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Abstract: This study aims to develop an accurate dynamic cutting force model in the milling process.
In the proposed model, the estimated cutting force tackles the effect of the self-excited vibration that
causes machining instability during the cutting process. In particular, the square root of the residual
cutting force between the prediction and the actual cutting force is considered as an objective function
for optimizing the cutting force coefficients using the equilibrium optimizer (EO) approach instead
of the trial-and-error approach. The results confirm that the proposed model can provide higher
prediction accuracy when the EO is applied. In addition, the proposed EO has a minimum integral
square error (ISE) of around 1.12, while the genetic algorithm (GA) has an ISE of around 1.14 and
the trial-and-error method has an ISE of around 2.4. Moreover, the proposed method can help to
investigate the cutting stability and to suspend the chatter phenomenon by selecting an optimal set
of cutting parameters.

Keywords: milling; dynamic cutting force; cutting force coefficients; equilibrium optimizer
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1. Introduction

Milling technology plays an important role in the manufacturing sector, with many ap-
plications in the automotive, aerospace, and mobility industries, among others [1]. Milling
is the process of removing material with a rotary cutter by advancing a cutter into a work-
piece. Thus, improvements in the product quality and productivity of the milling process
are key contributors to enhancing efficiency and decreasing the cost when making parts
and components [2]. Generally, modeling of dynamic cutting forces during the cutting is
required to optimize the performance of the machining process [3]. Moreover, an accurate
prediction of cutting force is very useful for tool condition monitoring and investigating
cutting stability [4]. However, one of the major issues during the cutting process is self-
excited vibration under aggressive cutting conditions, generating a phenomenon called
chatter [5–7]. These severe vibrations not only cause reduced quality of the surface finish,
poor dimensional accuracy, and noise, but also damage the machine tool itself. Undoubt-
edly, chatter investigation—specifically, detecting the early state of chatter—is important
to suppress chatter and maintain stable cutting conditions [8–11]. Many researchers have
utilized the cutting signal, vibration, and sound signals, as well as stability lobe diagrams,
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for chatter detection and the prediction of milling stability [12–16]. The sound signal can
become unreliable, based on some previous work where the vibration signal only focused
on spontaneous high frequency during the cutting process. In this context, the cutting force
is utilized as a physical quantity to demonstrate the machining process performance and
quality. It is critical to determine the precise cutting force in order to investigate chatter
characteristics, overload, and tool wear issues [17]. Taner et al. [3] introduced a common
cutting force approach that predicts cutting force by detecting cutting force factors. Sun
et al. [18] presented a dynamic milling parameter prediction model that takes into account
the deformation problem. Zhang et al. [19] established an effective cutting force predic-
tion approach for a five-axis milling machine of a sculptured surface using an adequate
calibration strategy for cutter runout factors and particular cutting force characteristics.
However, this cutting force model has disadvantages in that it is designed for a specific
situation and the model coefficient must be calibrated when the cutting conditions change.
In order to be more convenient for the analysis of machine spindles, Ji et al. [20] suggested
a technique for predicting the dynamic behaviors of an advanced tool tip by taking into
account the contact dynamic features within the tool and its holder. This modeling uti-
lizes the current tool hammer experiment and finite element approach. Zhang et al. [21]
introduced a substructure response analysis approach that utilizes the machine tool as
a coupling of discrete pieces, allowing the dynamic characteristics of the tool tip to be
discovered to investigate chatter throughout the cutting process. In milling processes, the
size of the cutting force is related to the previous cutting behavior. By extracting the cutting
force, Liu et al. [22] exploited a method of a dynamic cutting force model, in which the
cutting force is only generated when there is contact between the tool and the workpiece.
It forms an intermittent input with a time delay term in the cutting dynamics equation,
which is a nonlinear system with progressive chaos characteristics (route-to-chaos). In this
case, the Fourier spectrum cannot be used for general analysis of the chatter due to the
nonlinear cutting behavior. Therefore, a method based on Tony L. Schmitz’s model [23]
to discuss the cause and frequency range of chatter was proposed, and it was compared
with actual milling experiments. On the other hand, the Lyapunov exponent index used
in chaotic dynamics was used to analyze the time-domain changes in cutting force and
establish an objective basis for judging chatter phenomena [24]. Hilbert–Huang Transform
(HHT) with respect to chatter frequency and energy through the decomposing signal to
empirical modes can be used to deal with nonlinear cutting behavior [25,26].

The accuracy of the cutting force model in cutting processes depends largely on the
modeling and identification of cutting force coefficients [27,28]. There are two main meth-
ods to identify cutting force coefficients: (1) using cutting mechanics and tool geometry,
and (2) using specific coefficients derived from actual experimental results. For the cutting
mechanics and tool geometry, one of the most common approaches is called “orthogonal
to oblique transformation”, proposed by Budak et al. [29]. This is a generic method for
identifying cutting force coefficients for various cutting tools and procedures using data
derived from orthogonal cutting tests. Cutting mechanics coefficients are more adaptable
since they may be applied to any tool geometry due to the orthogonal to oblique transfor-
mation. On the other hand, under the conditions of the same tool–material combination
used in an experimental test, the calculation of specific coefficients from actual experiments
normally gives a higher-accuracy result. The estimation of the cutting force during the
process completely relies on the precision of the empirical cutting force factors. In order
to adjust the factors, extensive experiments have been performed in various cutting con-
ditions [30]. The experiment is usually conducted in low-speed experiments in order to
control the dynamic problem generated by cutting force measurement devices. However,
the primary disadvantage of this technique is that the determined coefficients are used in
the simulation of a generic machining process at various spindle speeds. This might be a
problem because the cutting process and chip formation mechanics change with cutting
speed, implying a change in coefficients as well. Moreover, the shear angle oscillations
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generated by vibration, cutting speed, and tool flank–wavy surface contact mechanism all
influence dynamic cutting forces [31].

Recently, enormous optimization strategies have been developed for the purpose
of tuning the adjustable factors [32–34]. A hybrid tuning approach was created based
on the genetic algorithm (GA), particle swarm optimization (PSO), and neural network
algorithm (NN) for coefficient gear fault detection [35]. In [36–38], another probabilistic
neural network was utilized to solve the tuning issue based on the NN procedure in [39].
Entrapment at local optima represents a big issue of these optimization approaches [40,41].
Different optimization algorithms have been applied to different applications to tackle this
issue [42–44]. In [45], parametric tuning of a CNC-drilling system was performed based
on the Taguchi–whale optimization algorithm. The Divide-and-Conquer Bat Algorithm
was applied to tune cutting parameters in CNC Turnings in [46]. In [47], a quadratic
interpolation approach was introduced with a whale optimization algorithm to solve high-
dimensional global optimization problems. A machine learning technique was combined
with a constrained coral reef optimization algorithm to tune multi-reservoir processing [48].
In [49], a local escaping operator and orthogonal learning were utilized to improve the
Archimedes optimization algorithm for PEM fuel cell parameter tuning. Among these
algorithms, the equilibrium optimizer (EO) approach has proved to be an effective solution
for tuning issues in various applications [50–54]. This algorithm can tackle the local
optimum trapping issue and demonstrates effective tuning with a fast convergence rate
and few parameters. This paper introduces the EO for the optimization of the cutting
force factors of a milling machine in place of the traditional approaches that depend on
the trial-and-error method of the designer. The proposed EOA utilizes a few adjustable
factors to improve the characteristics of the cutting process, performs tuning procedures
with a high-speed convergence rate, and tackles the local optimum trapping issue instead
of other approaches. Furthermore, the performance of the milling machine based on
the proposed algorithm is compared with the traditional method for the cutting force
factors. Various experiments were conducted to confirm the effectiveness of the developed
approaches under different cutting conditions. The accomplishments of this research work
are summarized as follows:

• A new tuning approach based on EO is introduced to improve the cutting characteris-
tics of milling machines;

• The tuning issue of the cutting force coefficients is tackled based on the developed EO
instead of the conventional approaches that depend on the trial-and-error method of
the designer;

• The introduced EO approach can improve the cutting conditions with few adjustable
factors and overcome the local optimum trapping issue;

• The integral square error (ISE) index is utilized to evaluate the performance of the
milling machine based on the proposed algorithm as compared with the traditional
method of cutting force factors and genetic algorithm (GA);

• The proposed EO has a minimum ISE of around 1.12, while the genetic algorithm (GA)
has an ISE of around 1.14 and the trial-and-error method has an ISE of around 2.4;

• The experimental tests confirm the effectiveness of the developed approaches under
different cutting conditions.

The rest of the paper is organized as follows: Section 2 characterizes the chatter
vibration issue in the milling process. In Section 3, the equilibrium optimizer approach is
derived. Section 4 presents the experimental results and related discussion. Finally, the
main conclusions are visualized.

2. Chatter Vibration Phenomenon in the Milling Process

Figure 1 presents a model of the end mill including a milling cutter around two
orthogonal degrees of freedom in the feed direction (x) and the normal direction (y). The
tool vibration in the x and y directions is projected into the surface normal direction to
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evaluate the instantaneous chip thickness. The tool vibration in the normal direction is
denoted by n.

n = −x. sin
(
θj
)
− y. cos

(
θj
)

(1)

The dynamic displacements x and y are caused when the cutting force excites the
structure in those two directions. Therefore, the instantaneous chip thickness for the ith
disk element, the jth tooth, and the kth angular position is rewritten in Equation (2) [2]:

h
(
θj
)
=
{

ft sin
(
θj
)
+ [n(t− τ)− n(t)]

}
g
(
θj
)

(2)

where ft is the feed per tooth. The tooth period is τ = 60/(ΩNt). For the end mill, the
instantaneous immersion angle, θj, is determined by considering the lag angle δ.

θj = φj +
2π(k− 1)

Nj
− δ (3)

δ =
z
r

tan(γ) (4)

φj = 6Ωt (5)

The term [n(t − τ) − n(t)] represents the dynamic chip thickness produced owing to
vibrations at the present time t and one spindle revolution period prior. The switching
function g

(
θj
)

describes the engagement between each tooth and the workpiece in one
revolution, as shown in Equation (6).

g
(

θi,j,k

)
=

{
1, θs ≤ θj ≤ θe

0, otherwise
(6)

The instantaneous chip thickness from Equation (2) can also be rewritten using the x-
and y-dynamic displacements as:

h
(
θj
)
=
{

∆x sin
(
θj
)
+ ∆y cos

(
θj
)}

g
(
θj
)

(7)

where ∆x = x− x0 and ∆y = y− y0 are the dynamic displacements of the cutter in the x
and y directions, respectively. The inner and outer modulations are represented by (x, y)
and (x0, y0).

Assuming that the milling cutter is approximated as a system with two orthogonal
degrees of freedom in the feed direction (x) and the normal direction (y), the cutting force
excites the structure in the x and y directions and causes the dynamic displacements x
and y. The equations of motion in the x and y directions, including process damping,
are expressed in Equation (8). Here, total damping in the model is assumed, including
structural damping and process damping:{

m
..
x + (c + cd,x)

.
x + kx = Fx

m
..
y +

(
c + cd,y

) .
y + ky = Fy

(8)

where
{

cd,x
cd,y

}
=

[
− cos

(
φj
)
− sin

(
φj
)

sin
(
φj
)
− cos

(
φj
)][ct

d
cn

d

]
.

The damping coefficient in the normal direction cn
d and that in the tangential direction

ct
d are determined as follows:

cn
d =

Kdb
πA

∫ 3π/2ωc

π/2ωc
Sd cos(ωct)dt and ct

d = µcn
d (9)

in which µ presents the coefficient of contact friction between the flank face and the ma-
chined surface. The contact friction coefficients can be determined based on the workpiece
and tool material.



Mathematics 2022, 10, 3287 5 of 18

Furthermore, the equations of dynamic forces can be converted to (x, y) coordinates in
matrix form: {

Fx
Fy

}
=

1
2

bKt

[
axx axy
ayx ayy

]{
∆x
∆y

}
=

1
2

bKt[A]

{
∆x
∆y

}
(10)

where b is the axial depth of the cut, Kt is the tangential cutting force coefficient, and matrix
[A] is the directional coefficients relating the dynamic displacements to the dynamic cutting
forces. These directional dynamic force coefficients are calculated via Equations (11)–(14).

αxx =
Nt

∑
j=1
−g(θj)

[
sin(2θj) + Kn

(
1− cos(2θj)

)]
(11)

αxy =
Nt

∑
j=1
−g(θj)

[(
1 + cos(2θj)

)
+ Kn sin(2θj)

]
(12)

αyx =
Nt

∑
j=1

g(θj)
[(

1− cos(2θj)
)
− Kn sin(2θj)

]
(13)

αyy =
Nt

∑
j=1

g(θj)
[
sin(2θj)− Kn

(
1 + cos(2θj)

)]
(14)

Because the matrix [A(θ)] can be expressed as a function of time [A(t)], the term
[A(t)] can then be expanded into a Fourier series with Fourier coefficients calculated via
Equation (15).

[A(t)] =
∞

∑
−∞

[Ar]ejrωtootht (15)

[Ar] =
1

Ntτ

Ntτ∫
0

[A(t)]e−jrωtoothtdt (16)

The higher-order terms of the Fourier series are neglected. Then, the dynamic cutting
force becomes:

F(t) =
[

Fx
Fy

]
=

1
2

bKt[A0]

[
∆x
∆y

]
(17)

[A0] =
Nt
2π

[
αxx αxy
αyx αyy

]
(18)

The vibration response in the frequency domain can be represented as Equation (19).[
x̃
ỹ

]
=

[
Φxx(jω) 0

0 Φyy(jω)

][
F̃x
F̃y

]
(19)

where Φxx(jω) and Φyy(jω) are direct transfer functions in the x and y directions. The
characteristic equation can be written as in Equation (20).

det([I] + Λ[Φor]) = 0 (20)

Λ = − Nt

4π
bKt(1− e−jωcτ) (21)

Φor =

[
αxxΦxx αxyΦyy
αyxΦxx αyyΦyy

]
(22)

This results in a quadratic equation, as shown in Equation (23).[
ΦxxΦyy

(
αxxαyy − αxyαyx

)]
Λ2 +

[
αxxΦxx + αyyΦyy

]
Λ + 1 = 0 (23)
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The limiting chip width or critical depth of the cut is evaluated from the real and
imaginary parts of the eigenvalue Λ = ΛRe + jΛIm, and its relationship with Ω is expressed
by Equation (24).

blim = −2πΛRe

NtKt

[
1 +

(
ΛIm

ΛRe

)2
]

(24)

The phase shift between subsequent tooth passages, tooth passing periods, and spindle
speeds vs. blim is determined as shown in Equations (25)–(27).

εph = π − 2µ; µ = a tan
(

ΛIm

ΛRe

)
(25)

τ =
1

ωc

(
εph + j2π

)
(26)

Ω =
60

Ntτ
(27)

The stability lobe diagram is generated by plotting spindle speeds vs. two limiting
chip width values for each chatter frequency.

Mathematics 2022, 10, 3287  6  of  19 
 

 

(1 )
4

cjt
t

N
bK e  


      (21)

xx xx xy yy

or
yx xx yy yy

 
 

  
     

  (22)

This results in a quadratic equation, as shown in Equation (23). 

  2 1 0xx yy xx yy xy yx xx xx yy yy                      (23)

The  limiting chip width or critical depth of the cut  is evaluated from  the real and 

imaginary parts of the eigenvalue  Re Imj    , and its relationship with     is ex‐

pressed by Equation (24). 

2

Im
lim

2
1Re

t t Re

b
N K

            
  (24)

The phase shift between subsequent tooth passages, tooth passing periods, and spin‐

dle speeds versus blim is determined as shown in Equations (25)–(27). 

2ph    ;  Im

Re

tana
 

   
  (25)

 1
2ph

c

j  


    (26)

60

tN
    (27)

The stability lobe diagram is generated by plotting spindle speeds versus two limit‐

ing chip width values for each chatter frequency. 

 

Figure 1. Dynamic cutting force model of the milling process. Figure 1. Dynamic cutting force model of the milling process.

3. Equilibrium Optimizer Approach

This paper proposes the use of the EO as a recent optimization algorithm that requires
few adjustable parameters. Furthermore, cooperation between multiple agents is the focus
in EO to improve the exploration manner, supporting global search and avoiding the issue
of entrapment in a particular local optimum [52]. Equilibrium Optimizer is a physics-based
algorithm that imitates the dynamic mass stabilization behavior within the control volume.
The concentration of nonreactive constituents is described as a function of various source
and sink dynamics based on the mass balance formulation. The generic mass stabilization
is formulated based on a first-order differential equation to describe the variation in the
dynamic system due to the mass entering and mass leaving as follows:

V
dC
dt

= FCeq − F + G (28)

where V is the control volume, C is the concentration, F is the flow rate, Ceq is the concen-
tration of the equilibrium state, and G is the generation rate of mass.

The EO algorithm consists of different stages to find the best solutions, and it is defined
as follows.

Stage 1: Initialization
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The EO starts the initial populations randomly, similarly to other population-based
metaheuristics. In this stage, the initial concentrations of each particle are determined
randomly within the limits of the system gains as follows:

Ci = Cmin + r(Cmin − Cmax) (29)

where Cmin is the minimum concentrations, Cmax is the maximum concentrations, r is
random vector within [0, 1], and i is the population index.

After the determination of the concentration of each particle, the fitness function of
the optimization problem is evaluated for each particle. Then, the fitness values are sorted
to clarify the equilibrium candidates. In the EO algorithm, the four best particles and the
mean of these candidates are chosen to represent the equilibrium pool in order to enhance
exploration and exploitation behaviors.

Stage 2: Equilibrium pool construction

In this stage, the equilibrium pool is constructed based on the best four particles and
their average from the above stage as follows:

Cpool =
{

Ceq(1), Ceq(2), Ceq(3), Ceq(4), Ceq(avg)

}
(30)

Each particle within the population updates its concentration during the iteration’s
scope based on each candidate in the selected equilibrium pool with the same probability.
In addition, each particle utilizes the same number of updates within the updating process
from all of the candidate solutions until the end of the optimization process.

Stage 3: Balancing exploration and exploitation

Obtaining a balance between exploration and exploitation is an essential procedure in
optimization problems. The EO algorithm utilizes the exponential term ‘E’ to provide a
proper balance between exploration and exploitation. This exponential term ‘E’ is defined
as follows:

E = exp(−δ(t− t0)) (31)

where δ is a random factor within [0, 1], while the factors t and t0 are defined as follows:

t =
(

1− Iter
Itermax

)a2× Iter
Itermax

(32)

t0 =
1
δ

ln
{
−a1sign(r− 0.5[1− e−δt]) + t

}
(33)

We substitute t and t0 into Equation (43); then, the exponential term ‘E’ can be
described as:

E = a1 sign(r− 0.5)[e−δt − 1] (34)

The factors a1 and a2 control the behavior of the exponential term, leading to balance
in the exploration and exploitation of the EO algorithm. The term sign(r− 0.5) controls the
direction of exploration and exploitation within the optimization process.

Stage 4: Convergence to the optimal global solution

In this stage, convergence to the optimal global solution is carried out by utilizing an
exponential generation rate factor that is described as follows:

G = G0 × exp(−δ(t− t0)) = G0 × E (35)

where G0 is the initial value of the generation rate factor and is defined as:

G0 = β(Ceq − δ× C) (36)
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Here, β is a controlling factor for the generation rate and is utilized to adjust the
exploitation and exploration of each particle as follows:

β =

{
0.5r1 r2 > ρ

0 r1 < ρ
(37)

where r1 and r2 are uniformly distributed random numbers in [0, 1], while ρ is a probability
factor. The above stages are performed every iteration to find the best solutions until
the stopping criteria are achieved and the best solution for the optimization problem
is identified.

4. Results and Discussion

A series of experiments were conducted on a three-axis CNC milling machine (with
a Heidenhain TNC620 controller) to determine the specific cutting force coefficients and
cutting force angle for the milling force model. The workpiece was a block of Al6061-T6,
which is commonly utilized in the automobile and aerospace industries because of its
high strength-to-weight ratio. An end mill cutter with a diameter of 12 mm, helix angle of
26◦, and two flutes was used. Besides this, the tooth-to-tooth radius error was 6 lm, and
the cutting force signals were measured by a Kistler dynamometer mounted between the
workpiece and workbench. In this study, lot milling tests were conducted with start cutting
angle φs = 0 and existing cutting angle φe = 180◦. The average cutting force in the x and y
directions, in this case, is described in Equations (38) and (39).

Fx =
NtbKn

4
ft +

NtbKne

π
(38)

Fy =
NtbKt

4
ft +

NtbKte

π
(39)

Six slot milling tests corresponding to different feed rates were conducted to achieve
average cutting force in the x and y directions. The experimental parameters are provided
in Table 1. Figure 2 shows the measured cutting forced signal at a spindle speed of
2500 rpm, cut axial depth of 1 mm, and feed rate of 0.03 mm/tooth in the (a) x-direction
and (b) y-direction.
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Table 1. Cutting parameters for cutting force coefficients.

Spindle Speed
(rpm)

Axial Depth of Cut
(mm)

Radial Depth of Cut
(mm)

Feed Rate
(mm/min)

2500 1.0 12 100, 150, 175, 200, 225, 250

The linear regression method summarized by Schmitz [23] was then utilized to deter-
mine the four unknown cutting force coefficients in Equations (38) and (39). Those values
can be obtained by Equations (40) and (41):

Kn =
4a1x
Ntb

; Kne =
πa0x

Ntb
(40)

Kt =
4a1y

Ntb
; Kte =

πa0y

Ntb
(41)

where Kn, Kt are the radial and tangential cutting coefficients, respectively, and Kne, Kte are
the radial and tangential edge coefficients, respectively.

a1x =

n
∑

i=1
ft,iFx,i −

n
∑

i=1
ft,i

n
∑

i=1
Fx,i

n
n
∑

i=1
f 2
t,i −

(
n
∑

i=1
ft,i

)2 (42)

a0x =
1
n

n

∑
i=1

Fx,i − a1x
1
n

n

∑
i=1

ft,i (43)

a1y =

n
∑

i=1
ft,iFy,i −

n
∑

i=1
ft,i

n
∑

i=1
Fy,i

n
n
∑

i=1
f 2
t,i −

(
n
∑

i=1
ft,i

)2 (44)

a0y =
1
n

n

∑
i=1

Fy,i − a1y
1
n

n

∑
i=1

ft,i (45)

The results of linear regression are shown in Figure 3. The four unknown cutting force
coefficients are presented in Table 2. The specific cutting force coefficient Ks and cutting
force angle β were then calculated following Equation (46).{

Ks = Kt
√

1 + Kn
β = a tan(1/Kn)

(46)

Once the FRFs in the x and y directions were measured, a model was defined by
performing a modal fit to the measured data. To identify the modal parameters, the fitting
approach was a peak-picking method wherein we used the real and imaginary parts of the
system FRFs. This work was done on TXFTM software, and the model fit results are shown
in Figure 4a,b in which six modes were selected in both the x and y directions.

Table 2. Specific cutting force coefficients.

Ks β Kne Kte

N/mm deg N/mm N/mm

780 65.32 12.32 24.9
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The peak values of real/imaginary parts were selected, and the corresponding values
of frequencies in the x and y directions were applied. Consequently, the model parameters
were calculated by using Equations (47)–(49).

ζqi =
ωrealmini −ωrealmaxi

2ωni
(47)

kqi =
−1

min(Im[FRFi])2ζqi
(48)
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mqi =
kqi

ω2
ni

(49)

Figure 5 illustrates the procedure for optimization of dynamic cutting force coefficients
for the end-milling process based on the EO algorithm. The first step was to determine the
modal parameters via modal analysis, then the instantaneous chip thickness was calculated
using Equation (2). The dynamic cutting force coefficients were generated by the linear
regression method. The proposed dynamic cutting force model of milling was used to
estimate the cutting forces. Finally, the residual cutting force between the prediction and
the actual cutting force was considered as an objective function for optimizing the cutting
force coefficients using the EO approach. The boundary of the parameters was adjusted
as lower bound = [600 × 106 50 10 × 103 5 × 103 1 × 103] and upper bound = [1000 × 106

90 50 × 103 30 × 103 20 × 103]. As a result, the optimum set of specific cutting force
coefficients by the EO method was obtained, as presented in Table 3.
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Table 3. The optimum set of specific cutting force coefficients by EO.

Ks β Kne Kte

N/mm deg N/mm N/mm

600 50.68 28.85 18.01

The simulation cutting forces under various cutting conditions are shown in Figure 6,
in which the stable cutting condition in Figure 6a indicates that the cutting force behavior
is repetitive from one to the next cutting revolution. On the other hand, in Figure 6b,
the repetitive behavior of the cutting force does not remain from one to the next cutting
revolution of the cutter; instead, the magnitude of the cutting force eventually increases
during the cutting.
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Figure 6. Simulation of cutting force under different cutting conditions: (a) stable cutting: 3750 rpm
spindle and 0.4 mm cut depth; (b) unstable cutting: 3750 rpm spindle and 1.4 mm cut depth.

Figure 7 shows the performance of the cutting force model when experimentally
validated by the measured cutting force. A comparison between the simulated and experi-
mental results for both stable and unstable cutting conditions is presented in Figure 7a,b,
respectively. The simulated results coincide with the measured cutting forces. Moreover,
this study provides a new solution for the tuning of the force factors of the milling process
based on an intelligent algorithm named EO instead of trial-and-error methods. The EO
algorithm finds the best force factors based on the minimization of the integral square error
(ISE), defined as follows:

ISE =
∫

e2
r dt (50)
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where
er = F′x − Fx (51)

As the result, the errors of the cutting forces of the proposed dynamic cutting force
model with and without the EO method are illustrated in Figure 8. The figure shows that
the performance of the cutting force model is improved when applying the EO algorithm to
correct the specific cutting force coefficients. The errors between simulated and measured
cutting forces are significantly reduced with the EO method in both stable and unstable
cutting conditions. Moreover, the integral square error values based on trial and error,
GA, and the proposed EO method are shown in Figure 9 and Table 4. It is clear that the
proposed EO has a minimum ISE of around 1.12, while the GA has an ISE of around
1.14 and the trial-and-error method has an ISE of around 2.4. The ISE values of the cutting
force model are significantly decreased when correcting the cutting force coefficients by the
EO algorithm.
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Figure 8. Residual values of the proposed dynamic cutting force model with and without the EO
method: (a) stable cutting: 1500 rpm spindle and 1.4 mm cut depth; (b) stable cutting: 2250 rpm
spindle and 1.4 mm cut depth; (c) unstable cutting: 3750 rpm spindle and 1.4 mm cut depth.

Table 4. ISE values in the case of the proposed EO and different techniques in literature.

Trial-and-Error
Method GA Proposed EO

ISE 2.4 1.14 1.12
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5. Conclusions

During the milling process, the engagement between the tool and the workpiece
relatively oscillates and affects the cutting depth. This might include both cutting force
vibration and cutting chatter vibration and creates difficulty in modeling the cutting force.
In this study, we proposed a dynamic cutting force model of the milling process, in which
the modal parameters were determined via impact testing and modal analysis. The dynamic
cutting force coefficients were generated by the linear regression method. The proposed
dynamic cutting force model of milling was used to estimate the cutting forces. Finally,
the square error of the residual cutting force between the prediction and the actual cutting
force was considered as an objective function to optimize the cutting force coefficients
using the EO approach. The linear regression method was firstly used to determine the
specific cutting force coefficients, and then the EO algorithm was adopted to optimize the
set of specific cutting force coefficients based on minimization of the integral square error
between the simulated and measured cutting forces. The performance of the proposed force
model was experimentally validated under various cutting conditions. The results indicate
that the cutting force model was significantly improved by applying the EO algorithm
to correct the specific cutting force coefficients. The proposed EO had a minimum ISE of
around 1.12, while the GA had an ISE of around 1.14 and the trial-and-error method had an
ISE of around 2.4. The errors between the simulated and measured cutting forces were also
significantly reduced by the EO method under both stable and unstable cutting conditions.
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