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Abstract: In this study, we introduce the expression dλ(x, y) := λ‖x‖+(1−λ)‖y‖− ‖λx+(1−λ)y‖
on the real normed space X (X , ‖ · ‖), where x, y ∈ X and λ ∈ R. We characterize this expression
and find various estimates of it. We also obtain a generalization and some refinements of Maligranda’s
inequality. Finally, we give some relations between dλ(x, y) and several types of angular distances
between two nonzero vectors in a real normed space.
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1. Introduction

In the literature related to the theory of inequalities, many recently published papers
contain studies of certain inequalities in different normed spaces.

An important inequality in a real or complex inner product space is the inequality of
Cauchy–Schwarz (see [1,2]), namely:

|〈x, y〉| ≤ ‖x‖‖y‖ (1)

for all x, y ∈ X , where X is a real or complex inner product space. Moreover, equality (1)
holds if and only if x and y are linearly dependent. Among those who have studied this
inequality, we can mention Aldaz [3] and Dragomir [4].

Let X be a complex normed space. A classical inequality that characterizes a normed
space is the triangle inequality, which is given by

‖x + y‖ ≤ ‖x‖+ ‖y‖ (2)

for all x, y ∈ X . Other results about this inequality were given by Pečarić and Rajić in [5].
In [6], a characterization for a generalized triangle inequality in normed spaces was proven,
and in [7], we observed some estimates of the triangle inequality using integrals. A recent
study of the variational inequalities was given in [8,9].

In [10], Maligranda proved the following interesting inequality:

A ·min{‖x‖, ‖y‖} ≤ ‖x‖+ ‖y‖ − ‖x + y‖ ≤ A ·max{‖x‖, ‖y‖}, (3)

where A = 2−
∥∥∥ x
‖x‖ +

y
‖y‖

∥∥∥ ≥ 0, and x and y are nonzero vectors in the normed space

X = (X , ‖ · ‖). Applying this inequality deduced by Maligranda [11], a lower bound
and an upper bound for the norm-angular distance or Clarkson distance can be found (see

e.g., [12]) between nonzero vectors x and y, α[x, y] =
∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥; thus,
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‖x− y‖ − |‖x‖ − ‖y‖|
min{‖x‖, ‖y‖} ≤ α[x, y] ≤ ‖x− y‖+ |‖x‖ − ‖y‖|

max{‖x‖, ‖y‖} . (4)

The right side of inequality (4) represents an improvement of the Massera–Schäffer
inequality proved in [13]:

α[x, y] ≤ 2‖x− y‖
max{‖x‖, ‖y‖} (5)

for every nonzero vector x and y in X , which is stronger than the Dunkl–Williams in-
equality, which was given in [14]. Other results for bounds to the angular distance, named
Dunkl–Williams-type theorems (see [14]), were given by Moslehian et al. [15].

In [16], Dehghan presented a refinement of the triangle inequality, and a simple char-
acterization of inner product spaces was obtained by using the skew angular distance

between nonzero vectors x and y; thus: β[x, y] =
∥∥∥ x
‖y‖ −

y
‖x‖

∥∥∥. In [16], we found the

following double inequality:

‖x− y‖
min{‖x‖, ‖y‖} −

|‖x‖ − ‖y‖|
max{‖x‖, ‖y‖} ≤ β[x, y] ≤ ‖x− y‖

max{‖x‖, ‖y‖} +
|‖x‖ − ‖y‖|

min{‖x‖, ‖y‖} (6)

for any nonzero vectors x and y in a real normed linear space X = (X , ‖ · ‖).
Many improvements of bounds for the angular distance and skew angular distance

were established in [17,18]. The notion of the norm-angular distance was generalized to the
p-angular distance in normed space in [10]; thus,

αp[x, y] =
∥∥∥‖x‖p−1x− ‖y‖p−1y

∥∥∥,

where the nonzero vectors x and y are in a normed space X = (X , ‖ · ‖) and p ≥ 0. In
fact, we can take p ∈ R. It is easy to see that α0[x, y] = α[x, y].

The notion of skew p–angular distance between nonzero vectors x and y in a normed
space X = (X , ‖ · ‖) and p ∈ R was given by Rooin et al. in [19]; thus,

βp[x, y] =
∥∥∥‖y‖p−1x− ‖x‖p−1y

∥∥∥.

This notion generalizes the concept of skew angular distance between nonzero vec-

tors x and y, β[x, y] =
∥∥∥ x
‖y‖ −

y
‖x‖

∥∥∥, which was given by Dehghan in [16], because

β0[x, y] = β[x, y].
On the real normed space X = (X , ‖ · ‖), we introduce the following expression:

dλ(x, y) := λ‖x‖+ (1− λ)‖y‖ − ‖λx + (1− λ)y‖,

where x, y ∈ X and λ ∈ R. When λ ∈ [0, 1], from the triangle inequality, we find that
dλ(x, y) ≥ 0, for all x, y ∈ X , and it easy to see that 2d1/2(x, y) = ‖x‖+ ‖y‖ − ‖x + y‖ ≥ 0.
We find the following properties:

dλ(x, 0) = dλ(0, y) = dλ(x, x) = d0(x, y) = d1(x, y) = 0, dλ(x, y) = d1−λ(y, x)

and

dλ

(
x
‖x‖ ,

y
‖y‖

)
= 1−

∥∥∥λ
x
‖x‖ + (1− λ)

y
‖y‖

∥∥∥
for every x, y ∈ X − {0}.
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The purpose of this article is to characterize the expression dλ(x, y) by finding various
estimates of it. We will obtain some refinements of some known inequalities. We also
give some relations between dλ(x, y) and several types of angular distances between two
nonzero vectors in a real normed space X .

2. Main Results

Next, we give several relations that are necessary for proving some inequalities of the
Maligranda type related to d·(·, ·).

Lemma 1. Let x, y be two vectors in the real normed space X = (X , ‖ · ‖). If λ ∈ R, then the
following equalities hold:

dλ(x, y) = d2λ

(
1
2
(x + y), y

)
+ 2λd1/2(x, y) (7)

and

dλ(x, y) = d2λ−1

(
x,

1
2
(x + y)

)
+ 2(1− λ)d1/2(x, y). (8)

Proof. Using the definition of dλ(x, y), by regrouping the terms, we obtain

d2λ

(
1
2
(x + y), y

)
= 2λ

‖x + y‖
2

+ (1− 2λ)‖y‖ − ‖2λ
x + y

2
+ (1− 2λ)y‖

= λ‖x + y‖+ (1− 2λ)‖y‖ − ‖λx + (1− λ)y‖
= λ‖x‖+ (1− λ)‖y‖ − ‖λx + (1− λ)y‖ − λ(‖x‖+ ‖y‖ − ‖x + y‖)
= dλ(x, y)− λ(‖x‖+ ‖y‖ − ‖x + y‖),

which implies the first relation of the statement. In the same way, we have

d2λ−1

(
x,

1
2
(x + y)

)
= (2λ− 1)‖x‖+ (2− 2λ)

‖x + y‖
2

−
∥∥∥∥(2λ− 1)x + (2− 2λ)

x + y
2

∥∥∥∥
= (2λ− 1)‖x‖+ (1− λ)‖x + y‖ − ‖λx + (1− λ)y‖
= λ‖x‖+ (1− λ)‖y‖ − ‖λx + (1− λ)y‖ − (1− λ)(‖x‖+ ‖y‖ − ‖x + y‖)
= dλ(x, y)− (1− λ)(‖x‖+ ‖y‖ − ‖x + y‖),

which implies the second relation of the statement.

For λ ∈ [0, 1], it is easy to see that dλ(x, y) ≥ 0 for every x, y ∈ X . Next, we study the
case when λ /∈ (0, 1).

Lemma 2. If λ ∈ R− (0, 1), then the following inequality holds:

dλ(x, y) ≤ 0 (9)

for all x, y ∈ X .

Proof. We study two cases:
(I) If λ ≤ 0, then, by applying the triangle inequality, we obtain

dλ(x, y) = λ‖x‖+ (1− λ)‖y‖ − ‖λx + (1− λ)y‖

= −(‖ − λx‖+ ‖λx + (1− λ)y‖ − ‖(1− λ)y‖) ≤ 0;

(II) If λ ≥ 1, then, by using the triangle inequality, we deduce that
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dλ(x, y) = λ‖x‖+ (1− λ)‖y‖ − ‖λx + (1− λ)y‖

= −(‖ − (1− λ)y‖+ ‖λx + (1− λ)y‖ − ‖λx‖) ≤ 0.

Therefore, the inequality of the statement is true.

Proposition 1. If λ ∈ [0, 1], then the following inequality holds:

2 min{λ, 1− λ}d1/2(x, y) ≤ dλ(x, y) ≤ 2 max{λ, 1− λ}d1/2(x, y) (10)

for all x, y ∈ X .

Proof. For λ ∈ [0, 1
2 ], we have 2λ ∈ [0, 1] and 2λ − 1 ∈ [−1, 0], so we show that

d2λ

(
1
2 (x + y), y

)
≥ 0, and using Lemma 2, we have the inequality d2λ−1

(
x, 1

2 (x + y)
)
≤ 0.

From equalities (7) and (8), we obtain

2λd1/2(x, y) ≤ dλ(x, y) ≤ 2(1− λ)d1/2(x, y). (11)

For λ ∈ [ 1
2 , 1], in the same way, we prove that

2(1− λ)d1/2(x, y) ≤ dλ(x, y) ≤ 2λd1/2(x, y). (12)

Consequently, combining inequalities (11) and (12), the inequality of the statement
is true.

Remark 1. For λ ∈ (0, 1), inequality (10) can be written as

0 ≤ dλ(x, y)
max{λ, 1− λ} ≤ ‖x‖+ ‖y‖ − ‖x + y‖ ≤ dλ(x, y)

min{λ, 1− λ} (13)

for all x, y ∈ X . For λ = ‖y‖
‖x‖+‖y‖ , we obtain Maligranda’s inequality; thus, inequality (10)

represents a generalization of Maligranda’s inequality.
In general, for a, b > 0 and using relation (10), for λ =

a
a + b

, we find the following inequality:

2 min{a, b}
a + b

d1/2(x, y) ≤ d a
a+b

(x, y) ≤ 2 max{a, b}
a + b

d1/2(x, y) (14)

for all x, y ∈ X , which can be rewritten as

min{a, b}(‖x‖+ ‖y‖ − ‖x + y‖) ≤ a‖x‖+ b‖y‖ − ‖ax + by‖

≤ max{a, b}(‖x‖+ ‖y‖ − ‖x + y‖) (15)

for all vectors x and y in X and a, b ∈ R+. This inequality is given in [20]. For the nonzero

vectors x, y ∈ X , we take a =
1
‖x‖ and b =

1
‖y‖ in inequality (15), which prove inequality (3)

given by Maligranda [10]. If x = 0 or y = 0, then, in relation (15), we obtain equality.

Inequality (15) has several results related to the p-angular distance in normed space
in [20] and the skew p-angular distance between nonzero vectors x and y in a normed
space X . Therefore, our interest is in refining inequality (15), which can be obtained from
inequality (10).
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Theorem 1. Let x, y be two vectors in a real normed space X . If λ ∈ [0, 1
2 ]; then, the following

inequality holds:

2λd1/2(x, y) + 2 min{2λ, 1− 2λ}d1/2

(
1
2
(x + y), y

)
≤ dλ(x, y)

≤ 2λd1/2(x, y) + 2 max{2λ, 1− 2λ}d1/2

(
1
2
(x + y), y

)
(16)

and if λ ∈ [ 1
2 , 1], then the inequality

2(1− λ)d1/2(x, y) + 2 min{2λ− 1, 2− 2λ}d1/2

(
x,

1
2
(x + y)

)
≤ dλ(x, y)

≤ 2(1− λ)d1/2(x, y) + 2 max{2λ− 1, 2− 2λ}d1/2

(
x,

1
2
(x + y)

)
(17)

holds.

Proof. For λ ∈ [0, 1
2 ], we have 2λ ∈ [0, 1], and by replacing x with 1

2 (x + y) in inequal-
ity (10), we deduce that

2 min{2λ, 1− 2λ}d1/2

(
1
2
(x + y), y

)
≤ d2λ

(
1
2
(x + y), y

)

≤ 2 max{2λ, 1− 2λ}d1/2

(
1
2
(x + y), y

)
. (18)

Consequently, by combining equality (7) with inequality (18), we show the first
inequality of the statement.

For λ ∈ [ 1
2 , 1], we have 2λ− 1 ∈ [0, 1], and by replacing y with 1

2 (x + y) in inequal-
ity (10), we deduce that

2 min{2λ− 1, 2− 2λ}d1/2

(
x,

1
2
(x + y)

)
≤ d2λ−1

(
x,

1
2
(x + y)

)

≤ 2 max{2λ− 1, 2− 2λ}d1/2

(
x,

1
2
(x + y)

)
. (19)

Consequently, by combining equality (8) with inequality (19), we prove the second
inequality of the statement.

Remark 2. We are studying the problem of comparing the upper bound from inequality (10) with
the upper bounds from inequalities (16) and (17) to see which is better. For λ ∈ [0, 1

4 ], through
simple calculations, we prove the inequality

2λd1/2(x, y) + 2 max{2λ, 1− 2λ}d1/2

(
1
2
(x + y), y

)
≤ 2(1− λ)d1/2(x, y). (20)

Therefore, for λ ∈ [0, 1
4 ], the upper bound from inequality (16) is better. However, for

λ ∈ [ 1
4 , 1

2 ], inequality (20) becomes

(1− λ)‖x + y‖+ (4λ− 1)‖y‖ ≤ (1− 2λ)‖x‖+ λ‖x + 3y‖,

which is true for y = −x and false for y = − 1
3 x. For λ ∈ [ 3

4 , 1], through simple calculations, we
prove the inequality

2(1− λ)d1/2(x, y) + 2 max{2λ− 1, 2− 2λ}d1/2

(
x,

1
2
(x + y)

)
≤ 2λd1/2(x, y). (21)



Mathematics 2022, 10, 3303 6 of 10

Consequently, for λ ∈ [ 3
4 , 1], the upper bound from inequality (17) is better. However, for

λ ∈ [ 1
2 , 3

4 ], inequality (21) becomes

λ‖x + y‖+ (3− 4λ)‖x‖ ≤ (2λ− 1)‖y‖+ (1− λ)‖3x + y‖,

which is true for y = −x and false for y = −3x.
We choose two real numbers a and b such that 0 < a ≤ b; if we use relation (16) for

λ =
a

a + b
≤ 1

2 , then we obtain the following inequality:

2
a

a + b
d1/2(x, y) +

2 min{2a, b− a}
a + b

d1/2

(
1
2
(x + y), y

)
≤ d a

a+b
(x, y)

≤ 2
a

a + b
d1/2(x, y) +

2 max{2a, b− a}
a + b

d1/2

(
1
2
(x + y), y

)
(22)

for all x, y ∈ X , which can be rewritten as

a(‖x‖+ ‖y‖ − ‖x + y‖) + 1
2

min{2a, b− a}(‖x + y‖+ 2‖y‖ − ‖x + 3y‖)

≤ a‖x‖+ b‖y‖ − ‖ax + by‖

≤ a(‖x‖+ ‖y‖ − ‖x + y‖) + 1
2

max{2a, b− a}(‖x + y‖+ 2‖y‖ − ‖x + 3y‖) (23)

for all vectors x and y in X and a, b ∈ R+, a ≤ b. This inequality refined the first part of
inequality (15). Next, if we have ‖y‖ ≤ ‖x‖, then we take a = ‖y‖ and b = ‖x‖ in inequality (23),
and we find the inequality

‖x‖+ ‖y‖ − ‖x + y‖+ min{1,
‖x‖ − ‖y‖

2‖y‖ }(‖x + y‖+ 2‖y‖ − ‖x + 3y‖)

≤ ‖x‖
(

2−
∥∥∥∥ x
‖x‖ +

y
‖y‖

∥∥∥∥)
≤ ‖x‖+ ‖y‖ − ‖x + y‖+ max{1,

‖x‖ − ‖y‖
2‖y‖ }(‖x + y‖+ 2‖y‖ − ‖x + 3y‖) (24)

for all nonzero vectors x and y in X . Thus, we prove an improvement of the second part of
the inequality of Maligranda given in relation (3). Replacing y with −y and taking ‖y‖ ≤ ‖x‖,
through simple calculations in inequality (24), we obtain a refinement of the second part of inequal-
ity (4); thus,

α[x, y] ≤ ‖x− y‖+ ‖x‖ − ‖y‖
‖x‖ − E =

‖x− y‖+ |‖x‖ − ‖y‖|
max{‖x‖, ‖y‖} − E, (25)

where E =
1

2‖x‖‖y‖ min{2‖y‖, ‖x‖ − ‖y‖}(‖x− y‖+ 2‖y‖ − ‖x− 3y‖) ≥ 0.

A generalization of the equalities from Lemma 1 is given below.

Theorem 2. Let x, y be two vectors in the real normed space X and a natural number n ≥ 1. If
λ ∈ R, then the following equalities hold:

dλ(x, y) = λ
n

∑
k=1

2kd1/2

(
1

2k−1 x +

(
1− 1

2k−1

)
y, y

)
+ d2nλ

(
1
2n x +

(
1− 1

2n

)
y, y

)
(26)

and
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dλ(x, y) = (1− λ)
n

∑
k=1

2kd1/2

(
x,
(

1− 1
2k−1

)
x +

1
2k−1 y

)
+ d2nλ+1−2n

(
x,
(

1− 1
2n

)
x +

1
2n y

)
. (27)

Proof. Using Lemma 1 for λ ∈ R, we have

dλ(x, y) = d2λ

(
1
2
(x + y), y

)
+ 2λd1/2(x, y).

Replacing λ with 2λ and x with 1
2 (x + y) in the above equality, we get

d2λ

(
1
2
(x + y), y

)
= d22λ

(
1
2
(

1
2
(x + y) + y), y

)
+ 22λd1/2

(
1
2
(x + y), y

)
.

If we inductively repeat the above substitutions, for k ≥ 1, we have

d2k−1λ

(
1

2k−1 x +

(
1− 1

2k−1

)
y, y

)
= d2kλ

(
1
2k x +

(
1− 1

2k

)
y, y

)

+2kλd1/2

(
1

2k−1 x +

(
1− 1

2k−1

)
y, y

)
.

Therefore, summarizing the above relations for k ∈ {1, . . . , n}, we obtain the relation
of the statement. Applying equality (26) and taking into account that dλ(x, y) = d1−λ(y, x),
we deduce equality (27).

These equalities offer the possibility of refining inequalities (16) and (17), giving
the following.

Theorem 3. Let n a natural number, n ≥ 1. If λ ∈
[

0,
1
2n

]
, then the following inequality holds:

λ
n

∑
k=1

2kd1/2

(
1

2k−1 x +

(
1− 1

2k−1

)
y, y

)
+ 2 min{2nλ, 1− 2nλ}d1/2

(
1
2n x +

(
1− 1

2n

)
y, y

)
≤ dλ(x, y)

≤ λ
n

∑
k=1

2kd1/2

(
1

2k−1 x +

(
1− 1

2k−1

)
y, y

)
+ 2 max{2nλ, 1− 2nλ}d1/2

(
1
2n x +

(
1− 1

2n

)
y, y

)
(28)

and if λ ∈
[

1− 1
2n , 1

]
, then the following inequality holds:

(1− λ)
n

∑
k=1

2kd1/2

(
x,
(

1− 1
2k−1

)
x +

1
2k−1 y

)
+ 2 min{λ′, 1− λ′}d1/2

(
x,
(

1− 1
2n

)
x +

1
2n y

)
≤ dλ(x, y)

≤ (1− λ)
n

∑
k=1

2kd1/2

(
x,
(

1− 1
2k−1

)
x +

1
2k−1 y

)
+ 2 max{λ′, 1− λ′}d1/2

(
x,
(

1− 1
2n

)
x +

1
2n y

)
, (29)

where λ′ = 2nλ + 1− 2n.

Proof. Using the inequalities from Proposition 1 and combining them with equalities (26)
and (27), we deduce that the inequalities of the statement are true.

Finally, we present some applications.
(1) In terms of expression dλ(x, y), we show a relation that involves the p–angular distance:

2d1/2

(
‖x‖p−1(x− y), (‖x‖p−1 − ‖y‖p−1)y

)
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= ‖x‖p−1‖x− y‖+ |‖x‖p−1 − ‖y‖p−1|‖y‖ − αp[x, y]. (30)

Given that d1/2
(
‖x‖p−1(x− y), (‖x‖p−1 − ‖y‖p−1)y

)
≥ 0, we have the following

inequality:
αp[x, y] ≤ ‖x‖p−1‖x− y‖+ |‖x‖p−1 − ‖y‖p−1|‖y‖ (31)

for all nonzero vectors x, y ∈ X and p ∈ R.
(2) For p = 0 in relation (30), we deduce the equality:

2d1/2

(
1
‖x‖ (x− y),

(
1
‖x‖ −

1
‖y‖

)
y
)
=
‖x− y‖+ |‖x‖ − ‖y‖|

‖x‖ − α[x, y]. (32)

Because d1/2

(
1
‖x‖ (x− y),

(
1
‖x‖ −

1
‖y‖

)
y
)
≥ 0, we prove the inequality

α[x, y] ≤ ‖x− y‖+ |‖x‖ − ‖y‖|
‖x‖ . (33)

Interchanging the roles of x and y, in (33), we get the second inequality from relation (4).
(3) Next, we show a relation that involves the skew p–angular distance in terms of

expression dλ(x, y), namely:

2d1/2

(
‖y‖p−1(x− y), (‖y‖p−1 − ‖x‖p−1)y

)
= ‖y‖p−1‖x− y‖+ |‖x‖p−1 − ‖y‖p−1|‖y‖ − βp[x, y]; (34)

(4) For p = 0 in relation (34), we deduce the equality:

2d1/2

(
1
‖y‖ (x− y),

(
1
‖y‖ −

1
‖x‖

)
y
)
=
‖x− y‖
‖y‖ +

|‖x‖ − ‖y‖|
‖x‖ − β[x, y]. (35)

Given that d1/2

(
1
‖y‖ (x− y),

(
1
‖y‖ −

1
‖x‖

)
y
)
≥ 0, we find the inequality

β[x, y] ≤ ‖x− y‖
‖y‖ +

|‖x‖ − ‖y‖|
‖x‖ . (36)

Interchanging the roles of x and y, in (36), we get the second inequality from relation (6).
(5) From inequality (10), we deduce that

dλ(x, y)
max{λ, 1− λ} ≤ 2d1/2(x, y) (37)

for all x, y ∈ X and λ ∈ [0, 1], and applying equality (30), we find that

λ‖x‖p−1‖x− y‖+ (1− λ)|‖x‖p−1 − ‖y‖p−1|‖y‖ − F
max{λ, 1− λ}

=
dλ

(
‖x‖p−1(x− y), (‖x‖p−1 − ‖y‖p−1)y

)
max{λ, 1− λ}

≤ ‖x‖p−1‖x− y‖+ |‖x‖p−1 − ‖y‖p−1|‖y‖ − αp[x, y], (38)

where F = ‖λ‖x‖p−1(x− y) + (1− λ)(‖x‖p−1 − ‖y‖p−1)y‖.
(6) From inequality (37) and by applying equality (34), we prove that

λ‖y‖p−1‖x− y‖+ (1− λ)|‖x‖p−1 − ‖y‖p−1|‖y‖ − G
max{λ, 1− λ}
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=
dλ

(
‖y‖p−1(x− y), (‖y‖p−1 − ‖x‖p−1)y

)
max{λ, 1− λ}

≤ ‖y‖p−1‖x− y‖+ |‖x‖p−1 − ‖y‖p−1|‖y‖ − βp[x, y], (39)

where G = ‖λ‖y‖p−1(x− y) + (1− λ)(‖y‖p−1 − ‖x‖p−1)y‖.

3. Conclusions

Maligranda’s inequality is an important inequality in real normed spaces. This is
used to estimate the angular distance, the p–angular distance, the skew angular distance,
and the skew p–angular distance between two nonzero vectors in a real normed space.
Therefore, the study of some refinements of this inequality helps with a better estimation
of the mentioned previously angular distances. In addition, in this paper, we obtained
other inequalities of the Maligranda type. Using equality (7), we proved two inequalities in
Theorem 1, which improved the second part of Maligranda’s inequality. These results can
be used to obtain better estimates of angular distances. In Theorem 3, we also presented
a result that refined the inequalities obtained in Theorem 1. By replacing the parameter
λ with various values or by replacing the vectors x, y with linear combinations of these
vectors, we obtained other applications for dλ(x, y), where x, y ∈ X . It remains for the
reader to find other estimates of the expression dλ(x, y), where x, y ∈ X and λ ∈ R.
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7. Minculete, N.; Păltănea, R. Improved estimates for the triangle inequality. J. Inequal. Appl. 2017, 2017, 17. [CrossRef] [PubMed]
8. Chadli, O.; Yao, J.C. On variational–hemivariational inequalities with nonconvex constraints. J. Nonlinear Var. Anal. 2021, 5,

893–907.
9. Wang, H. Certain integral inequalities related to (ϕ, $α)–Lipschitzian mappings and generalized h–convexity on fractal sets. J.

Nonlinear Funct. Anal. 2021, 12. [CrossRef]
10. Maligranda, L. Simple Norm Inequalities. Am. Math. Mon. 2006, 113, 256–260. [CrossRef]
11. Maligranda, L. Some remarks on the triangle inequality for norms. Banach J. Math. Anal. 2008, 2, 31–41. [CrossRef]
12. Clarkson, J.A. Uniformly convex spaces. Trans. Am. Math. Soc. 1936, 40, 396–414. [CrossRef]
13. Massera, J.L.; Schäffer, J.J. Linear differential equations and functional analysis I. Ann. Math. 1958, 67, 517–573. [CrossRef]
14. Dunkl, C.F.; Wiliams, K.S. A simple norm inequality. Am. Math. Mon. 1964, 71, 53–54. [CrossRef]
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