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Abstract: The fracture of the elbow is common in human beings. The complex structure of the
elbow, including its irregular shape, border, etc., makes it difficult to correctly recognize elbow
fractures. To address such challenges, a method is proposed in this work that consists of two phases.
In Phase I, pre-processing is performed, in which images are converted into RGB. In Phase II, pre-
trained convolutional models Darknet-53 and Xception are used for deep feature extraction. The
handcrafted features, such as the histogram of oriented gradient (HOG) and local binary pattern
(LBP), are also extracted from the input images. A principal component analysis (PCA) is used
for best feature selection and is serially merged into a single-feature vector having the length of
N×2125. Furthermore, informative features N×1049 are selected out of N×2125 features using the
whale optimization approach (WOA) and supplied to SVM, KNN, and wide neural network (WNN)
classifiers. The proposed method’s performance is evaluated on 16,984 elbow X-ray radiographs
that are taken from the publicly available musculoskeletal radiology (MURA) dataset. The proposed
technique provides 97.1% accuracy and a kappa score of 0.943% for the classification of elbow
fractures. The obtained results are compared to the most recently published approaches on the same
benchmark datasets.

Keywords: local binary pattern; principal component analysis; elbow; features; classifiers

MSC: 68U10

1. Introduction

Bone fractures in children are common, accounting for 10–25 percent of all injuries
in children under the age of 18 [1]. The growing bones are more sensitive to ionization
radiation, and both CT scans and X-rays expose children to drug radiation [2]. As a result,
alternate imaging modalities, such as ultrasound, are used to limit radiation exposure [3].
Recent research on ultrasound has revealed its wide and effective applicability in the
United States for identifying fractures in children [4]. Although ultrasonography depends
on the operator, it is more sensitive as compared to other modalities such as X-ray and
CT scans for diagnosing limb fractures in pediatric persons [5]. Ultrasonography may
be performed accurately and reliably by medical doctors [6]. It might identify cortical
rupture or irregularity, both of which are signs of fractures. An increased posterior fat
cushion, on the other hand, can be easily identified by ultrasonography and may reveal
intra-articular injuries [7]. Ultrasonography outperforms radiography for diagnosing
posterior fatty cushion elevation [8]. Image processing in the medical industry has an
important role and is increasingly known in the healthcare industry because of technical
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innovation and software advancements. It has a significant role in diagnosing disease
and helping doctors to determine the course of treatment. Among many issues related
to human health, fractures in different body parts have their importance [9]. The main
challenge is to classify the exact location of the fracture in X-ray images. Nowadays, it is
difficult for radiologists to detect fractures manually and accurately [10]. Various edge
detection techniques have been suggested for the segmentation of X-ray images, and better
results have been obtained using the Canny Edge detector [11,12]. There are billions of
people affected by muscle fractures [13–16]. The Staple Random Forests Function Fusion
method was used on generalized fractured bones in 2015. This method is more successful
than other fracture detection systems. Fractures in children’s elbows are increasing day by
day but do not demonstrate accurate results through X-rays. Due to inadequate accuracy
in fracture detection, it is hard to for radiologists to identify these fractures [17].

The dual-mode CNN model has been used, in which features are extracted from the
transfer learning models [18], and trained weights are concatenated into a single layer and
passed to the classifier for discrimination between the fractured/un-fractured elbow X-ray
images with 0.889 accuracy. The classification accuracy needs to be improved using the
feature optimization approach [19]. In another study, the elbow X-rays were pre-processed
using histogram equalization, and YOLOv4 was applied for the detection of fractured
elbow region, achieving a detection score of 0.81 [20]. The pre-trained VGG-16 was used
for the classification of fractured elbow X-rays images. This method’s performance might
be improved by applying adversarial generative network and vision transformers [21]. The
augmentation method and histogram equalization have been applied to enhance image
contrast. ResNet was used as the backbone of AC-BiFPN for the detection of the fracture’s
elbow region. This method gave detection scores of 0.68 [17]. The mask-RCNN model has
also been applied, in which FPN and ResNet were used for the detection of the fractured
elbow region. This method provided a precision rate of 0.85 [22]. The existing methods
need improvement for accurate classification using optimized feature selection techniques.

In the existing literature, most of the work has been carried out for the detection of
elbow fractures; however, this field still has a gap because of the complex elbow structures
having irregular shapes and borders. Prominent feature selection is another key problem
for accurate fracture classification. The weak similarity among fracture types makes the
classification process more complex and challenging [23]. To work around the limitations
that are currently there, a method is proposed in this research based on the extraction, two
optimum feature selection methods, and fusion of hand-crafted and deep features that
provide significant improvement. The main contribution is as follows:

n The X-ray images are converted into RGB color space. The data augmentation method
is applied, in which the X-ray images are flipped vertically and horizontally to increase
the number of images. Then, extracted features are fused serially for the selection
of important features using PCA. The fused informative selected features vector is
further enhanced using improved WOA and passed as an input to the classifiers such
as SVM, WNN, and KNN for discrimination between the healthy/fractured elbow
X-ray images.

This paper contains five sections. Section 2 explores the recent existing works on elbow
fractures. Section 3 elaborates on the steps of the proposed method, whereas Section 4
includes results and discussion. Finally, the conclusion of the proposed method is drafted
in Section 5.

2. Related Work

The accurate detection of fractures in bones depends upon the image’s quality [24].
The informative feature extraction is a great challenge for the accurate classification of
fracture images. In the literature, an extensive amount of work has been conducted for the
detection/classification of elbow fractures, among which recent work is discussed in this
section. An anisotropic filter is applied for noise reduction, and the Hough transform is
applied for the detection of bone edges. The suggested method comprises three phases.



Mathematics 2022, 10, 3291 3 of 13

In the first phase, the watershed marker-controlled method is applied for segmentation,
and finally, the angle is measured between the line of fracture and the center of the per-
pendicular line. The conventional feature extraction methods might be useful for the
diagnosis of features at the specific site, but deep features are considered for the whole
fracted part of the image instead of the specific infected part. Deep CNN was used to detect
traumatic pediatric elbow joint effusion in [25]. The Inceptionv3 network was re-trained
by [26] using side wrist radiographs to develop a model for determining fractures. The
Inceptionv3 network has also been employed for hip fracture detection [27]. A basic binary
classification model using DenseNet with 169 layers was trained on the MURA dataset of
musculoskeletal X-rays, comprised of 40,895 radiographs [28]. A new CNN model [29–41]
was established for fracture identification, achieving 82.1% accuracy. A broader U-Net
architecture has been utilized for the detection of elbow bone fractures [42]. The transfer
learning models [33,43–53], i.e., AlexNet and GoogleNet, were applied for the detection
of fractures of the femoral neck in X-ray and attained 94.4% accuracy [54]. The SURF
system was employed for the classification of calcaneus fracture position in CT images [55].
A pre-trained R-CNN and Inceptionv4 models were utilized for the identification of distal
radial fractures [56]. A CNN model has been trained for the detection of post and lateral
wrist fractures [57]. Automatic classification of osteoporotic vertebral fractures was investi-
gated by [58]. A novel CNN model has been developed for the automatic classification of
thoracolumbar fractures [59,60]. A CNN model has been utilized with RF classifiers for the
analysis of fractured elbow bones. This method achieved 95% prediction scores [61]. The
authors of another study measured the diagnostic output of ultrasound in the identification
of fractured elbow bones with an AUC of 96% [62]. The elbow fracture detection model
was employed on the challenging MURA dataset. Neural networks learn directly through
hierarchical functional extraction from images [63]. The transfer learning MobileNet model
was used for fractured elbow detection using X-ray images. The results were computed,
obtaining 0.84 accuracy on the MURA dataset. The visualization results of the fractured
elbow were observed using GRAD-Cam [64]. Data augmentation was applied to increase
X-ray input images. Then, deep features were derived using ResNet and ACBiFPN models.
The results were computed on the MURA dataset, obtaining 68.4% AP [17]. The attention
method, RCNN module, and YOLOv5 were used for the detection of a fractured elbow
region, obtaining results of 0.71 mAP using the attention module, 0.55 mAP on R-CNN,
and 0.44 mAP on YOLOv5 [65]. The transfer learning model and deep learning model were
used in another study, with both trained from scratch for the classification of positive and
negative elbow X-ray images. In this experiment, it was observed that the transfer learning
model performed better in overcoming the over-fitting problem [66]. In another study, the
U-network was used for the segmentation of the MURA dataset. This model provided
dice scores of 95.95% during training and 90.29% during testing [67]. CNN models, such
as Inception-ResNet-v2, VGG-16, ResNet-50, 101,18, Inceptionv3, AlexNet, SqueezNet,
GoogleNet and DenseNet-201 have been used for classification of normal/abnormal elbow
images using MURA dataset. The Inception-ResNet-v2 architecture provided a mean
accuracy of 0.723 and a mean kappa of 0.506 [68]. The MSCNN model has also been fused
with GCN for classification. The performance of this model was computed by comparing it
with three pre-trained models, DenseNet-169, MSCNN, and CapsNet. This model gave a
confidence interval of 0.90 [69].

3. Proposed Methodology

In this research, pre-processing, feature extraction, fusion, and selection of informative
features using WOA are performed for fractured elbow X-ray images as presented in
Figure 1. In the pre-processing phase, images with the dimension of 512 × 456 are resized
into the dimension of 256 × 256 and converted into RGB color space 256 × 256 × 3. The
HOG, LBP, and derived deep features come from pre-trained DarkNet-53 and Xception
models. Then, extracted features are serially fused, and best features are selected by PCA.
Following PCA, the feature vector dimension is N×2125, which is passed to WOA with
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optimal parameters for the selection of the most relevant features and supplied as input
to three types of classification families, including neural network, geometric and nearest
neighbor models.

Figure 1. Proposed model for classification of the fractured elbow using X-ray images.

3.1. Feature Extraction Method

Features extraction plays an important role in classification, in which images are
represented in a numerical manner [70]. In this research, hand-crafted features are extracted,
including texture and shape-based features, i.e., LBP and HOG, and feature learning is
performed using pre-trained models, i.e., DarkNet-53 and Xception, for the classification of
fractured elbow/healthy images.

3.1.1. Local Binary Pattern (LBP)

In contrast to changes in monotonous lighting, LBP is a local texture descriptor with
lesser computing cost [71]. It is an operating technique of local texture known as an easy
and powerful operator. The center is used for any pixel by the LBP operator as a threshold,
and it compares the results in binary values with the neighboring pixels. In this work,
N×45 LBP features are selected out of N×59 using PCA based on the maximum scores.

3.1.2. Histogram of Oriented Gradient (HOG)

HOG is a shape-based feature extraction method that might be utilized for object
detection based on gradients [72]. The basic concept behind HOG is to describe the
presence and shape of a local entity within the picture by intensity gradients or borders. In
the proposed method, images are divided into small regions known as cells, and a pixel
histogram for each cell is computed. In the proposed method, dimensions of N×80 HOG
features are selected out of N×3186 using PCA.

3.2. Deep Feature Extraction Using Fully Connected Layers

In the proposed method, deep features are extracted using two pre-trained models,
DarkNet53 and Xception. The DarkNet53 model contains 184 layers [73–75], with 1 input
later, 53 convolution layers, 52 batch-normalization laters, 52 ReLU laters, 23 addition
layers, 1 average global pooling layer, a SoftMax layer and a classification output layer. In
this work, features are extracted from a fully connected layer named Conv-53 of darkNet53
having a length of N×1000 and supplied as input to the classifiers. However, the Xception
architecture has 170 layers [76], with 1 input layer, 40 convolutional layers, 40 batch-
normalization layers, 35 ReLU layers, 34 group convolutional layers, a SoftMax layer,
and 1 pooling average and classification layer. The input format of Xception is an RGB
image with dimensions of 299 × 299. It is 126 in depth. The average pooling layer has the
dimension of N×1000 out of N×1024, which is used in this study.
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3.3. Serial Feature Fusion/Optimum Features Selection

The feature fusion process is utilized to improve the classification outcomes so that
better features are selected from different descriptors. Finally, collected useful information
is combined serially/in parallel to create a single fused features vector [77,78]. As a result,
texture and shape-based features, as well as deep features, are extracted and merged serially
to generate a single feature vector in this study. Then, WOA is used to pick prominent
features that are then fed into classifiers such as neural networks, SVM, and KNN, as
presented in Figure 2.

Figure 2. Proposed feature extraction, score-based feature selection, fusion, and best feature selection
using WOA and classification.

3.4. Features Selection

WOA is a meta-heuristic approach [79,80] commonly employed in a variety of dis-
ciplines and fields, including engineering, due to its basic structure and ease of appli-
cation [81,82]. Therefore, in this research, the features vector dimension of N×2125 is
passed as an input to WOA for informative feature selection. Table 1 shows the optimized
WOA parameters.

Table 1. Parameters of WOA.

Solutions 10

Total iterations 100

Threshold 0.5

Lower bound 0

Upper bound 1

Table 1 depicts the number of WOA parameters in which 10 total solutions, 100 training
epochs, 0.5 thresholds, 0 lower bound, and 1 upper bound are used for the selection of
optimum features. The graphical presentation for the convergence plot using the WOA
method on the optimum parameters is shown in Figure 3.
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Figure 3. Graphical representation of WOA.

Figure 3 shows the ratio between the number of iterations and fitness values. After
85 training epochs, a straight pink line shows that model has reached the convergence
point, where the error rate is reduced, and the best N×1049 features are selected out of
N×2125 features that are used for the classification of fractured elbow X-ray images.

3.5. Classification of Elbow Fracture

The classification of an elbow fracture is carried using WNN, SVM, and KNN classifiers.
The classifiers are utilized for model training on the selected kernel and parameters, as
mentioned in Table 2.

Table 2. Description of classifiers.

Kernel of Classifiers Selected Parameters

Wide neural network (WNN)

Number of fully connected layers = 1
Size of first layer = 100
Activation unit = ReLU

Limit of iterations = 1000

Support vector machine (SVM)
Kernel = Cubic

Scale of kernel = Automatic
Constraint level of box = 1

K-nearest neighbor (KNN) One = Neighboured
Euclidean distance

Table 2 depicts classifiers used for the classification of DR lesions. In this work, WNN
is utilized with 1 FC layer, ReLU activation, and a total of 100 iterations. SVM classifier is
used with the cubic kernel such that the scale of the kernel is automatic with one level of
box constraint. The KNN classifier is employed with one neighbor and Euclidean distance
metric with equal weight metrics. The selected classifiers are trained on five- and ten-fold
cross-validation.

4. Results and Discussion

The suggested method’s performance was assessed using the MURA dataset. This
dataset was constructed by the coordination of the Stanford machine learning group. The
MURA dataset contains 16,984 elbow X-ray images, of which 8648 slices are positive, and
8336 are negative [83,84]. This research work has been implemented on MATLAB 2021 RA
toolbox with the Windows 10 operating system.
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4.1. Experiment #1: Classification of Fractured Elbow Images Using Five-Fold Cross-Validation

The classification of elbow positive/negative images is performed using five- and
ten-fold cross-validation. The classification results of the fractured elbow into two classes
as positive/negative are represented in Figure 4.

Figure 4. Confusion matrix on five-fold validation. (a) Fine KNN; (b) WNN; (c) SVM-cubic.

The computed classification outcomes are shown in Table 3.

Table 3. Classification results on MURA elbow fracture dataset using five-fold validation.

Classifier Accuracy % Precision % F1 Score % Specificity % Sensitivity % Kappa Score

Fine KNN 95.3 95 95 95.0 95.6 0.906

Cubic SVM 85.1 87 85 92.7 87.7 0.802

WNN 90.1 93 90 86.7 83.5 0.703

Table 3 depicts the classification outcomes for five-fold validation, where it is observed
that three types of classifiers, KNN, SVM, and a neural network, are utilized. The Fine
KNN classifier provided 95.3% accuracy, 95% precision, 96% recall, 95% F1-Score, 95.0%
specificity, 95.6% sensitivity, and a kappa score of 0.906, which is higher as compared to
other benchmark classifiers. The ROC on five-fold validation is presented in Figure 5.

Figure 5. ROC on five-fold validation (a) Fine KNN; (b) WNN; (c) SVM-cubic.

In Figure 5, the maximum AUC of 0.97 is compared to previous techniques.

4.2. Experiment#2 Classification of Fractured Elbow Images Using 10 Cross-Validation

Table 4 and Figure 6 depict classification results of positive/negative classes of elbow
fracture that are computed by the combination of FN, FP, TP, and TN measures.
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Table 4. Results of classification on MURA elbow fracture dataset using ten-fold validation.

Classifier Accuracy % Precision % F1 Score % Specificity % Sensitivity % Kappa Score

Fine KNN 97.1 96 97 96 97 0.94

Cubic SVM 91.4 93 91 93 89 0.82

WNN 86.5 87 86 87 85 0.73

Figure 6. Confusion matrix on ten-fold validation. (a) Fine KNN; (b) WNN; (c) SVM-cubic.

Figure 6 shows the confusion matrix on benchmark datasets in which minimum FN
and FP are achieved in the Fine KNN classifier. The quantitative results are given in Table 4.

In Table 4, 97.1% accuracy, 96% precision, 96% specificity, 97% sensitivity, and
0.94 kappa score are obtained on the Fine KNN classifier. Figure 7 shows the achieved ROC
on the benchmark classifier.

Figure 7. ROC on ten-fold cross-validation. (a) Fine KNN; (b) WNN; (c) SVM-cubic.

In Figure 7, a maximum of 0.96 ROC is obtained on cubic SVM as compared to
other kernels.

4.3. Comparison of the Results of the Proposed Method

The proposed model results were compared on the same benchmark MURA dataset
to authenticate its performance, as shown in Table 5.
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Table 5. Comparison of classification results.

Methodology Year Kappa Score

[85] 2020 0.715

[84] 2018 0.710

[86] 2019 0.617

[87] 2020 0.761

[88] 2021 0.790

[89] 2022 0.826 accuracy

[21] 2022 0.95 AUC

[17] 2022 0.68 Precision

Proposed Method 0.943 Kappa Score 0.96 AUC

In Table 5, Anna et al. [85] utilized DenseNet169 for classification and achieved a kappa
score of 0.715 on elbow X-rays. Pranav et al. [84] suggested a CNN based on a 169-layer
DenseNet architecture and obtained a kappa score of 0.71 on elbow X-ray images. Dennis
et al. [86] used the Ensemble-200 model and obtained a kappa score of 0.617. Six pre-trained
models, including Densenet-121, Inception v3, Mobilenetv2, Resnet152, Resnet50, and
VGG19 with batch normalization, were tested in another study. The results were computed
on the MURA dataset, achieving Kappa scores of 0.735, 0.718, 0.734, 0.734, 0.738, and 0.761,
respectively. VGG19 with batch normalization provided a higher Ksappa score than the
other models [87]. The Ensemble [88] deep model was utilized for fractured X-rays images
of the elbow and achieved a kappa score of 0.79. MSDNet was used for the classification of
normal/abnormal elbow X-ray images. The results were computed on the MURA dataset,
obtaining an accuracy of 0.826 [89].

The existing literature does not use a feature optimization approach for the classi-
fication of fractured elbow X-ray images. This research aims to overcome the existing
limitations and improve detection accuracy. A method is proposed in which data augmen-
tation is applied to increase the number of images. The hand-crafted and deep features
are extracted from the elbow X-ray images. The extracted features are selected using PCA
and fused serially. Furthermore, prominent features are selected using WOA, and the
active selected feature vector is passed to the classifiers for the classification of the fractured
elbow/normal X-ray images.

This research investigates hand-crafted and deep features, and the best features are
selected using PCA and fused serially. The selection of informative features using WOA
and passing to the classifiers allows for discrimination between normal/abnormal elbow
X-rays images. The experimental analysis shows that the proposed classification model
significantly improves the classification results.

The proposed method only classifies the fractured elbow. In the future, this method
might be extended for the classification of fractured shoulders, arms, fingers, hands, etc.

5. Conclusions

The accurate detection of a fractured elbow using X-rays is a difficult task because of
the complex structure of the elbow, including its irregular shape and border. To handle
such challenges, a method is proposed in this work in which input images are converted
into RGB color space. The data augmentation method is applied to increase the number of
images. Then, deep features are extracted using Xception and DarkNetwork-53. The texture
(LBP) and shape-based (HOG) features are extracted from X-ray images. The score-based
features are selected using PCA and are serially fused with the dimension of N×2125. Then,
WOA is applied with optimum parameters for the selection of N×1049 features out of
N×2125 and supplied to SVM, WNN, and KNN classifiers. The proposed classification
model performance is evaluated on the challenging MURA dataset, obtaining an accuracy
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of 97.1% with a kappa score of 94.3%. A comparison to the most recently published work
authenticates that the proposed method yielded better results.

The performance of the proposed method is evaluated on real data, which might be
implemented as a real-time application for the classification of fractured elbow images.
This application assists radiologists in elbow fracture detection at an initial stage.
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