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Abstract: The food web is a crucial conceptual tool for understanding the dynamics of energy transfer
in an ecosystem, as well as the feeding relationships among species within a community. It also
reveals species interactions and community structure. As a result, an ecological food web system with
two predators competing for prey while experiencing fear was developed and studied. The properties
of the solution of the system were determined, and all potential equilibrium points were identified.
The dynamic behavior in their immediate surroundings was examined both locally and globally. The
system’s persistence demands were calculated, and all conceivable forms of local bifurcations were
investigated. With the aid of MATLAB, a numerical simulation was used to clarify the control set of
parameters and comprehend the overall dynamics. For the system to continue, it was determined
that extremely high levels of either fear or harvesting lead to the extinction of one of the predator
species. Moreover, in contrast to the ecological assumption that if two species are vying for the
same resources, population values cannot be constant, this study showed that it is possible for two
competing species to subsist on the same resources.
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1. Introduction

A community of creatures and their physical surroundings can interact to form a
structure known as an ecosystem. The food web system is essential to ecology, as one of
the essential components for maintaining life and developing a species is food. A “food
web” describes the flow of energy through several species in a given area; it can generally
be thought of as being crucial to the survival of organisms in nature [1]. In this paper,
the food web depicts a single prey being consumed by two predators. Predation may be
regarded as a direct link between nutrition and the existence of species in nature, because
it can result in the extinction of one species without the occurrence of another or in the
dominance of one species over the other. If the type of predation induces fear in the prey,
the number of predators of one prey can have an effect on the survival and diversity of
the species. Although predators with a single predation process can enhance their share
by congregating on a single prey, the focus of this study is on the sensation of dread
experienced by the prey during predation. Notably, a fear response in prey can cause it to
die and become unavailable to predators. As a result, this behavior may have an impact on
the predator’s ability to exist.

For the food web model, functional response is crucial. It describes how each predator
hunts prey based on its density [2]. The three functional responses that Holling hypoth-
esized for the predator are known as Holling types I, II, and III [3]. Despite including
the inhibitory impact at high concentrations, Andrews proposed the Monod-Haldane
function for low concentrations [4]. Predation decreases when prey populations are high,
because the prey can better protect themselves or blend in under such conditions [5]. This
phenomenon is referred to as group defense.
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On the other hand, predation fear plays a significant role in the development of
predator–prey relationships, mainly by making it more challenging for predators to
hunt [6–10]. Fear of predation (perceived predation risk) caused by the mere presence
of a predator within an ecosystem is increasingly regarded as an ecological force that rivals
or exceeds that of direct killing [11]. Therefore, in recent years, many scientists have started
investigating the predator–prey model based on the fear component [12–21]. By taking
into account both fear and group defense of prey in the presence of a predator, Sasmal
and Takeuchi [18] developed an ODE model on predator–prey interactions. They consid-
ered the Monod-Haldane type response function, which can capture the group defense
of prey. The combined impacts of fear, prey refuge, and extra food for the predator in a
predator–prey system with Beddington-type functional response were examined by SK
et al. [22]. A modified Leslie-Gower predator–prey model incorporating the fear effect and
nonlinear harvesting was created and studied by Al-Momen and Naji [23]. Those authors
employed the Holling type-II functional response to model the predator’s eating process.
A predator–prey system with a Holling type II functional response that combines preda-
tion fear with predator-dependent prey refuge was conceived and explored by Ibrahim
et al. in [24]. The effects of anti-predator behavior resulting from fear of predator species
were investigated by Xie and Zhang [25] in a predator–prey system with Holling III type
functional response and prey shelters. Kumar and Kumari [26] devised and investigated
a fractional-order delayed predator–prey system which took into account the fear effect.
Since they considered the time delay in terms of the effects of fear, the system did not
undergo any dynamic changes as a result of an absence of fear.

Later, several investigations were conducted on the impact of predation fear on the
dynamic of the food chains of three species and food webs systems [27–34]. In a three-
species food chain model, Kumar and Kumari [27] investigated the effects of fear on
the dynamics in cases whereby the top predator’s fear inhibits the growth rate of the
intermediate predator, while the intermediate predator’s fear suppresses the growth rate
of the prey. For the purpose of examining the effects of fear, Cong et al. [30] developed a
three-species food chain model to determine the cost and benefit of anti-predator behaviors.
They did this by applying the traditional Holling’s time budget argument to calculate the
predator’s functional response. Rahi et al. [31] proposed a predator–prey interaction model
in which a predator’s population is divided into two stages. To include the additional
supply of food for the predator, they changed Holling’s disk equation to describe how
the prey is consumed. To better understand how predation fear affects the dynamics
of a food chain system comprising three species, Maghool and Naji [32] developed and
investigated a novel model. As each prey in the system has an anti-predator trait, they
assumed that food is moved from the lower to the upper level by a Sokol-Howell type
functional response. A tritrophic food-chain model with the inclusion of prey refuge terms
was developed by Saha and Samanta [33], in which consumers hunt for prey using Holling
type-III functional responses. Maghool and Naji [34] mathematically constructed a three-
species food web model with two competing prey species and one predator experiencing
fear. They took advantage of modified Holling type II functional responses as well as
intraspecific competition within the predator population.

Harvesting can cause severe damage to the ecosystem of a given region. As such, if
the activity is inevitable, then the governing authority of that area should implement a
regulating policy that would minimize such damage. Harvesting has a substantial impact
on the dynamic evolution of a population subjected to it [35]. Therefore, it is important to
take into account the harvesting of species in predator–prey models from the standpoint
of financial income. Numerous harvesting techniques have been applied in the literature.
While some of them employed age selection, proportional, and constant harvesting, others
thought about nonlinear harvesting. Investigations of how harvesting affects ecological
system dynamics have attracted a lot of attention [23,36–43].

Keeping these notions in mind, the issue of hunting when two predators are competing
for the same prey is addressed in the current work. It is assumed that the prey species have
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a capacity for collective defense. Therefore, the dynamics and bifurcations of a two-predator
model feeding on a single prey with a functional response of the Monod-Haldane type are
investigated in the presence of harvesting.

2. The Model Formulation

In this section, a real-world food web system under the influence of fear and harvesting
is formulated using a mathematical model. The following hypotheses are used to create the
model, with prey, first predator density, and second predator density at time t represented
by X(T), Y(T), and Z(T), respectively.

1. Fear imposed by predators has several effects on prey populations, including foraging
frequency, habitat utilization, reproductive speed, and physiological changes [33].
As a result, it is hypothesized that predators use the fear function

(
1

1+k1Y+k2Z

)
to

influence the prey’s growth rate.
2. The prey population grows logistically in the absence of predation.
3. The predators consume the prey depending on the using Monod–Haldane-type

response function; their numbers are reduced due to intraspecific competition. More-
over, it is assumed that interspecies competition exists.

4. Finally, the system is imposed under the effect of fixed-offer harvesting.

Depending on the above hypotheses, the dynamics of a food-web system can be
simulated using the following set of differential equations.

dX
dT =

(
rX

1+k1Y+k2Z

)
− b0X− c0X2 − a1XY

b1+c1X+X2 − a2XZ
b2+c2X+X2 − h1X,

dY
dT = e1a1XY

b1+c1X+X2 − u1Y2 − v1YZ− d1Y− h2Y,
dZ
dT = e2a2XZ

b2+c2X+X2 − u2Z2 − v2YZ− d2Z− h3Z,

(1)

where the system domain is given byR+
3 =

{
(X, Y, Z) ∈ R3 : X(0) ≥ 0, Y(0) ≥ 0, Z(0) ≥ 0

}
.

The system parameters, all assumed to be positive, are described in Table 1.
The existence of a large number of parameters in any dynamic system presents dif-

ficulties in terms of performing analyses. Therefore, in the interests of simplification, the
following dimensionless variables and parameters are utilized in the present system (1).

t = rT, x =
c0

r
X, y =

a1c2
0

r3 Y, z =
a2 c2

0
r3 Z.

p1 =
k1r3

a1c2
0

, p2 =
k2r3

a2c2
0

, p3 =
b0

r
, p4 =

b1c2
0

r2 , p5 =
c1c0

r
, p6 =

b2 c2
0

r2 ,

p7 =
c2 c0

r
, p8 =

h1

r
, p9 =

e1a1 c0

r2 , p10 =
u1r2

a1c2
0

, p11 =
v1r2

a2c2
0

, p12 =
d1

r
, p13 =

h2

r
,

p14 =
e2a2 c0

r2 , p15 =
u2r2

a2c2
0

, p16 =
v2 r2

a1c2
0

, p17 =
d2

r
, p18 =

h3

r
.

Then, the resulting dimensionless system can be written as

dx
dt = x

1+p1y+p2z − p3x− x2 − xy
p4+p5x+x2 − xz

p6+p7x+x2 − p8x,
dy
dt = p9xy

p4+p5x+x2 − p10y2 − p11 yz− p12y− p13y,
dz
dt = p14xz

p6+p7x+x2 − p15z2 − p16yz− p17 z− p18z,

(2)

with the initial condition x(0) ≥ 0, y(0) ≥ 0, and z(0) ≥ 0.
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Table 1. Description of parameters.

Parameter Descriptions Unite

r The birth rate of prey. T−1

b0 The natural death rate of prey. T−1

c0 The intraspecies competition of the prey. D−1.T−1

k1 The fear rate of prey of predator Y. D−1

k2 The fear rate of prey of predator Z. D−1

a1 The attack rate of the first predator of the prey. D.T−1

a2 The attack rate of the second predator of the prey. D.T−1

b1
The half-saturation constant of first predator Y in the
absence of a direct measure of the inhibitory effect. D2

b2
The half-saturation constant of second predator Z in the
absence of a direct measure of the inhibitory effect. D2

c1 The inhibitory effect at high concentrations for predator Y. D

c2 The inhibitory effect at high concentrations for predator Z. D

hi; i = 1, 2, 3 The harvest rate of species i. T−1

e1 and e2
The conversion rates of the first and second predators,
respectively. non

u1 and u2
The intraspecific competition of the first and second
predators, respectively. D−1.T−1

v1 and v2
The interspecific competition between the first and second
predators, respectively. D−1.T−1

d1 and d2
The natural death rate of the first and second predators,
respectively. T−1

Note: D represents the population density symbol.

3. Properties of the Solution

According to the right-hand side of the system (2), all the interaction functions are
continuous and have continuous partial derivatives with respect to variables x, y, and z.
Therefore, they are Lipschitz functions, and as such, the system with an initial condition
has a unique solution [44]. Moreover, the following theorem can determine the bounds of
all existing solutions.

Theorem 1. In the regionΛ ⊆ R+
3, all existing system (2) solutions are uniformly bounded, where

Λ =

{
(x, y, z) ∈ R+

3 : 0 ≤ x ≤ (1− p3), x +
y
p9

+
z

p14
≤ 2(1− p3 − p8)(1− p3)

µ

}

Proof. From the first equation, it is observed that

dx
dt
≤ (1− p3)x− x2 = (1− p3)x

(
1− x

(1− P3)

)
Direct computation shows that lim

t→∞
Supx(t) ≤ (1− p3). Now, let us define the function

W = x +
y

p9
+ z

p14
. Differentiating the function W with respect to time t, it is obtained, such

that:
dw
dt = x

B1
− p3x− x2 − xy

B2
− xz

B3
− p8x + xy

B2
− p10

p9
y2 − p11

p9
yz

− (p12+p13)
p9

y + xz
B3
− p15

p14
z2 − p16

p14
yz− (p17+p18)

p14
z,
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where B1 = 1 + p1y + p2z, B2 = p4 + p5x + x2, and B3 = p6 + p7x + x2. Then

dw
dt
≤ (1− p3 − p8)x− (p12 + p13)

p9
y− (p17 + p18)

p14
z

Using some simple calculations yields:

dw
dt
≤ 2(1− p3 − p8)x− µ

(
x +

y
p9

+
z

p14

)
where µ = min {1− p3 − p8, p12 + p13, p17 + p18}. Note that 1− p3 − p8 > 0, due to the
biological meaning of these parameters, which is known as a survival condition of x.

Accordingly, it is determined that

dw
dt

+ µW ≤ 2(1− p3 − p8)(1− p3)

Hence, direct computation indicates that for t→ ∞ , W ≤ 2(1−p3−p8)(1−p3)
µ , thereby

completing the proof. �

4. Stability Analysis

In this section, the possible equilibrium points (EQPs) are determined, and then a
stability analysis for them is undertaken. Different EQPs may exist for the system (2); these
are summarized as:

The evanescence equilibrium point (EEQP), denoted by E0 = (0, 0, 0), always exists.
The predation-free equilibrium point (PDFEQP), denoted by E1 = (x̂, 0, 0), with

x̂ = 1− p3 − p8, which exists under the survival condition 1− p3 − p8 > 0.
The second predator-free equilibrium point (SPFEQP) is denoted by E2 = (x̌, y̌, 0),

where y̌ is given by:

y̌ =
1

p10

[
p9 x̌

p4 + p5 x̌ + x̌2 − (p12 + p13)

]
(3)

When x̌ is the positive root of the equation:

A1x7 + A2x6 + A3x5 + A4x4 + A5x3 + A6x2 + A7x + A8 = 0 (4)

where
A1 = −p10[p10 − p1(p12 + p13)]

A2 = −p1 p10[p9 − (p3 + p8)(p12 + p13)] + p10
2[1− (p3 + p8)]

−3p5 p10[p10 − p1(p12 + p13)],

A3 = p10[−p1 p9(p3 + 2p5 + p8)− 3p4 p10 + 3p5 p10(1− p3 − p8)
−3p2

5[p10 − p1(p12 + p13)] + 3p1(p12 + p13)(p4 + p3 p5 + p5 p8)
]
,

A4 = −2p1 p4 p9 p10 − 2p1 p3 p5 p9 p10 − p1 p2
5 p9 p10 − 2p1 p5 p8 p9 p10 + 3p4 p2

10
−3p3 p4 p2

10 − 6p4 p5 p2
10 + 3p2

5 p2
10 − 3p3 p2

5 p2
10 − p3

5 p2
10 − 3p4 p8 p2

10
−3p2

5 p8 p2
10 + p10 p12 + 3p1 p3 p4 p10 p12 + 6p1 p4 p5 p10 p12 + 3p1 p3 p2

5 p10 p12
+p1 p3

5 p10 p12 + 3p1 p4 p8 p10 p12 + 3p1 p2
5 p8 p10 p12 − p1 p2

12 + p10 p13
+3p1 p3 p4 p10 p13 + 6p1 p4 p5 p10 p13 + 3p1 p3 p2

5 p10 p13 + p1 p3
5 p10 p13

+3p1 p4 p8 p10 p13 + 3p1 p2
5 p8 p10 p13 − 2p1 p12 p13 − p1 p2

13,
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A5 = −p9 p10 − 2p1 p3 p4 p9 p10 − 2p1 p4 p5 p9 p10 − p1 p3 p2
5 p9 p10 − 2p1 p4 p8 p9 p10

−p1 p2
5 p8 p9 p10 − 3p2

4 p2
10 + 6p4 p5 p2

10 − 6p3 p4 p5 p2
10 − 3p4 p2

5 p2
10 + p3

5 p2
10

−p3 p3
5 p2

10 − 6p4 p5 p8 p2
10 − p3

5 p8 p2
10 + 2p1 p9 p12 + 3p1 p2

4 p10 p12
+2p5 p10 p12 + 6p1 p3 p4 p5 p10 p12 + 3p1 p4 p2

5 p10 p12 + p1 p3 p3
5 p10 p12

+6p1 p4 p5 p8 p10 p12 + p1 p3
5 p8 p10 p12 − 2p1 p5 p2

12 + 2p1 p9 p13 + 3p1 p2
4 p10 p13

+2p5 p10 p13 + 6p1 p3 p4 p5 p10 p13 + 3p1 p4 p2
5 p10 p13 + p1 p3 p3

5 p10 p13
+6p1 p4 p5 p8 p10 p13 + p1 p3

5 p8 p10 p13 − 4p1 p5 p12 p13 − 2p1 p5 p2
13,

A6 = −p1 p2
9 − p1 p2

4 p9 p10 − p5 p9 p10 − 2p1 p3 p4 p5 p9 p10 − 2p1 p4 p5 p8 p9 p10
+3p2

4 p2
10 − 3p3 p2

4 p2
10 − 3p2

4 p5 p2
10 + 3p4 p2

5 p2
10 − 3p3 p4 p2

5 p2
10 − 3p2

4 p8 p2
10

−3p4 p2
5 p8 p2

10 + 2p1 p5 p9 p12 + 2p4 p10 p12 + 3p1 p3 p2
4 p10 p12

+3p1 p2
4 p5 p10 p12 + p2

5 p10 p12 + 3p1 p3 p4 p2
5 p10 p12 + 3p1 p2

4 p8 p10 p12
+3p1 p4 p2

5 p8 p10 p12 − 2p1 p4 p2
12 − p1 p2

5 p2
12 + 2p1 p5 p9 p13

+2p4 p10 p13 + 3p1 p3 p2
4 p10 p13 + 3p1 p2

4 p5 p10 p13 + p2
5 p10 p13

+3p1 p3 p4 p2
5 p10 p13 + 3p1 p2

4 p8 p10 p13 + 3p1 p4 p2
5 p8 p10 p13

−4p1 p4 p12 p13 − 2p1 p2
5 p12 p13 − 2p1 p4 p2

13 − p1 p2
5 p2

13,

A7 =−p4 p9 p10 − p1 p3 p2
4 p9 p10 − p1 p2

4 p8 p9 p10 − p3
4 p2

10 + 3p2
4 p5 p2

10
−3p3 p2

4 p5 p2
10 − 3p2

4 p5 p8 p2
10 + 2p1 p4 p9 p12 + p1 p3

4 p10 p12
+2p4 p5 p10 p12 + 3p1 p3 p2

4 p5 p10 p12 + 3p1 p2
4 p5 p8 p10 p12 − 2p1 p4 p5 p2

12
+2p1 p4 p9 p13 + p1 p3

4 p10 p13 + 2p4 p5 p10 p13 + 3p1 p3 p2
4 p5 p10 p13

+3p1 p2
4 p5 p8 p10 p13 − 4p1 p4 p5 p12 p13 − 2p1 p4 p5 p2

13,

A8 = p3
4 p2

10(1− p3 − p8) + p2
4 p10(p12 + p13)[1 + p1 p4(p3 + p8)]− p1 p2

4(p12 + p13)
2

As a result, there is at least one positive SPFEQP, provided that the following require-
ments are met.

(p12 + p13) <
p9 x̌

p4 + p5 x̌ + x̌2 (5)

A1 > 0, A8 < 0
or

A1 < 0, A8 > 0

 (6)

The first predator-free equilibrium point (FPFEQP) is denoted by E3 = (x, 0, z), where
z is given by:

z =
1

p15

[
p14x

p6 + p7x + x2 − (p17 + p18)

]
(7)

where x is a positive root of the following equation.

D1x7 + D2x6 + D3x5 + D4x4 + D5x3 + D6x2 + D7x + D8 = 0 (8)

where
D1 = −p15[p15 − p2(p17 + p18)]

D2 = −p2 p15[p14 − (p3 + p8)(p17 + p18)] + p2
15[1− (p3 + p8)]

−3p7 p15[p15 − p2(p17 + p18)],

D3 = p15[−p2 p14(p3 + 2p7 + p8)− 3p6 p15 + 3p7 p15(1− p3 − p8)
−3p2

7[p15 − p2(p17 + p18)] + 3p2(p17 + p18)(p6 + p7 p3 + p7 p8)
]
,

D4 =−2p2 p6 p14 p15 − 2p2 p3 p7 p14 p15 − p2 p2
7 p14 p15 − 2p2 p7 p8 p14 p15 + 3p6 p2

15
−3p3 p6 p2

15 − 6p6 p7 p2
15 + 3p2

7 p2
15 − 3p3 p2

7 p2
15 − p3

7 p2
15 − 3p6 p8 p2

15
−3p2

7 p8 p2
15 + p15 p17 + 3p2 p3 p6 p15 p17 + 6p2 p6 p7 p15 p17

+3p2 p3 p2
7 p15 p17 + p2 p3

7 p15 p17 + 3p2 p6 p8 p15 p17 + 3p2 p2
7 p8 p15 p17

−p2 p2
17 + p15 p18 + 3p2 p3 p6 p15 p18 + 6p2 p6 p7 p15 p18 + 3p2 p3 p2

7 p15 p18
+p2 p3

7 p15 p18 + 3p2 p6 p8 p15 p18 + 3p2 p2
7 p8 p15 p18 − 2p2 p17 p18 − p2 p2

18,
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D5= −p14 p15 − 2p2 p3 p6 p14 p15 − 2p2 p6 p7 p14 p15 − p2 p3 p2
7 p14 p15

−2p2 p6 p8 p14 p15 − p2 p2
7 p8 p14 p15 − 3p2

6 p2
15 + 6p6 p7 p2

15 − 6p3 p6 p7 p2
15

−3p6 p2
7 p2

15 + p3
7 p2

15 − p3 p3
7 p2

15 − 6p6 p7 p8 p2
15 − p3

7 p8 p2
15 + 2p2 p14 p17

+3p2 p2
6 p15 p17 + 2p7 p15 p17 + 6p2 p3 p6 p7 p15 p17 + 3p2 p6 p2

7 p15 p17
+p2 p3 p3

7 p15 p17 + 6p2 p6 p7 p8 p15 p17 + p2 p3
7 p8 p15 p17 − 2p2 p7 p2

17
+2p2 p14 p18 + 3p2 p2

6 p15 p18 + 2p7 p15 p18 + 6p2 p3 p6 p7 p15 p18
+3p2 p6 p2

7 p15 p18 + p2 p3 p3
7 p15 p18 + 6p2 p6 p7 p8 p15 p18

+p2 p3
7 p8 p15 p18 − 4p2 p7 p17 p18 − 2p2 p7 p2

18,

D6= −p2 p2
14 − p2 p2

6 p14 p15 − p7 p14 p15 − 2p2 p3 p6 p7 p14 p15 − 2p2 p6 p7 p8 p14 p15
+3p2

6 p2
15 − 3p3 p2

6 p2
15 − 3p2

6 p7 p2
15 + 3p6 p2

7 p2
15 − 3p3 p6 p2

7 p2
15

−3p2
6 p8 p2

15 − 3p6 p2
7 p8 p2

15 + 2p2 p7 p14 p17 + 2p6 p15 p17 + 3p2 p3 p2
6 p15 p17

+3p2 p2
6 p7 p15 p17 + p2

7 p15 p17 + 3p2 p3 p6 p2
7 p15 p17 + 3p2 p2

6 p8 p15 p17
+3p2 p6 p2

7 p8 p15 p17 − 2p2 p6 p2
17 − p2 p2

7 p2
17 + 2p2 p7 p14 p18 + 2p6 p15 p18

+3p2 p3 p2
6 p15 p18 + 3p2 p2

6 p7 p15 p18 + p2
7 p15 p18 + 3p2 p3 p6 p2

7 p15 p18
+3p2 p2

6 p8 p15 p18 + 3p2 p6 p2
7 p8 p15 p18 − 4p2 p6 p17 p18

−2p2 p2
7 p17 p18 − 2p2 p6 p2

18 − p2 p2
7 p2

18,

D7= −p6 p14 p15 − p2 p3 p2
6 p14 p15 − p2 p2

6 p8 p14 p15 − p3
6 p2

15 + 3p2
6 p7 p2

15
−3p3 p2

6 p7 p2
15 − 3p2

6 p7 p8 p2
15 + 2p2 p6 p14 p17 + p2 p3

6 p15 p17
+2p6 p7 p15 p17 + 3p2 p3 p2

6 p7 p15 p17 + 3p2 p2
6 p7 p8 p15 p17 − 2p2 p6 p7 p2

17
+2p2 p6 p14 p18 + p2 p3

6 p15 p18 + 2p6 p7 p15 p18 + 3p2 p3 p2
6 p7 p15 p18

+3p2 p2
6 p7 p8 p15 p18 − 4p2 p6 p7 p17 p18 − 2p2 p6 p7 p2

18,

D8 = p3
6 p2

15(1− p3 − p8) + p2
6 p15(p17 + p18)[1 + p2 p6(p3 + p8)]− p2 p2

6(p17 + p18)
2

Similarly, there is at least one positive FPFEQP, provided that the following require-
ments are met.

(p17 + p18) <
p14x

p6 + p7x + x2 (9)

D1 > 0, D8 < 0
or

D1 < 0, D8 > 0

 (10)

The interior equilibrium point (IEQP), denoted by E4 = (x∗, y∗, z∗), can be determined
by solving the following system.

f1 = 1
1+p1y+p2z − p3 − x− y

p4+p5x+x2 − z
p6+p7x+x2 − p8 = 0,

f2 = p9x
p4+p5x+ x2 − p10y− p11 z− p12 − p13 = 0,

f3 = p14x
p6+p7x+x2 − p15z− p16y− p17 − p18 = 0.

 (11)

Consequently, solving the last equation of (11) with respect to z gives:

z =
p14x−

(
p6 + p7x + x2)(p16y + p17 + p18)

p15(p6 + p7x + x2)
(12)

Substituting, Equation (12) in the first two equations of (11) gives the following two
isoclines:

h1(x, y) = 1

1+p1y+p2
p14x−(p6+p7x+x2)(p16y+p17 +p18)

p15(p6+p7x+x2)

− p3 − x− y
p4+p5x+x2

− p14x−(p6+p7x+x2)(p16y+p17 +p18)

p15(p6+p7x+x2)
2 − p8 = 0.

h2(x, y) = p9x
p4+p5x+ x2 − p10y− (p12 + p13)

− p11
p14x−(p6+p7x+x2)(p16y+p17 +p18)

p15(p6+p7x+x2)
= 0.


(13)
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Remember that if the two isoclines given in (13) meet at a single point, say (x∗, y∗) in
the first quadrant of the xy plane, which satisfies the positivity of z(x∗, y∗), the IEQP will
exist uniquely in the interior of the state space of system (2). After some algebraic work,
the isoclines in (13) are as follows when x → 0 :

h1(0, y) = N1y2 + N2y + N3 = 0
h2(0, y) = C1y + C2 = 0.

}
(14)

where
N1 = p2

6(p6 p15 − p4 p16)(p1 p15 − p2 p16)

N2 = p3
6 p2

15(1 + p1 p4 p3 + p1 p4 p8)− p4 p2
6 p15(p16 + p1 p17 + p1 p18)

−p2 p4 p3
6 p15 p16(p3 + p8)− p2 p3

6 p15(p17 + p18) + 2p2 p4 p2
6 p16(p17 + p18),

N3 = −p4 p3
6 p2

15(1− p3 − p8)− p4 p2
6 p15(p17 + p18)[1 + p2 p6(p3 + p8)]

+p2 p4 p2
6(p17 + p18)

2,

C1 = p4 p6(p10 p15 − p11 p16)

C2 = p4 p6[p15(p12 + p13)− p11(p17 + p18)]

It is clear that the two isoclines in Equation (14) cross the y axis in their respective
locations at those places.

y1 =
−N2 −

√
N22 − 4N1N3

2N1
> 0, y2 =

−N2 +
√

N22 − 4N1N3

2N1
< 0 (15a)

y3 = −C2

C1
> 0 (15b)

provided that the following conditions are satisfied:

N1 < 0; N3 > 0,
C1 > 0; C2 < 0 OR C1 < 0; C2 > 0

}
(16a)

It should be noted that by using the condition N1 < 0, the isocline h1(0, y) = 0 is
guaranteed to have its maximum on the right side of the xy plane. Consequently, if the
following sufficient set of requirements is satisfied in addition to condition (16a), it is simple
to verify that the two isoclines produced by Equation (13) intersect at a singular positive
point, i.e., (x∗, y∗), in the first quadrant of the xy plane.

y1 > y3
dx
dy = − ∂h2/∂y

∂h2/∂x > 0
p14x∗ >

(
p6 + p7x∗ + x∗2)(p16y∗ + p17 + p18)

 (16b)

By finding the Jacobian matrix (JM) and then their eigenvalues, the local stability near
the above EQPs can be investigated. The JM of System (2) at (x, y, z) is as follows:

J(x, y, z) =


x ∂ f1

∂x + f1 x ∂ f1
∂y x ∂ f1

∂z

y ∂ f2
∂x y ∂ f2

∂y + f2 y ∂ f2
∂z

z ∂ f3
∂x z ∂ f3

∂y z ∂ f3
∂z + f3

 (17)

where

∂ f1

∂x
= −1 +

y(p5 + 2x)
B22 +

z(p7 + 2x)
B32 ,

∂ f1

∂y
= − p1

B1
2 −

1
B2

,
∂ f1

∂z
= − p2

B1
2 −

1
B3

,

∂ f2

∂x
=

p9
(

p4 − x2)
B22 ,

∂ f2

∂y
= −p10,

∂ f2

∂z
= −p11 ,
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∂ f3

∂x
=

p14
(

p6 − x2)
B32 ,

∂ f3

∂y
= −p16,

∂ f3

∂z
= −p15.

Therefore, the JM at EEQP can be written as:

J(E0) =

1− (p3 + p8) 0 0
0 −(p12 + p13) 0
0 0 −(p17 + p18)

 (18)

Accordingly, the eigenvalues of J(E0) can be written as:

λ01 = 1− (p3 + p8), λ02 = −(p12 + p13) < 0 and λ03 = −(p17 + p18) < 0 (19)

Therefore, EEQP is a locally asymptotically stable (LAS) if and only if the following
condition is met:

1 < (p3 + p8). (20)

The JM at PDFEQP is determined as:

J(E1) =


−x̂ −p1 x̂− x̂

B̂2
−p2 x̂− x̂

B̂3

0 p9 x̂
B̂2
− (p12 + p13) 0

0 0 p14 x̂
B̂3
− (p17 + p18)

 (21)

where B̂2 = p4 + p5 x̂ + x̂2, and B̂3 = p6 + p7 x̂ + x̂2. Consequently, the eigenvalues of J(E1)
are given by

λ11 = −x̂, λ12 =
p9 x̂
B̂2
− (p12 + p13),λ13 =

p14 x̂
B̂3
− (p17 + p18). (22)

Clearly, all the above eigenvalues are negative. Then, PDFEQP is LAS if the following
requirements are satisfied:

p9 x̂
B̂2

< (p12 + p13) (23)

p14 x̂
B̂3

< (p17 + p18) (24)

At SPFEQP, the JM can be written as:

J(E2) =
[
ǎij
]

(25)

where

ǎ11 = x̌
[
−1 +

y̌(p5 + 2x̌)
B̌22

]
, ǎ12 = − p1 x̌

B̌1
2
− x̌

B̌2
, ǎ13 = − p2 x̌

B̌1
2
− x̌

B̌3
,

ǎ21 =
p9
(

p4 − x̌2)y̌
B̌22

, ǎ22 = −p10y̌, ǎ23 = −p11y̌,

ǎ31 = ǎ32 = 0, ǎ33 =
p14 x̌
B̌3
− p16y̌− (p17 + p18)

with B̌1 = 1+ p1y̌, B̌2 = p4 + p5 x̌+ x̌2, and B̌3 = p6 + p7 x̌+ x̌2. Therefore, the characteristic
equation of J(E2) can be written as:(

λ2 − Tr1λ+ Det1

)
(ǎ33 − λ) = 0, (26)
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where Tr1 = ǎ11 + ǎ22, and Det1 = ǎ11 ǎ22 − ǎ12 ǎ21. Direct computation shows that all the
eigenvalues of J(E2) and roots of the Equation (26) have negative real parts, provided that
the following conditions are met.

p14 x̌
B̌3

< p16y̌ + p17 + p18 (27)

y̌(p5 + 2x̌)
B̌22

< 1 (28)

x̌2 < p4 (29)

Similarly, at FPFEQP, JM can be written as:

J(E3) =
[
aij
]

(30)

where

a11 = x
[
−1 +

z(p7 + 2x)
B32

]
, a12 = − p1x

B1
2
− x

B2
, a13 = − p2x

B1
2
− x

B3
,

a21 = a23 = 0, a22 =
p9x
B2
− p11 z− (p12 + p13),

a31 =
p14
(

p6 − x2)z
B32

, a32 = −p16z, a33 = −p15z,

with B1 = 1 + p2z, B2 = p4 + p5x + x2, and B3 = p6 + p7x + x2. Therefore, the equation of
J(E3) can be written as: (

λ2 − Tr2λ+ Det2

)
(a22 − λ) = 0, (31)

where Tr2 = a11 + a33 and Det1 = a11a33 − a13a31. Direct computation shows that all the
eigenvalues of J(E3) and roots of Equation (31) have negative real parts, provided that the
following conditions are met.

p9x
B2

< p11 z + p12 + p13 (32)

z(p7 + 2x)
B32

< 1 (33)

x2 < p6 (34)

Now the JM at the IEQP can be represented as E4 = (x∗, y∗, z∗)

J(E4) =
[
aij
]

(35)

where

a11 = x∗
(
−1 +

(p5 + 2x∗)y∗

B∗2
2 +

(p7 + 2x∗)z∗

B∗3
2

)
, a12 = −x∗

(
p1

B∗1
2 +

1
B∗2

,
)

,

a13 = −x∗
(

p2

B∗1
2 +

1
B∗3

)
, a21 = y∗

p9
(

p4 − x∗2
)

B∗2
2 , a22 = −p10y∗,

a23 = −p11y∗, a31 = z∗
p14
(

p6 − x∗2
)

B∗3
2 , a32 = −p16z∗, a33 = −p15z∗,

with B∗1 = 1 + p1y∗ + p2z∗, B∗2 = p4 + p5x∗ + x∗2, and B∗3 = p6 + p7x∗ + x∗2. As a result,
the following theorem establishes the local stability criteria of IEQP.
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Theorem 2. Assuming that System (2) has an IEQP, it is LAS if the following conditions are met.

(p5 + 2x∗)y∗

B∗2
2 +

(p7 + 2x∗)z∗

B∗3
2 < 1 (36)

x∗2 < min {p4, p6} (37)

p11 p16 < p10 p15 (38)

p9 p16
(

p4 − x∗2
)

p10 p14 B∗2
2 <

(
p6 − x∗2

)
B∗3

2 <
p9 p15

(
p4 − x∗2

)
p11 p14 B∗2

2 (39)

p11y∗
p14
(

p6 − x∗2
)

B∗3
2 < p16x∗

(
p2

B∗1
2 +

1
B∗3

)
(40)

Proof. The characteristic equation of J(E4) is determined as

λ3 + Γ1λ
2 + Γ2λ+ Γ3 = 0 (41)

where
Γ1 = −(a11 + a22 + a33)

Γ2 = a11a22 − a12a21 + a11a33 − a13a31 + a22a33 − a23a32

Γ3 = −[a11(a22a33 − a23a32)− a12(a21a33 − a23a31)− a13(a22a31 − a21a32)]

with

∆ = Γ1Γ2 − Γ3 = −(a11 + a22)[a11a22 − a12a21]− (a11 + a33)[a11a33 − a13a31]
−(a22 + a33)[a22a33 − a23a32]− 2a11a22a33 + a12a23a31 + a13a21a32.

If Γ1 > 0, Γ3 > 0, and ∆ > 0, then using the Routh-Hurwitz criterion, all the roots
of Equation (41) have negative real parts, and thus, IEQP is LAS. All Routh-Hurwitz con-
straints are satisfied under the stated sufficient conditions according to direct computation.
�

5. Global Stability Analysis

In this part, the basin of attraction of each asymptotically stable EQP is determined
using Lyapunov functions, as proven in the theorems below.

Theorem 3. The EEQP is globally stable locally (GAS) whenever it is LAS.

Proof. Now we define V0 as a real-valued function that is given by

V0 = c1x + c2y + c3z,

where c1, c2, and c3 are the positive constants to be determined. V0 is a positive definite
function that is defined on R+

3. Furthermore, dV0
dt can be written as follows:

dV0
dt = c1x(1− p3 − p8)− c1x2 − (c1 − c2 p9)

xy
p4+p5x+x2 − (c1 − c3 p14)

xz
p6+p7x+x2

−c2 p10y2 − (c2 p11 + c3 p16)yz− c2y(p12 + p13)
−c3 p15z2 − c3z(p17 + p18)
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Now, by choosing c1 = 1, c2 = 1
p9

, and c3 = 1
p14

as the positive constants, it is
determined that:

dV0

dt
≤ x(1− p3 − p8)−

(p12 + p13)

p9
y− (p17 + p18)

p14
z

Then, using the LAS condition (20), the derivative dV0
dt becomes a negative definite

function. Hence, EEQP is GAS. �

Theorem 4: The PDFEQP is GAS if the following conditions are met.

p1 x̌ +
x̌
p4

<
(p12 + p13)

p9
(42)

p2 x̌ +
x̌
p6

<
(p17 + p18)

p14
(43)

Proof: Now we define V1 as a real-valued function that is given by

V1 = q1

[
x− x̌− x̌ln

x
x̌

]
+ q2y + q3z

where q1, q2, and q3 are the positive constants to be determined. V1 is a positive definite
function that is defined on

{
(x, y, z) ∈ R3 : x > 0, y ≥ 0, z ≥ 0

}
. Furthermore, after doing

some simplifications steps, dV1
dt can be written as follows:

dV1
dt ≤ q1 p1 x̌y + q1 p2 x̌z− q1(x− x̌)2 − (q1 − q2 p9)

xy
p4+p5x+x2 +

q1
p4

x̌y
−(q1 − q3 p14)

xz
p6+p7x+x2 +

q1
p6

x̌z− q2 p10y2 − q2(p12 + p13)y
−(q2 p11 + q3 p16)yz− q3 p15z2 − q3(p17 + p18)z

Now, by choosing the positive constants as q1 = 1, q2 = 1
p9

, and q3 = 1
p14

, it is
determined that

dV1

dt
≤ −(x− x̌)2 −

[
(p12 + p13)

p9
− p1 x̌− x̌

p4

]
y−

[
(p17 + p18)

p14
− p2 x̌− x̌

p6

]
z

Then, by using the above sufficient conditions, the derivative dV1
dt becomes a negative

definite function, and hence, the PDFEQP is GAS. �

Theorem 5: The SPFEQP is GAS if the following sufficient conditions are met.

(p5 + x + x̂)ŷ
B2B̂2

< 1 (44)

p2 x̂
B1B̂1

+
x̂

B3
+

p11B̂2

p9 p4
ŷ <

(p17 + p18)

p14
(45)

[
p1

B1B̂1
+

B̂2 x̂x
p4B2B̂2

]2

< 4
p10B̂2

p9 p4

[
1− (p5 + x + x̂)ŷ

B2B̂2

]
(46)

where all the symbols are defined in the proof.

Proof: Next, we define V2 as a real-valued function that is given by

V2 = µ1

[
x− x̂− x̂ln

x
x̂

]
+ µ2

[
y− ŷ− ŷln

y
ŷ

]
+ µ3z
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where µ1,µ2, and µ3 are the positive constants to be determined. V2 is a positive definite
function that is defined on

{
(x, y, z) ∈ R3 : x > 0, y > 0, z ≥ 0

}
. Furthermore, after doing

some simplifications steps, dV2
dt can be written as follows:

dV2
dt = −µ1

[
1− (p5+x+x̂)ŷ

B2 B̂2

]
(x− x̂)2 − µ2 p10 (y− ŷ)2 − µ3 p15z2

−
[
µ1 p1
B1 B̂1

+ µ1 B̂2
B2 B̂2
− µ2 p9 p4

B2 B̂2
+ µ2 p9 x̂x

B2 B̂2

]
(x− x̂)(y− ŷ)

−
[
µ1 p2
B1 B̂1

+ µ1
B3
− µ3 p14

B3

]
xz− [µ2 p11 + µ3 p16]yz

−
[
µ3(p17 + p18)− µ1 p2 x̂

B1 B̂1
− µ1 x̂

B3
− µ2 p11ŷ

]
z,

where B1, B2, and B3 are given in Theorem (1), while B̂2, and B̂3 are given in Equation (21)
with B̂1 = 1 + p1ŷ. Now, by choosing µ1 = 1, µ2 = B̂2

p9 p4
, and µ3 = 1

p14
as the positive

constants, it is determined after simple calculation that:

dV2
dt ≤ −

[
1− (p5+x+x̂)ŷ

B2 B̂2

]
(x− x̂)2 − p10 B̂2

p9 p4
(y− ŷ)2

−
[

p1
B1 B̂1

+ B̂2 x̂x
p4B2 B̂2

]
(x− x̂)(y− ŷ)

−
[
(p17+p18)

p14
− p2 x̂

B1 B̂1
− x̂

B3
− p11 B̂2

p9 p4
ŷ
]
z.

Then, using Condition (46) yields:

dV2
dt ≤ −

[√
1− (p5+x+x̂)ŷ

B2 B̂2
(x− x̂) +

√
p10 B̂2
p9 p4

(y− ŷ)

]2

−
[
(p17+p18)

p14
− p2 x̂

B1 B̂1
− x̂

B3
− p11 B̂2

p9 p4
ŷ
]
z.

According to the given sufficient conditions, derivative dV2
dt becomes a negative definite

function, and hence, SPFEQP is GAS. �

Theorem 6: The FPFEQP is GAS if the following sufficient conditions are met.

(p7 + x + x)z
B3B3

< 1 (47)

p1x
B1B1

+
x

B2
+

p16B3

p6 p14
z <

(p12 + p13)

p9
(48)

[
p2

B1B1
+

B3xx
p6B3B3

]2

< 4
p15B3

p6 p14

[
1− (p7 + x + x)z

B3B3

]
(49)

where all the symbols are given in the proof.

Proof: Next, we define V3 as a real-valued function that is given by

V3 = Ω1

[
x− x− xln

x
x

]
+ Ω2[y] + Ω3

[
z− z− zln

z
z

]
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where Ω1, Ω2, and Ω3 are the positive constants to be determined. V3 is a positive definite
function that is defined on

{
(x, y, z) ∈ R3 : x > 0, y ≥ 0, z > 0

}
. Furthermore, after doing

some simplifications steps, dV3
dt can be written as follows:

dV3
dt = −Ω1

[
1− (p7+x+x)z

B3B3

]
(x− x)2 −Ω2 p10 y2 −Ω3 p15(z− z)2

−
[

Ω1 p2
B1B1

+ Ω1B3
B3B3
− Ω3 p6 p14

B3B3
+ Ω3 p14xx

B3B3

]
(x− x)(z− z)

−
[

Ω1 p1
B1B1

+ Ω1
B2
− Ω2 p9

B2

]
xy− [Ω2 p11 + Ω3 p16]yz

−
[
Ω2(p12 + p13)− Ω1 p1x

B1B1
− Ω1x

B2
−Ω3 p16z

]
y,

where B1, B2, and B3 are given in Theorem (1), while B1, B2, and B3 are given in Equation (30).
Now, by choosing Ω1 = 1, Ω2 = 1

p9
, and Ω3 = B3

p6 p14
as the positive constants, it is deter-

mined after a simple calculation that:

dV3
dt ≤ −

[
1− (p7+x+x)z

B3B3

]
(x− x)2 − p15B3

p6 p14
(z− z)2

−
[

p2
B1B1

+ B3xx
p6B3B3

]
(x− x)(z− z)

−
[
(p12+p13)

p9
− p1x

B1B1
− x

B2
− p16B3

p6 p14
z
]
y.

Then, using Condition (49) yields:

dV3
dt ≤ −

[√
1− (p7+x+x)z

B3B3
(x− x) +

√
p15B3
p6 p14

(z− z)

]2

−
[
(p12+p13)

p9
− p1x

B1B1
− x

B2
− p16B3

p6 p14
z
]
y.

Then, according to the given sufficient conditions, the derivative dV3
dt becomes a

negative definite function, and hence, FPFEQP is GAS. �

Theorem 7: The IEQP is GAS if the following sufficient conditions are met.

(p5 + x + x∗)y∗

B2B∗2
+

(p7 + x + x∗)z∗

B3B∗3
< 1, (50)

σ12
2 < σ11σ22, (51)

σ13
2 < σ11σ33, (52)

σ23
2 < σ22σ33, (53)

where all the symbols are given in the proof.

Proof: Next, we define V4 as a real-valued function that is given by

V4 = ω1

[
x− x∗ − x∗ln

x
x∗
]
+ ω2

[
y− y∗ − y∗ln

y
y∗

]
+ ω3

[
z− z∗ − z∗ln

z
z∗
]
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where ω1, ω2, and ω3 are the positive constants to be determined. V4 is a positive definite
function that is defined on

{
(x, y, z) ∈ R3 : x > 0, y > 0, z > 0

}
. Furthermore, after doing

some simplifications steps, dV4
dt can be written as follows:

dV4
dt = −ω1

[
1− (p5+x+x∗)y∗

B2B∗2
− (p7+x+x∗)z∗

B3B∗3

]
(x− x∗)2 −ω2 p10(y− y∗)2

−
[

ω1 p1
B1B∗1

+
ω1B∗2
B2B∗2
− ω2 p9(p4−x∗x)

B2B∗2

]
(x− x∗)(y− y∗)

−
[

ω1 p2
B1B∗1

+
ω1B∗3
B3B∗3
− ω3 p14(p6−x∗x)

B3B∗3

]
(x− x∗)(z− z∗)

−[ω2 p11 + ω3 p16](y− y∗)(z− z∗)−ω3 p15(z− z∗)2,

,

where B1, B2, and B3 are given in Theorem (1), while B∗1 , B∗2 , and B∗3 are given in Equation (35).

Now, by choosing the positive constants as ω1 = 1, ω2 =
B∗2

p4 p9
, and ω3 =

B∗3
p6 p14

, then it is
determined after simple calculation that:

dV4
dt = −

[
1− (p5+x+x∗)y∗

B2B∗2
− (p7+x+x∗)z∗

B3B∗3

]
(x− x∗)2 − p10B∗2

p4 p9
(y− y∗)2

− p15B∗3
p6 p14

(z− z∗)2 −
[

p1
B1B∗1

+ x∗x
B2B∗2

]
(x− x∗)(y− y∗)

−
[

p2
B1B∗1

+ x∗x
B3B∗3

]
(x− x∗)(z− z∗)

−
[

p11B∗2
p4 p9

+
p16B∗3
p6 p14

]
(y− y∗)(z− z∗).

Using the above sufficient conditions yields:

dV4
dt ≤ −

1
2 [
√

σ11(x− x∗) +
√

σ22(y− y∗)]2

− 1
2 [
√

σ11(x− x∗) +
√

σ33(z− z∗)]2

− 1
2 [
√

σ22(y− y∗) +
√

σ33(z− z∗)]2,

where σ11 = 1− (p5+x+x∗)y∗
B2B∗2

− (p7+x+x∗)z∗
B3B∗3

, σ22 =
p10B∗2
p4 p9

, σ33 =
p15B∗3
p6 p14

, σ12 = p1
B1B∗1

+ x∗x
B2B∗2

,

σ13 = p2
B1B∗1

+ x∗x
B3B∗3

, and σ23 =
p11B∗2
p4 p9

+
p16B∗3
p6 p14

.

Then, the derivative dV4
dt becomes a negative definite function, and hence, IEQP is GAS.

�

6. Persistence

Persistence is commonly understood as a global attribute of a dynamic system. Rather
than the interior solution space, it is dependent on the solution behavior around the
extinction boundaries. Biologically, the persistence of a system entails the survival of all of
the system’s populations in the future. In mathematical terms, this indicates that strictly
positive solutions do not have an omega limit on the boundary of the non-negative cone.
As a result, if the dynamic system does not continue, it is doomed to extinction.

We must first analyze the global dynamics in boundary planes xy and xz, as illustrated
below, before examining the persistence of the food web model using the average Lyapunov
function approach [45]. It is simple to verify that System (2) includes two subsystems when
the first subsystem is:

dx
dt = x

(
1

1+p1y − p3 − x− y
p4+p5x+x2 − p8

)
= k1(x, y),

dy
dt = y

(
p9x

p4+p5x+x2 − p10y− p12 − p13

)
= k2(x, y). (54)
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However, the second subsystem can be written as:

dx
dt = x

(
1

1+p2z − p3 − x− z
p6+p7x+x2 − p8

)
= k3(x, z),

dz
dt = z

(
p14x

p6+p7x+x2 − p15z− p17 − p18

)
= k4(x, z).

(55)

It is observed that these subsystems have unique interior equilibrium points in the
positive quadrants of their xy and xz planes, which coincide with the projection of the
boundary corresponding to the planar equilibrium points of System (2).

Here, we define θ1(x, y) = 1
xy , a continuously differential function in the interior of

the positive quadrant of the xy plane, which represents a Dulac function which computes
the following expression:

∆(x, y) =
∂

∂x
(k1θ1) +

∂

∂y
(k2θ1) = −

1
y
+

p5 + 2x
B22 − p10

x

Clearly, the expression ∆(x, y) is not identically zero, and their sign does not change if
the following sufficient condition is met:

p5 + 2x
B22 <

1
y
+

p10

x
(56)

As a result, using the Bendixson-Dulac criterion, Subsystem (54) has no periodic
dynamic in the interior of the positive quadrant of the xy plane. Consequently, using the
Poincare-Bendixson theorem, the interior EQP of Subsystem (54), as given by (x̌, y̌) is, in
fact, a GAS in the interior of a positive quadrant of the xy plane whenever it exists under
Condition (56).

Similarly, for Subsystem (55), there are no periodic dynamics in the interior of the
positive quadrant of the xz plane, and the interior EQP, given by (x, z), will be a GAS
provided that the following condition is met.

p7 + 2x
B32 <

1
z
+

p15

x
(57)

Theorem 8. Assuming that Conditions (56) and (57) are met, then System (2) is uniformly
persistent, provided that the following conditions are satisfied.

(p3 + p8) < 1 (58)

p12 + p13 < p9 x̃
B̂2

p17 + p18 < p14 x̃
B̂3

 (59)

p16y̌ + p17 + p18 <
p14 x̌
B̌3

(60)

p11 z + p12 + p13 <
p9x
B2

(61)

Proof. Consider the following function: δ(x, y, z) = xα1yα2zα3, where αi, i = 1, 2, 3 are
positive constants. δ(x, y, z) is a non-negative, continuously differentiable function, and as
such, δ(x, y, z)→ 0 if any of the variables x, y, or z approach zero.

Therefore, the following is determined:

ϕ(x, y, z) =
δ′(x, y, z)
δ(x, y, z)

= α1 f1 + α2 f2 + α3 f3
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where the functions fi, i = 1, 2, 3, are given in Equation (11). Accordingly, substituting the
functions leads to:

ϕ(x, y, z) = α1

[
1

B1
− p3 − x− y

B2
− z

B3
− p8

]
+ α2

[
p9x
B2
− p10y− p11 z− p12 − p13

]
+α3

[
p14x
B3
− p15z− p16y− p17 − p18

]

The proof is now complete [45] and System (2) is uniformly persistent if ϕ(Y) > 0,
where Y belongs to the omega limit set of the boundary planes of the system. Because
only the EQPs are found in the omega limit set of System (2) in the boundary planes, it is
deduced that:

ϕ(E0) = α1[1− p3 − p8]− α2[p12 + p13]− α3[p17 + p18]

Clearly, by choosing a constant α1 > 0 which is sufficiently large with respect to the
positive constants α2 and α3, it is determined that ϕ(E0) > 0, provided that Condition (58)
remains to be met.

ϕ(E1) = α2

[
p9 x̂
B̂2
− p12 − p13

]
+ α3

[
p14 x̂
B̂3
− p17 − p18

]
ϕ(E1) > 0 under the Conditions (59), or when at least one of them is met with a

suitable choice of the arbitrary positive constants α2 and α3.

ϕ(E2) = α3

[
p14 x̌
B̌3
− p16y̌− p17 − p18

]
Similarly, ϕ(E2) > 0 under Condition (60).

ϕ(E3) = α2

[
p9x
B2
− p11 z− p12 − p13

]
Again, ϕ(E3) > 0, provided that Condition (61) is satisfied. As a result, no omega limit

set is placed in the boundary planes of System (2) under the provided set of conditions,
and hence, System (2) is uniformly persistent. �

7. Bifurcation Analysis

This section looks at how the equilibrium configurations of System (2) are affected
by the parameters that define the model. Indeed, as one of the parameters approaches a
certain value, the solution may trend toward a different equilibrium position. The goal of
this section is to investigate the bifurcation of System (2) that can occur as the parameter
values change.

Here, we rewrite System (2) in the form:

dX
dt

= F(X), (62)

where X = (x, y, z)T and F(X) = (x f1, y f2, z f3)
T . Therefore, the second derivative of F(X),

with respect to the vector X, can be written as:

D2F(X)(V, V) = [ci1]3×1, (63)

where V = (v1, v2, v3) is a non-zero real vector, with

c11 = 2
[
−1 + 3p4x+p4 p5−x3

B2
3 y + 3p6x+p6 p7−x3

B3
3 z

]
v2

1 + 2 x(p1v2+p2v3)
2

B1
3

−2 p1v1v2
B1

2 + 2 (
x2−p4)v1v2

B2
2 + 2

[
− p2

B1
2 +

x2−p6
B3

2

]
v1v3.
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c21 =
2p9y

(
x3 − 3p4x− p4 p5

)
v2

1
B23 +

2p9
(

p4 − x2)v1v2

B22 − 2v2(p10v2 + p11v3)

c31 =
2p14z

(
x3 − 3p6x− p6 p7

)
v2

1
B33 +

2p14
(

p6 − x2)v1v3

B32 − 2v3(p16v2 + p15v3)

Meanwhile, the third derivative of F(X) with respect to the vector X can be written as:

D3F(X)(V, V, V) = [di1]3×1, (64)

where:

d11 = 6
[

x4y
B2

4 +
yp2

4
B2

4 −
yp4(6x2+4xp5+p2

5)
B2

4 +
z[x4+p6(p6−p7(4x+p7))−6x2]

B3
4

]
v3

1

+6 v1(p1v2+p2v3)
2

B1
3 − 6 x(p1v2+p2v3)

3

B1
4

+6
[
(p4(3x+p5)−x3)v2

B2
3 +

(p6(3x+p7)−x3)v3

B3
3

]
v2

1.

d21 =
6p9v2

1
B24

(
−y
[

x4 + p4

(
p4 − p5(4x + p5)− 6x2

)]
v1 + B2

[
x3 − p4(3x + p5)

]
v2

)
d31 =

6p14v2
1

B34

(
−z
[

x4 + p6

(
p6 − p7(4x + p7)− 6x2

)]
v1 + B3

[
x3 − p6(3x + p7)

]
v3

)
Theorem 9. System (2) undergoes transcritical bifurcation (TBF) near the EEQP when p3 passes
through the value p∗3 = 1− p8.

Proof. The JM of System (2) at the EEQP with p3 = p∗3 can be written in the form:

J0 =

0 0 0
0 −(p12 + p13) 0
0 0 −(p17 + p18)


The eigenvalues of J0 are given by λ∗01 = 0, λ∗02 = −(p12 + p13) < 0, and

λ∗03 = −(p17 + p18) < 0. Hence, the EEQP is a non-hyperbolic point.
Let vectors V0 = (v01, v02, v03)

T and Ψ0 = (ψ01, ψ02, ψ03)
T represent the eigenvectors

corresponding to λ∗01 = 0 of J0 and J0
T respectively. Hence, direct computation shows that:

V0 = (1, 0, 0)T , and Ψ0 = (1, 0, 0)T

Moreover, direct computation shows the following:

∂

∂p3
F(X, p3) = (−x, 0, 0)T V Fp3(E0, p∗3) = (0, 0, 0)T V ΨT

0 Fp3(E0, p∗3) = 0.

DFp3(X, p3)V0 = (−1, 0, 0)T V ΨT
0
[
DFp3(E0, p∗3)V0

]
= −1 6= 0,

where DFp3 represents the directional derivatives of Fp3 with respect to X. Furthermore,
using Equation (63) yields:

D2F(E0, p∗3)(V0, V0) = (−2, 0, 0)T V ΨT
0

[
D2F(E0, p∗3)(V0, V0)

]
= −2 6= 0

Therefore, in the sense of Sotomayor’s theorem [44], System (2) possesses a TBF and
the proof is complete. �
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Theorem 10. Assuming that Condition (24) holds, then System (2) undergoes a TBF near the
PDFEQP when p9 passes through the value p̂9 = (p12 + p13)

B̂2
x̂ , provided that the following

condition is met.

− 2p̂9

[
p4 − x̂2

B̂22

](
p1 +

1
B̂2

)
− 2p10 6= 0 (65)

Otherwise, System (2) undergoes a pitchfork bifurcation (PBF) near the PDFEQP,
provided that the following condition is met.

x̂3 − p4(3x̂ + p5) 6= 0 (66)

Proof. The JM of System (2) at the PDFEQP with p9 = p̂9 can be written in the form:

J1 = J(E1, p̂9) =

−x̂ −p1 x̂− x̂
B̂2

−p2 x̂− x̂
B̂3

0 0 0
0 0 p14 x̂

B̂3
− (p17 + p18)


The eigenvalues of J1 are given by λ̂11 = −x̂, λ̂12 = 0, and λ̂13 = p14 x̂

B̂3
− (p17 + p18),

which are negative under Condition (24). Hence, the PDFEQP is a non-hyperbolic point.
Let vectors V1 = (v11, v12, v13)

T and Ψ1 = (ψ11, ψ12, ψ13)
T represent the eigenvectors

corresponding the λ̂12 = 0 of J1 and J1
T , respectively. Hence, direct computation reveals

that:

V1 =

(
−p1 −

1
B̂2

, 1, 0
)T

, and Ψ1 = (0, 1, 0)T

Moreover, direct computation shows the following:

∂

∂p9
F(X, p9) =

(
0,

xy
B2

, 0
)T
V Fp9(E1, p̂9) = (0, 0, 0)T V ΨT

1 Fp9(E1, p̂9) = 0.

DFp9(E1, p̂9)V1 =

(
0,

x̂
B̂2

, 0
)T
V ΨT

1
[
DFp9(E1, p̂9)V1

]
=

x̂
B̂2
6= 0.

Furthermore, using Equation (63) yields:

D2F(E1, p̂9)(V1, V1) = [ĉi1]3×1,

where:

ĉ11 = 2x̂p2
1 + 2p1

(
p1 +

1
B̂2

)
+

2
(
x̂2 − p4

)
v1

B̂22
− 2
(

p1 +
1
B̂2

)2

ĉ21 = −2p10 −
2p̂9
(

p4 − x̂2)v1

B̂22

(
p1 +

1
B̂2

)
ĉ31 = 0

Therefore, it is determined that:

ΨT
1

[
D2F(E1, p̂9)(V1, V1)

]
= −2p̂9

[
p4 − x̂2

B̂22

](
p1 +

1
B̂2

)
− 2p10
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Therefore, in the sense of Sotomayor’s theorem, System (2) possesses a TBF, pro-
vided that Condition (65) holds. However, if Condition (65) is not satisfied, then, using
Equation (64), it is obtained that:

D3F(E1, p̂9)(V1, V1, V1) =
[
d̂i1

]
3×1

,

where:

d̂11 = −6
(

p1 +
1
B̂2

)
p2

1 − 6x̂p3
1 −

6
B̂23

[
x̂3 − 3p4 x̂− p4 p5

](
p1 +

1
B̂2

)2

d̂21 =
6p9

B̂23

(
p1 +

1
B̂2

)2[
x̂3 − p4(3x̂ + p5)

]
d̂31 = 0

Therefore, by using Condition (66), it is shown that:

ΨT
1

[
D3F(E1, p̂9)(V1, V1, V1)

]
=

6p9

B̂23

(
p1 +

1
B̂2

)2[
x̂3 − p4(3x̂ + p5)

]
6= 0,

which means a PBF has taken place and the proof is complete. �

Theorem 11. Assuming that Conditions (28) and (29) hold, then System (2) undergoes a TBF near
the SPFEQP when p14 passes through the value p̌14 = B̌3

x̌ [p16y̌ + p17 + p18], provided that the
following condition is met.

2p̌14

[
p6 − x̌2

B̌32

]
h1 − 2p16h2 − 2p15 6= 0. (67)

Otherwise, System (2) undergoes a PBF near the SPFEQP, provided that the following
condition is met.

x̌3 − p6(3x̌ + p7) 6= 0. (68)

Proof. The JM of System (2) at the SPFEQP with p14 = p̌14 can be written in the form:

J2 = J(E2, p̌14) =


x̌
[
−1 + y̌(p5+2x̌)

B̌2
2

]
− p1 x̌

B̌1
2 − x̌

B̌2
− p2 x̌

B̌1
2 − x̌

B̌3
p9(p4−x̌2)y̌

B̌2
2 −p10y̌ −p11y̌

0 0 0

 =
(
ǎij
)

The eigenvalues of J2 are given by λ̌21, λ̌22 = Tr1
2 ±

√
Tr1

2−4Det1
2 and λ̌23 = 0 where

Tr1, and Det1 are given by Equation (26) and the two eigenvalues λ̌21, λ̌22 have negative
real parts under Conditions (28) and(29). Hence, the SPFEQP is a non-hyperbolic point.

If vectors V2 = (v21, v22, v23)
T and Ψ2 = (ψ21, ψ22, ψ23)

T represent the eigenvectors
corresponding the λ̌23 = 0 of J2, and J2

T , respectively, then direct computation reveals that

V2 = (h1, h2, 1)T , and Ψ2 = (0, 0, 1)T ,

where h1 = ǎ12 ǎ23−ǎ13 ǎ22
ǎ11 ǎ22−ǎ12 ǎ21

, h2 = ǎ21 ǎ13−ǎ11 ǎ23
ǎ11 ǎ22−ǎ12 ǎ21

< 0.
Moreover, direct computation shows the following:

∂

∂p14
F(X, p14) =

(
0, 0,

xz
B3

)T
V Fp14(E2, p̌14) = (0, 0, 0)T V ΨT

2 Fp14(E2, p̌14) = 0.
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DFp14(E2, p̌14)V2 =

(
0, 0,

x̌
B̌3

)T
V ΨT

2
[
DFp14(E2, p̌14)V2

]
=

x̌
B̌3
6= 0.

Furthermore, using Equation (63) yields:

D2F(E2, p̌14)(V2, V2) = [či1]3×1,

where

č11 = −2h2
1 +

2x̌h2
2 p2

1
B̌1

3 −
2h1h2 p1

B̌1
2 + 4x̌h2 p1 p2

B̌1
3 − 2h1 p2

B̌1
2 +

2x̌p2
2

B̌1
3 −

2x̌3 y̌h2
1

B̌2
3 +

6x̌y̌h2
1 p4

B̌2
3

+
2y̌h2

1 p4 p5

B̌2
3 + 2x̌2h1h2

B̌2
2 − 2h1h2 p4

B̌2
2 + 2x̌2h1

B̌3
2 −

2h1 p6
B̌3

2 ,

č21 =
2p9 x̌3y̌h2

1

B̌23
−

6p9 x̌y̌h2
1 p4

B̌23
−

2p9y̌h2
1 p4 p5

B̌23
− 2p9 x̌2h1h2

B̌22
+

2p9h1h2 p4

B̌22
− 2h2

2 p10 − 2h2 p11

č31 = −2p̌14 x̌2h1

B̌32
+

2p̌14h1 p6

B̌32
− 2p15 − 2h2 p16

Therefore, it is determined that

ΨT
2

[
D2F(E2, p̌14)(V2, V2)

]
= 2p̌14

[
p6 − x̌2

B̌32

]
h1 − 2p16h2 − 2p15

Therefore, in the sense of Sotomayor’s theorem, System (2) possesses a TBF, provided
that Condition (67) holds. However, if that condition is not met, then, using Equation (64),
it may be obtained that:

D3F(E2, p̌14)(V2, V2, V2) =
[
ďi1

]
3×1

,

where

ď11 = − 6x̌h3
2 p3

1
B̌1

4 +
6h1h2

2 p2
1

B̌1
3 − 18x̌h2

2 p2
1 p2

B̌1
4 + 12h1h2 p1 p2

B̌1
3 − 18x̌h2 p1 p2

2
B̌1

4 +
6h1 p2

2
B̌1

3 −
6x̌p3

2
B̌1

4

+
6x̌4 y̌h3

1
B̌2

4 −
36x̌2 y̌h3

1 p4
B̌2

4 +
6y̌h3

1 p2
4

B̌2
4 −

24x̌y̌h3
1 p4 p5

B̌2
4 − 6y̌h3

1 p4 p2
5

B̌2
4 − 6x̌3h2

1h2

B̌2
3 +

18x̌h2
1h2 p4

B̌2
3

+
6h2

1h2 p4 p5

B̌2
3 − 6x̌3h2

1
B̌3

3 +
18x̌h2

1 p6

B̌3
3 +

6h2
1 p6 p7

B̌3
3

ď21 = − 6p9 x̌4 y̌h3
1

B̌2
4 +

6p9 x̌5h2
1h2

B̌2
4 +

36p9 x̌2 y̌h3
1 p4

B̌2
4 − 12p9 x̌3h2

1h2 p4
B̌2

4 − 6p9 y̌h3
1 p2

4
B̌2

4

− 18p9 x̌h2
1h2 p2

4
B̌2

4 +
6p9 x̌4h2

1h2 p5

B̌2
4 +

24p9 x̌y̌h3
1 p4 p5

B̌2
4 − 24p9 x̌2h2

1h2 p4 p5

B̌2
4

− 6p9h2
1h2 p2

4 p5

B̌2
4 +

6p9 y̌h3
1 p4 p2

5
B̌2

4 − 6p9 x̌h2
1h2 p4 p2

5
B̌2

4 .

ď31 =
6p̌14h2

1

B̌23

[
x̌3 − p6(3x̌ + p7)

]
Therefore, by using Condition (68), it is determined that

ΨT
2

[
D3F(E2, p̌14)(V2, V2, V2)

]
=

6p̌14h2
1

B̌23

[
x̌3 − p6(3x̌ + p7)

]
6= 0,

which means that a PBF has taken place and the proof is complete. �

Theorem 12. Assuming that Conditions (33) and (34) hold, then System (2) undergoes a TBF
near the FPFEQP when p9 passes through the value p9 = B2

x [p11 z + p12 + p13], provided that the
following condition is met.
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2p9

[
p4 − x2

B22

]
h3 − 2p10 − 2p11h4 6= 0 (69)

Otherwise, System (2) undergoes a PBF near the FPFEQP, provided that the following
condition is met.

x3 − p4(3x + p5) 6= 0 (70)

Proof. The JM of System (2) at the FPFEQP with p14 = p̌14 can be written in the form:

J3 = J(E3, p9) =


x
[
−1 + z(p7+2x)

B3
2

]
− p1x

B1
2 − x

B2
− p2x

B1
2 − x

B3
0 0 0

p14(p6−x2)z
B3

2 −p16z −p15z

 =
(
aij
)

The eigenvalues of J3 are given by λ31, λ33 = Tr2
2 ±

√
Tr2

2−4Det2
2 and λ32 = 0, where

Tr2 and Det2 are given by Equation (31) and the two eigenvalues λ31, λ33 have negative
real parts under Condition (33) and (34). Hence, the FPFEQP is a non-hyperbolic point.

If vectors V3 = (v31, v32, v33)
T and Ψ3 = (ψ31, ψ32, ψ33)

T represent the eigenvectors
corresponding the λ32 = 0 of J3, and J3

T respectively, direct computation reveals that:

V3 = (h3, 1, h4)
T , and Ψ3 = (0, 1, 0)T ,

where h3 = a13a32−a12a33
a11a33−a13a31

, and h4 = a12a31−a11a32
a11a33−a13a31

< 0.
Moreover, direct computation shows the following:

∂

∂p9
F(X, p9) =

(
0,

xy
B2

, 0
)T
V Fp9(E3, p9) = (0, 0, 0)T V ΨT

3 Fp9(E3, p9) = 0.

DFp9(E3, p9)V3 =

(
0,

x
B2

, 0
)T
V ΨT

3
[
DFp9(E3, p9)V3

]
=

x
B2
6= 0.

Furthermore, using Equation (63), we determine that:

D2F(E3, p9)(V3, V3) = [ci1]3×1,

where:
c11 = −2h2

3 +
2xp2

1
B1

3 + 4xh4 p1 p2
B1

3 +
2xh2

4 p2
2

B1
3 −

2h3 p1
B1

2 −
2h3h4 p2

B1
2

+ 2x2h3
B2

2 −
2h3 p4

B2
2 −

2x3zh2
3

B3
3 +

6xzh2
3 p6

B3
3

+
2zh2

3 p6 p7
B3

3 + 2x2h3h4
B3

2 − 2h3h4 p6
B3

2

c21 = 2p9

[
p4 − x2

B22

]
h3 − 2p10 − 2p11h4,

c31 =
2p14x3zh2

3

B33
−

6p14xzh2
3 p6

B33
−

2p14zh2
3 p6 p7

B33
− 2p14x2h3h4

B32
+

2p14h3h4 p6

B32
− 2h2

4 p15 − 2h4 p16

Therefore, it is shown that

ΨT
3

[
D2F(E3, p9)(V3, V3)

]
= 2p9

[
p4 − x2

B22

]
h3 − 2p10 − 2p11h4
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In the sense of Sotomayor’s theorem, System (2) possesses a TBF provided that
Condition (69) holds. However, if that condition is not met, then, by using Equation (64), it
is determined that:

D3F(E3, p9)(V3, V3, V3) =
[
di1

]
3×1

where:

d11 = − 6xp3
1

B1
4 −

18xh4 p2
1 p2

B1
4 − 18xh2

4 p1 p2
2

B1
4 − 6xh3

4 p3
2

B1
4 +

6h3 p2
1

B1
3 + 12h3h4 p1 p2

B1
3 +

6h3h2
4 p2

2
B1

3

− 6x3h2
3

B2
3 +

18xh2
3 p4

B2
3 +

6h2
3 p4 p5
B2

3 +
6x4zh3

3
B3

4 −
36x2zh3

3 p6

B3
4 +

6zh3
3 p2

6
B3

4

− 24xzh3
3 p6 p7

B3
4 − 6zh3

3 p6 p2
7

B3
4 − 6x3h2

3h4
B3

3 +
18xh2

3h4 p6
B3

3 +
6h2

3h4 p6 p7
B3

3

d21 =
6p9h2

3

B23

[
x3 − p4(3x + p5)

]
d31 = − 6p14x4zh3

3
B3

4 +
6p14x5h2

3h4
B3

4 +
36p14x2zh3

3 p6

B3
4 − 12p14x3h2

3h4 p6
B3

4 − 6p14zh3
3 p2

6
B3

4

− 18p14xh2
3h4 p2

6
B3

4 +
6p14x4h2

3h4 p7
B3

4 +
24p14xzh3

3 p6 p7

B3
4 − 24p14x2h2

3h4 p6 p7
B3

4

− 6p14h2
3h4 p2

6 p7
B3

4 +
6p14zh3

3 p6 p2
7

B3
4 − 6p14xh2

3h4 p6 p2
7

B3
4 .

By using Condition (70), it is determined that

ΨT
3

[
D3F(E3, p9)(V3, V3, V3)

]
=

6p9h2
3

B23

[
x3 − p4(3x + p5)

]
6= 0,

which means that a PBF has taken place and the proof is complete. �

Theorem 13. Assuming that Conditions (36) and (37) hold, then System (2) undergoes a saddle-
node bifurcation (SNB) near the IEQP when p15 passes through the value
p∗15 = [−a11a23a32+a12a23a31+a13a21a32−a13a22a31]

z∗(a11a22−a12a21)
, provided that the following conditions are met.(

p6 − x∗2
)

B∗3
2 <

p9 p16
(

p4 − x∗2
)

p10 p14 B∗2
2 , (71)

c∗11h7 + c∗21h8 + c∗31 6= 0 (72)

where all the new symbols are given in the proof.

Proof. The JM of System (2) at the IEQP with p15 = p∗15 can be written in the form:

J4 = J(E4, p∗15) =

a11 a12 a13
a21 a22 a23
a31 a32 a∗33

,

where a∗33 = −p∗15z∗, while the other aij, i, j = 1, 2, 3 are given in Equation (35).
Conditions (36), (37), and (71) guarantee that p∗15 > 0. Moreover, it is observed that
the determinant of J4 that is given by Γ3 in Equation (41) at p15 = p∗15 is zero. Consequently,
J4 has an eigenvalue λ∗4 = 0, and as such, the IEQP becomes a non-hyperbolic point.

If vectors V4 = (v41, v42, v43)
T and Ψ4 = (ψ41, ψ42, ψ43)

T represent the eigenvectors
corresponding to the λ∗4 = 0 of J4 and J4

T , respectively, then direct computation reveals
that:

V4 = (h5, h6, 1)T , and Ψ4 = (h7, h8, 1)T ,
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where h5 = a12a23−a22a13
a11a22−a12a21

, h6 = a21a13−a11a23
a11a22−a12a21

< 0, h7 = a21a32−a22a31
a11a22−a12a21

, and h8 = a12a31−a11a32
a11a22−a12a21

< 0.
Moreover, direct computation shows the following:

∂

∂p15
F(X, p15) =

(
0, 0,−z2

)T
V Fp15(E4, p∗15) =

(
0, 0,−z∗2

)T
V ΨT

4 Fp9(E4, p∗15) = −z∗2.

Accordingly, the first requirement of the SNB is satisfied. Furthermore, Equation (63)
shows that:

D2F(E4, p∗15)(V4, V4) = [c∗i1]3×1,

where:

c∗11 = −2h2
5 −

2h5h6 p4
B∗2

2 + 2h5h6(x∗)2

B∗2
2 − 2h5 p6

B∗3
2 + 2h5(x∗)2

B∗3
2 +

2h2
5 p4 p5y∗

B∗2
3 +

6h2
5 p4x∗y∗

B∗2
3

− 2h2
5(x∗)3y∗

B∗2
3 +

2h2
5 p6 p7z∗

B∗3
3 +

6h2
5 p6x∗z∗

B∗3
3 − 2h2

5(x∗)3z∗

B∗3
3 +

2h2
6 p2

1x∗

B∗1
3

+ 4h6 p1 p2x∗

B∗1
3 +

2p2
2x∗

B∗1
3 −

2h5h6 p1
B∗1

2 − 2h5 p2
B∗1

2 .

c∗21 = −p9

[
2p4 p5y∗ + 6p4x∗y∗ − 2x∗3y∗

B∗2
3

]
h2

5 + 2p9

[
p4 − x∗2

B∗2
2

]
h5h6 − 2p10h2

6 − 2p11h6

c∗31 = −p14

[
2p6 p7z∗ + 6p6x∗z∗ − 2x∗3z∗

B∗3
3

]
h2

5 + 2p14

[
p6 − x∗2

B∗3
2

]
h5 − 2p16h6 − 2p∗15

Therefore, it is determined that

ΨT
4

[
D2F(E4, p∗15)(V4, V4)

]
= c∗11h7 + c∗21h8 + c∗31.

In the sense of Sotomayor’s theorem, System (2) possesses an SNB near the IEQP
provided that condition (72) holds, and the proof is complete. �

8. Numerical Simulation

This section comprises a numerical analysis of the dynamics of the system. MATLAB
R2013a (8.1.0) was used to examine the behavior of System (2) with various parameter
values. The following set of hypothetical parameters was used.

p1 = 0.2, p2 = 0.2, p3 = 0.01, p4 = 0.3, p5 = 0.2, p6 = 0.3,
p7 = 0.2, p8 = 0.1, p9 = 0.7, p10 = 0.2, p11 = 0.1, p12 = 0.1,
p13 = 0.1, p14 = 0.7, p15 = 0.2, p16 = 0.1, p17 = 0.1, p18 = 0.1

 (73)

The main objective of this study is to confirm our theoretical findings and specify a
parameter set that controls the dynamic system. It was observed that, for Dataset (73),
System (2) has a unique IEQP that is a GAS; see Figure 1.

Throughout the following figures, magenta represents the solution of System (2), while
blue, green, and red represent the trajectories of x, y, and z, respectively.
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Figure 1. The IEQP of System (2) is a GAS using Dataset (73) and various initial points. (a) Phase por-
trait. (b) Trajectories of 𝑥 versus time. (c) Trajectories of 𝑦 versus time. (d) Trajectories of 𝑧 versus time. 

Figure 1 shows the ownership of System (2) using Dataset (73) with a unique IEQP 
that is GAS. The influence of varying 𝑝  and 𝑝  on the dynamics of System (2) is shown in 
Figure 2. 
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Figure 1. The IEQP of System (2) is a GAS using Dataset (73) and various initial points. (a) Phase
portrait. (b) Trajectories of x versus time. (c) Trajectories of y versus time. (d) Trajectories of z
versus time.

Figure 1 shows the ownership of System (2) using Dataset (73) with a unique IEQP
that is GAS. The influence of varying p1 and p2 on the dynamics of System (2) is shown
in Figure 2.
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Figure 2. The trajectory of System (2) using Dataset (73) with different values of fear factors approach-
ing IEQP. (a) Phase portrait when p1 = p2 = 0. (b) Phase portrait when p1 = p2 = 20. (c) Phase
portrait when p1 = p2 = 40. (d) Phase portrait when p1 = p2 = 60.

As shown in Figure 2, increasing of p1, and p2 forces the IEQP to gradually converge
to PDFEQP. The role of varying p3 on the behavior of System (2) is illustrated in Figure 3.

Increasing the value of p3 reduces the stability of IEQP, and the system approaches
PDFEQP first and then approaches EEQP. The impact of the functional response parameters—
which are responsible for the transfer of food x to predator y—on the dynamics of System (2)
is summarized in Figures 4 and 5.
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Figure 3. The trajectories of System (2) using Dataset 73 with different values of p3 and various initial
points. (a) The phase portrait approaches IEQP when p3 = 0.2. (b) The phase portrait approaches
IEQP when p3 = 0.4. (c) The phase portrait approaches IEQP when p3 = 0.6. (d) The phase portrait
approaches PDFEQP when p3 = 0.8. (e) The phase portrait approaches EEQP when p3 = 0.91.
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Figure 4. The trajectories of System (2) using Dataset 73 and various initial points. (a) The phase
portrait approaches SPFEQP when p4 = 0.26. (b) Time series for the phase portrait at p4 = 0.26.
(c) The phase portrait approaches a periodic attractor when p4 = 0.18. (d) Time series for the phase
portrait at p4 = 0.18. (e) The phase portrait approaches FPFEQP when p4 = 0.34. (f) Time series for
the phase portrait at p4 = 0.34.
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Figure 5. The trajectories of System (2) using Dataset 73 and various initial points. (a) The phase
portrait approaches FPFEQP when p5 = 0.55. (b) Time series for the phase portrait at p5 = 0.55.

According to Figures 4 and 5, the dynamics of System (2) are sensitive to variations
of p4, switching from a periodic dynamic on the xy plane to SPFEQP, and then to IEQP,
and finally, to FPFEQP. However, it has less sensitivity to varyiations in p5, whereby the
dynamic transfer is from IEQP to FPFEQP. The impact of varying the parameters of the
functional response that are responsible for transferring the food from x to z is shown
in Figure 6.
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Figure 6. Time series of the trajectories of System (2) using Dataset 73 and various initial points. (a)
Periodic dynamics when p6 = 0.18. (b) Approaching FPFEQP when p6 = 0.26. (c) Approaching
SPFEQP when p6 = 0.35. (d) Approaching SPFEQP when p6 = 0.3 and p7 = 0.55.
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Figure 6 shows that p6 has the opposite effect to p4 (and p7 has the opposite effect to
p5) on the dynamics of System (2). Figure 7 illustrates the influence of varying p8 on the
dynamics of System (2).
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Figure 7. The trajectory of System (2) using Dataset 73 with different values of p8. (a) Approaching
IEQP when p8 = 0. (b) Approaching IEQP when p8 = 0.25. (c) Approaching IEQP when p8 = 0.75.
(d) Approaching PDFEQP when p8 = 0.9. (e) Approaching EEQP when p8 = 1.

The parameter p8 significantly influences the dynamics of the system, similar to p3.
The impact of the other harvesting rates p13 and p18 is illustrated in Figure 8.
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Figure 8. Time series of the trajectories of System (2) using Dataset 73 with different values of p13

or p18. (a) Approaching SPFEQP when p13 = 0.05. (b) Approaching FPFEQP when p13 = 0.15. (c)
Approaching FPFEQP when p18 = 0.05. (d) Approaching FPFEQP when p18 = 0.15.

Parameters p13 and p18 have opposite influences on the dynamics of the system. We
further investigated the impact of varying the parameters p9 and p14. It was observed that
p9 has an effect on the dynamics of System (2) similar to that of p18, while the impact of
p14 is similar to that of p13. Finally, the effects of varying the intra-n and inter- specific
competition on the dynamics of System (2) are illustrated in Figures 9–11, respectively.
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Figure 9. Time series of the trajectories of System (2) using Dataset 73 with different values of
p10. (a) Trajectories of x for p10 = 0.05, 0.45, 0.85. (b) Trajectories of y for p10 = 0.05, 0.45, 0.85.
(c) Trajectories of z for p10 = 0.05, 0.45, 0.85.
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Figure 10. Time series of the trajectories of System (2) using Dataset 73 with different values of
p15. (a) Trajectories of x for p15 = 0.05, 0.45, 0.85. (b) Trajectories of y for p15 = 0.05, 0.45, 0.85.
(c) Trajectories of z for p15 = 0.05, 0.45, 0.85.
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Figure 11. Time series of the trajectories of System (2) using Dataset 73 and various values of p11

and p16. (a) Approaching FPFEQP when p11 = 0.25 and p16 = 0.1. (b) Approaching SPFEQP when
p11 = 0.1 and p16 = 0.25.
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As shown in Figures 9 and 10, parameters p10 and p15 have opposite influences on the
dynamics of the system.

As shown in Figure 11, p11 and p16 also have opposite influences on the dynamics of
the system.

9. Discussion

This work proposes and investigates a mathematical model that simulates the dy-
namics of a food-web system with two competing predators and prey. It was our goal to
examining how fear and harvesting affect the dynamics of such a system. Food transition
at the food-web level was described using a Monod-Haldane-type response function. The
characteristics of the solution were investigated. It was established that various equilibrium
points exist. All species’ needs for survival were identified. When feasible, the topics of
local and global stability were covered. The Sotomayor theorem for local bifurcation was
used to examine the impact of changing the parameter values.

It is noted that System (2) has a variety of conditionally asymptotic stable equilibrium
locations. Additionally, the system experiences different forms of local bifurcation as the
parameter values change. Finally, System (2) was solved, the theoretical conclusion was
verified, and the control set of parameters was specified using numerical simulation. Using
a hypothetical set of parameters given by Equation (73), the following results were obtained.

System (2) asymptotically approaches IEQP from several sets of initial points. Due to
declining predator numbers, the IEQP gradually converges to a PDFEQP as the fear rates
rise, demonstrating the influence of fear on the dynamics of the system. System (2) shifts
the stability of the predators from IEQP to PDFEQP when the mortality rate of the prey
increases. As the death rate increases further, the system shifts its limit point from PDFEQP
to EEQP. By varying the predator death rates, it was demonstrated that the predator death
rates play a similar role to the prey death rates regarding the survival of the predator
species. For example, lowering the value of the first predator death rate resulted in the
extinction of the second predator, and the system approached SPFEQP (FPFEQP). However,
increasing this value caused the first predator to go extinct, and System (2) approached
FPFEQP (SPFEQP).

The influence of the functional response parameters was explored. It was found
that lowering the value of the half-saturation constant of the first predator resulted in
the extinction of the second predator, and the system approached SPFEQP (FPFEQP).
Further decreasing the value of the half-saturation constant of the first predator made
the SPFEQP (FPFEQP) unstable, and System (2) had periodic dynamics in the xy plane.
However, increasing its value caused the first predator to go extinct, and System (2)
approached FPFEQP (SPFEQP). Moreover, increasing the value of the inhibitory effect at
high concentrations for the first predator led to the first predator going extinct; then, the
system approached FPFEQP (SPFEQP).

For the harvesting parameters of System (2), it was noted that with an increase in
prey harvesting, the system dynamics transferred from IEQP to the PDFEQP, and then to
the EEQP. However, lowering the harvesting rate of the first predator caused the second
predator to go extinct, and the trajectories of System (2) approached SPFEQP (FPFEQP).
Meanwhile, increasing its value above a specific point causes the extinction of the first
predator, and the trajectories moved asymptotically to the FPFEQP (SPFEQP). Otherwise,
the trajectories of System (2) stalled at IEQP. Similar observations were made when the
conversion rates of the first and second predators were lowered; however, the trajectories
still approached IEQP.

Finally, decreasing the intraspecific competition rate of the first predator led to the
extinction of the second predator, and the trajectories of System (2) approached SPFEQP.
However, decreasing the intraspecific competition rate of the second predator led to the
extinction of the first predator, and the trajectories of System (2) approached FPFEQP.
Otherwise, the trajectories of System (2) stalled at IEQP.
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10. Conclusions

Gause’s law is another name for the competitive exclusion concept [46]. It is a term
used in ecology to describe a situation when two species are vying for the same resources.
Gause noted that under such conditions, population values cannot remain constant. How-
ever, in this work, our System (2) solution approaches IEQP from distinct initial positions,
indicating that the presence of prey allows two competing species to persist on the same
resources. There is a threshold value of fear over which System (2) loses persistence due to
the extinction of predators, even though the system approaches the IEQP asymptotically
with different fear values. It has been noted that if the value of a prey species reaches a
vital level, harvesting it may cause System (2) to collapse. The harvesting of the predator,
however, causes the competitive predator to survive or become extinct, depending on how
much its value increases or decreases; after that, the solution for System (2) approaches one
of the boundary planes.

The system persists for a small range of the predator equation parameters, since any
modification may provide the competitive predator with a chance to become stronger and
survive. It is thus determined that System (2) is particularly sensitive to changing predator
equation-related values.
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Abbreviation
The following abbreviation symbols are used in this manuscript.

(EQPs) represents the equilibrium points.
(EEQP) represents the evanescence equilibrium point.
(PDFEQP) represents the predation-free equilibrium point.
(SPFEQP) represents the second predator-free equilibrium point.
(FPFEQP) represents the first predator-free equilibrium point.
(IEQP) represents the interior equilibrium point.
(JM) represents the Jacobian matrix.
(LAS) represents the locally asymptotically stable.
(GAS) represents the globally stable locally.
(TBF) represents a transcritical bifurcation.
(PBF) represents a pitchfork bifurcation.
(SNB) represents a saddle-node bifurcation.
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