561,542.96
	0.5641
	84
	49.54

	COA
	1,559,499.21
	1,559,521.88
	1,559,645.21
	0.1234
	92
	44.66

	ORCSA
	1,559,987.42
	1,560,387.36
	1,561,662.54
	NA
	NA
	NA

	PIO
	1,560,412.55
	1,561,542.13
	1,562,874.62
	NA
	NA
	NA

	OPIO (Proposed)
	1,559,498.78
	1,559,521.36
	1,559,587.62
	0.1123
	96
	40.21

[image: Table]

Table 7. Test outcomes of various algorithms for 160-unit system with PD = 43,200 MW.

Table 7. Test outcomes of various algorithms for 160-unit system with PD = 43,200 MW.

	
Unit

	
PIO

	
OPIO

(Proposed)

	
Unit

	
PIO

	
OPIO

(Proposed)

	
Unit

	
PIO

	
OPIO

(Proposed)

	
1

	
211.1057

	
224.3218

	
55

	
207.3485

	
265.4215

	
109

	
402.5278

	
430.2109

	
2

	
208.4572

	
200.6548

	
56

	
254.6289

	
257.1026

	
110

	
272.9458

	
260.5614

	
3

	
335.6534

	
355.2671

	
57

	
294.3275

	
277.3041

	
111

	
199.2658

	
217.4259

	
4

	
243.9547

	
228.4601

	
58

	
245.2964

	
235.4216

	
112

	
204.7594

	
199.6504

	
5

	
266.1958

	
305.4286

	
59

	
420.3581

	
394.5027

	
113

	
251.4298

	
357.2169

	
6

	
237.4295

	
249.5013

	
60

	
270.1485

	
278.1659

	
114

	
249.5048

	
251.4209

	
7

	
282.1473

	
309.4681

	
61

	
198.3475

	
240.3415

	
115

	
266.4175

	
267.2044

	
8

	
239.6475

	
218.4627

	
62

	
212.3458

	
213.1452

	
116

	
240.5219

	
252.3011

	
9

	
408.6427

	
335.2485

	
63

	
348.2571

	
241.6521

	
117

	
290.3584

	
290.4255

	
10

	
265.4581

	
270.4195

	
64

	
259.2543

	
248.6574

	
118

	
242.1507

	
233.4452

	
11

	
225.1049

	
187.2589

	
65

	
292.8594

	
232.2485

	
119

	
412.6259

	
329.5622

	
12

	
217.4685

	
195.4271

	
66

	
221.6579

	
245.6574

	
120

	
242.4957

	
300.4586

	
13

	
336.4216

	
353.2049

	
67

	
286.5419

	
310.2415

	
121

	
211.1048

	
237.5248

	
14

	
232.4582

	
241.6204

	
68

	
242.3859

	
232.5218

	
122

	
210.6247

	
207.6648

	
15

	
259.3248

	
273.4209

	
69

	
348.5796

	
353.2016

	
123

	
245.6284

	
237.5601

	
16

	
237.4581

	
228.1064

	
70

	
288.6473

	
281.4025

	
124

	
227.2094

	
210.6598

	
17

	
265.3482

	
277.4295

	
71

	
227.4961

	
219.4259

	
125

	
273.4587

	
241.2045

	
18

	
236.5219

	
224.1058

	
72

	
215.3333

	
220.4015

	
126

	
250.6418

	
246.5129

	
19

	
414.2188

	
404.6257

	
73

	
339.4857

	
343.2016

	
127

	
258.6458

	
293.3277

	
20

	
272.3158

	
314.2045

	
74

	
244.6589

	
250.4012

	
128

	
243.4109

	
245.2011

	
21

	
222.2507

	
205.4952

	
75

	
280.4276

	
273.5248

	
129

	
382.4692

	
431.2655

	
22

	
204.3258

	
200.4672

	
76

	
231.5942

	
217.5486

	
130

	
296.4108

	
248.5555

	
23

	
333.2429

	
374.1526

	
77

	
286.4957

	
305.4295

	
131

	
200.1472

	
199.7468

	
24

	
237.3854

	
234.1059

	
78

	
225.3489

	
243.4582

	
132

	
214.2845

	
217.4511

	
25

	
304.5521

	
284.1057

	
79

	
282.6472

	
253.6241

	
133

	
334.2074

	
242.6589

	
26

	
245.2965

	
221.4695

	
80

	
265.3485

	
271.9648

	
134

	
234.6248

	
229.3544

	
27

	
265.5421

	
253.1284

	
81

	
223.4685

	
223.4258

	
135

	
286.3049

	
250.3014

	
28

	
237.4951

	
223.6244

	
82

	
200.1479

	
191.3045

	
136

	
247.1658

	
236.1045

	
29

	
381.2659

	
241.5019

	
83

	
334.6517

	
349.5261

	
137

	
290.6547

	
305.1588

	
30

	
267.3204

	
280.6642

	
84

	
246.5923

	
234.5201

	
138

	
229.3104

	
230.4266

	
31

	
223.1584

	
175.4269

	
85

	
274.2986

	
275.2496

	
139

	
391.6248

	
430.2984

	
32

	
214.6549

	
203.6248

	
86

	
249.1634

	
208.4257

	
140

	
270.6248

	
257.1659

	
33

	
334.5671

	
348.2015

	
87

	
297.5842

	
282.5967

	
141

	
212.4286

	
228.4358

	
34

	
247.9547

	
219.5202

	
88

	
240.6713

	
255.3048

	
142

	
226.1958

	
184.2384

	
35

	
250.4682

	
283.4029

	
89

	
340.2986

	
409.4672

	
143

	
335.2648

	
370.5691

	
36

	
229.4572

	
244.1527

	
90

	
291.4726

	
269.3541

	
144

	
245.1382

	
219.4581

	
37

	
265.4953

	
313.2658

	
91

	
212.4589

	
192.3547

	
145

	
261.2017

	
263.1594

	
38

	
243.1572

	
236.1259

	
92

	
210.4976

	
201.1064

	
146

	
244.6218

	
235.4275

	
39

	
413.2685

	
340.2015

	
93

	
337.4682

	
350.2496

	
147

	
294.3581

	
300.6598

	
40

	
277.5878

	
333.3541

	
94

	
236.4196

	
258.6412

	
148

	
235.2481

	
242.1574

	
41

	
202.1574

	
230.5298

	
95

	
261.77165

	
290.3485

	
149

	
390.2571

	
387.4598

	
42

	
228.6257

	
209.9654

	
96

	
235.6279

	
226.4153

	
150

	
253.4192

	
267.4125

	
43

	
352.1469

	
341.4027

	
97

	
278.9648

	
299.4035

	
151

	
193.2488

	
184.5298

	
44

	
227.4583

	
233.6248

	
98

	
237.5944

	
223.4257

	
152

	
222.5027

	
212.4158

	
45

	
272.4159

	
299.1047

	
99

	
420.6519

	
366.6591

	
153

	
355.9418

	
376.1548

	
46

	
241.6051

	
263.5218

	
100

	
268.1695

	
288.4251

	
154

	
242.3158

	
248.5476

	
47

	
266.5384

	
243.6201

	
101

	
224.3186

	
227.2045

	
155

	
277.6428

	
278.1549

	
48

	
230.4572

	
212.3048

	
102

	
209.6581

	
210.5499

	
156

	
246.7128

	
223.2435

	
49

	
423.6514

	
362.4295

	
103

	
337.9547

	
363.2011

	
157

	
318.5472

	
264.6248

	
50

	
254.9571

	
303.2048

	
104

	
230.9528

	
222.3495

	
158

	
241.6014

	
234.5278

	
51

	
280.9654

	
181.4269

	
105

	
269.4681

	
234.1058

	
159

	
341.6547

	
390.4855

	
52

	
211.4582

	
211.5274

	
106

	
235.6428

	
232.4259

	
160

	
261.2485

	
286.4597

	
53

	
337.4692

	
364.6542

	
107

	
274.9648

	
282.3045

	
Fuel Cost ($/H)

	
9738.4526

	
9625.1573

	
54

	
238.4729

	
234.9512

	
108

	
244.3018

	
236.4159

[image: Table]

Table 8. Statistical comparison results for test case 2b (160-unit with PD = 43,200 MW).

Table 8. Statistical comparison results for test case 2b (160-unit with PD = 43,200 MW).

	Algorithms
	Best ($/H)
	Mean ($/H)
	Worst ($/H)
	Standard Deviation
	Successful Runs (%)
	Test time (S)

	OGWO
	9768.62
	9772.21
	9774.62
	0.1421
	94
	18.52

	IPSO
	10,008.65
	10,009.65
	10,010.56
	0.3654
	85
	36.95

	IGA
	10,009.82
	10,010.98
	10,011.26
	NA
	NA
	NA

	RCGA
	9954.23
	10,002.62
	10,004.63
	0.4521
	90
	27.62

	COA
	9664.32
	9702.36
	9776.85
	0.1262
	94
	16.85

	ORCSA
	9845.45
	9898.12
	9902.42
	NA
	NA
	NA

	PIO
	9738.45
	9812.64
	9836.95
	0.3641
	88
	44.34

	OPIO (Proposed)
	9625.15
	9647.62
	9649.62
	0.1145
	96
	16.21

[image: Table]

Table 9. Statistical comparison results of test case 3a (320-unit system with PD = 86,400 MW).

Table 9. Statistical comparison results of test case 3a (320-unit system with PD = 86,400 MW).

	Algorithms
	Best ($/H)
	Mean ($/H)
	Worst ($/H)
	Standard Deviation
	Successful Runs (%)
	Test Time (S)

	OGWO
	19,985.62
	19,989.41
	19,992.34
	0.5465
	86
	489.35

	COA
	19,971.43
	19,986.37
	19,990.75
	0.7248
	92
	412.95

	ORCSA
	20,045.29
	NA
	NA
	NA
	NA
	NA

	PIO
	20,254.42
	20,267.95
	20,312.61
	NA
	NA
	527.24

	OPIO (Proposed)
	19,968.95
	19,972.16
	19,978.91
	0.4087
	96
	410.65

[image: Table]

Table 10. Comparison results of various algorithms on a 640-unit system.

Table 10. Comparison results of various algorithms on a 640-unit system.

	Algorithms
	Best ($/H)
	Mean ($/H)
	Worst ($/H)
	Standard Deviation
	Successful Runs (%)
	Test time (S)

	OGWO
	40,123.65
	40,132.85
	40,152.18
	0.8542
	90
	704.85

	COA
	39,968.81
	39,970.52
	39,974.32
	0.3419
	94
	682.54

	ORCSA
	40,189.62
	NA
	NA
	NA
	NA
	NA

	PIO
	41,072.28
	NA
	NA
	NA
	NA
	NA

	OPIO (Proposed)
	39,963.78
	39,964.75
	39,967.82
	0.2451
	96
	677.27

[image: Table]

Table 11. Wilcoxon signed-rank test between OPIO and four compared algorithms for test case 13, 40, 140, 160, 320 and 640-unit systems.

Table 11. Wilcoxon signed-rank test between OPIO and four compared algorithms for test case 13, 40, 140, 160, 320 and 640-unit systems.

	
Test Case

	
OPIO vs

	
OGWO

	
COA

	
ORCSA

	
PIO

	
p-Value

	
H

	
S

	
p-Value

	
H

	
S

	
p-Value

	
H

	
S

	
p-Value

	
H

	
S

	
13-unit

	
1.00 × 100

	
0

	
=

	
1.88 × 10−6

	
1

	
+

	
1.51 × 10−6

	
1

	
+

	
1.98 × 10−6

	
1

	
+

	
40-unit

	
3.85 × 10−1

	
0

	
−

	
1.00 × 100

	
0

	
=

	
1.88 × 10−6

	
1

	
+

	
1.75 × 10−6

	
1

	
+

	
140-unit

	
1.87 × 10−6

	
1

	
+

	
1.70 × 10−6

	
1

	
+

	
1.46 × 10−6

	
1

	
+

	
1.65 × 10−6

	
1

	
+

	
160-unit

	
1.55 × 10−6

	
1

	
+

	
1.00 × 100

	
0

	
=

	
1.65 × 10−6

	
1

	
+

	
1.75 × 10−6

	
1

	
+

	
320-unit

	
1.73 × 10−6

	
1

	
+

	
1.75 × 10−6

	
1

	
+

	
1.75 × 10−6

	
1

	
+

	
1.79 × 10−6

	
1

	
+

	
640-unit

	
1.55 × 10−6

	
1

	
+

	
1.11 × 10−6

	
1

	
+

	
1.73 × 10−6

	
1

	
+

	
1.75 × 10−6

	
1

	
+

	
w/t/l

	
4/1/1

	
4/2/0

	
6/0/0

	
6/0/0

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
«--=- OPIO
- —PIO

4
47 x10°

I D
(H/$) 4e} os pauiejqo 3so) [ejo L

]
]

400 600 800 1000

200

Iterations

media/file4.png
| &
o ;
o O E
O :
- _.
| __
i
;
;
:
i
E
E
-

I

p 7’

-
-
o
- - 1!-_.__!.1.._-_.1
= el
-— / ‘..-..n...-..
e —
= — - ._ e * i.-.
-
m - ~ o

VA \ llllll..iillllt] i | 1

= o) w0 M od wn = o) w

0 0 : 0 o < <

od od od od od

o
(H/$) 1e} Os pauie}qo 31s0) |ejo L

2.44

100

80

60

40

20

Ilterations

nav.xhtml

 mathematics-10-03315

 		
 mathematics-10-03315

media/file2.png
< |

y

| Generate the mitial |

Update the population
(X) using algorithm 1

Population (X)

\ 4

\ 4

| Evaluate the fitness |

Evaluate new fitness |

\ 4

l Generate opposite solution
(opp) using OBL Jump
rate J,- for 1 solution

Generate the opposite
solution (opp) using

OBL

\ 4

| Sort and select Np |

Evaluate Fit (opp) |

solutions l
v Sort and select Np
Select Best Solution solution
Xg
¥
No
| Update X, |

Stop Criteria is
met?

Visualize X g |

End

media/file5.jpg
100

80

60

40

20

Iterations

e 3 g T 3

S @

1.36

@
s S b

(H/$) Je4 os pauie}qo 3509 [ejo,

media/file3.jpg
- —PIO

T

4
2.58 X10

(H/$) Jey os pauiejqo 3509 (B30 L

2.44

100

80

60

40

20

Iterations

media/file1.jpg
G

Generateth i
Population (X)

al

I

Evaluate the fitness

T

Generate theoppositc
Solution (opp) wing
OB

1

‘Sort and select Np
solutions

T

Select Best Solution
X,

No

Stop Criteriais

Update the population
(X) using algorithm 1

T

Evaluate new fitness

T

‘Generate opposite solution
(opp) using OBL Jump.
rate] for ¥ solution

T

Evaluate Fit (opp)

T

Sortand select N,
solution

Update X,

media/file7.jpg
6
2 x10

1.55

(H/$) 13 OS pauiejqo 309 [ejo]

100

80

60

40

20

Iterations

media/file10.png
- OPIO
- —=PIO

4

1.08 219
N
02+

I
o)
-
o

(H/$) 4y os pauiejqo 31so) [ejo L

0.96

100

80

60

lterations

40

20

media/file12.png
1000

1 |
®. |
a O
oo |
i
I _ S
: I %
|
|
l
o
- | 18
|
’
rd
-~
i o
L > 7] m
I
7
.
/
/ - o
- » s 19
“_ l.'l‘i.‘ 2
7 _-‘...-n..i..t
a7
= \ .-i._-il_
= / / o il
X z |_._i_.._” | |] 1 1
n ™ n 2 n - n (o | n
M a YN A TN © %
(3] (3] (3] o o

(H/$) 1e} OS pauie}qo 31507 |ejo]

Iterations

media/file9.jpg
s

4
1.08 x10°

©
=
H

(

- - S
/$) Je} OS paule}qo 3S0D [BJ0 L

0.96

60 80 100
Iterations

40

20

media/file0.png

media/file14.png
600 800 1000

lterations

400

-—
o l
o O
oo |
: | |
_ _
|
|
I
|
”
r
/
gl-_l.
- i
h __..._l_-lt_._
- #..____.-_.iii.___
‘ h!ll‘i
< s Pl
= ” -__.il.-_
— ~ s
wxn e I Ill_!ilﬂ i i i i |
- - T T R
< < < < < < (ap]

<
:-_\wv de} OS pPaule}qo }s0) |ejo L

200

media/file8.png
- OPIO
- —=PIO

60 80 100

Iterations

40

20

- %108
\

9
85
.8
A9
7
1.6 |

1
wn
a“
e

(H/$) e} oS pauie}qo }s09 |ejo]

1.55

media/file11.jpg
o~

(H/3) 44 os pauiejqo 3s09 [ejo)

4
zas 210

400 600 800 1000

200

Iterations

media/file6.png
100

80

60
Iterations

40

20

I I I I I I -
o) |
e O _
oo
P _
Ll |
|
|
|
!/
”
-~
J
\
/7
L 7’
-~
-~
/
-
-~
!/
L 7 ;
i i!‘ll‘l
ﬁ llli!iilll e
\ l‘littilil
u N 1.;‘._.1
o Fd lili!-..._l
— ‘Iliilll
X o / _._._.:i...n..‘l_ | I i I
Ty} o0 {e] o™ <t o0
c $ s 3 s I 3
-—

(H/$) 1€} OS paule}qo }s09 [ejo]

1.36

