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Abstract: In recent years, the number of adverse and dangerous natural and anthropogenic phenom-
ena has increased in coastal zones around the world. The development of mathematical modeling
methods allows us to increase the accuracy of the study of hydrodynamic processes and the pre-
diction of extreme events. This article discusses the application of the modified Upwind Leapfrog
scheme to the numerical solution of hydrodynamics and convection–diffusion problems. To improve
the accuracy of solving the tasks in the field of complex shapes, the method of filling cells is used.
Numerical experiments have been carried out to simulate the flow of a viscous liquid and the transfer
of substances using a linear combination of Upwind and Standard Leapfrog difference schemes. It is
shown that the application of the methods proposed in the article allows us to reduce the approxima-
tion error in comparison with standard schemes in the case of large grid numbers of Péclet and to
increase the smoothness of the solution accuracy at the boundary. The soil dumping and suspended
matter propagation problems are solved using the developed schemes.

Keywords: Upwind Leapfrog scheme; Standard Leapfrog scheme; large grid Péclet numbers; hydro-
dynamics model; the problem of soil dumping

MSC: 35Q30

1. Introduction

Over the past decade, the number of adverse and dangerous phenomena has increased
worldwide, including those affecting coastal, marine and river systems. Dangerous phe-
nomena arise both as a result of increased human industrial activity and as a result of global
changes in climatic conditions. Solving problems of hydrodynamics is an important field
of science that allows modeling and forecasting adverse and dangerous natural and anthro-
pogenic phenomena in coastal systems, such as run-up phenomena under wind influences,
the spread of pollutants, blooming waters and mass death of commercial fish species due
to the lack of or absence of dissolved oxygen. In the first part of this article, a difference
scheme is considered, which is a linear combination of the Upwind and Standard Leapfrog
schemes, which has greater accuracy and a margin of stability in the numerical solution
of transfer problems in the case of large Péclet numbers. Using this scheme allows us
to increase the accuracy of transport problem solutions in the case of a predominance of
convective transport over diffusion, which occurs when modeling and predicting such
dangerous phenomena as storm surges and the transport of pollutants, including their
intake from river drains.

Researchers around the world are engaged in the development of mathematical mod-
els and methods for solving problems of hydrodynamics. In the work [1], three-dimensional
models of hydrodynamics and sediment transport are used to model erosion and trans-
port of severely contaminated sediments from the Rove Canal into the Etang De Berre.
The MUSTANG sediment module was used in conjunction with the MARS3D model [2]
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for sediment transport modeling, and numerical experiments were carried out. Numerical
experiments on the simulation of particle-laden flows are described in [3]. The ellipsoidal
particle motion problem based on the Navier–Stokes equations for incompressible flow
solved by the partitioned volume penalization-discrete element method is examined in this
work. Viscous incompressible flows were modeled in [4]. The finite difference method and
the finite particle method are used for simulation of Taylor–Green vortices and lid-driven
shear cavity flows in this article. The reflection behavior of tidal waves at abrupt bathymet-
rical changes in estuaries is researched in [5]. The authors use an analytical energy-based
approach and a hydrodynamic numerical model to estimate the reflection coefficients.
Numerical experiments were carried out using the program TELEMAC2D for 2D simu-
lation [6]. In the work [7], the method of hydrodynamics of smoothed incompressible
particles (SPH) together with the approach of modeling large vortices (LES) is used to
simulate the coastal mechanics of solitary waves. The two-step fractional method was used
for the solution of this problem based on the Navier–Stokes incompressible fluid equations.
The problem of numerical implementation of the model of wave propagation along uneven
inclined surfaces is described in [8]. The hydrodynamics of smoothed particles is used
in this work, which allows simulation of the processes of deformation of the free surface.
In [9], the hydrodynamics model described by three-dimensional Navier–Stokes equations
is used for breaking wave simulation. The authors propose a difference scheme based on a
new fifth-order reconstruction method for the point values of the conserved variables on
the cell face. In [10], the continuity equation with the Leapfrog scheme was coupled with
the large-scale particle image velocimetry method for measurement of the bathymetry and
the surface velocity of rivers, respectively, and estimated the discharge.

The purpose of this work is to apply the difference scheme developed and studied in
the first part to solve problems of hydrodynamics and suspension transport. The previously
proposed approach to modeling problems in areas with complex geometry of the compu-
tational domain is described based on the function of the fullness of cells. A difference
scheme combining the above approaches is constructed. The novelty of this study is that
improved Upwind Leapfrog schemes are used for the approximation of convective terms
in the equations of motion, which allows us to increase accuracy and have a large margin of
stability for large values of the grid Péclet number. The developed hydrodynamics model
has computational stability at significant differences in depths (15–30 times) and density of
the aquatic environment. The solution obtained using the proposed difference schemes
has the best smoothness at the boundary, since there are no oscillations that occur during
the stepwise approximation of the boundary. The application of the described methods
allows us to more accurately describe vortexes of various scales, including small ones that
arise in coastal systems. The results of numerical calculations of the problem of transport
of substances on the basis of the developed scheme are presented. The proposed three-
dimensional hydrodynamic model has been repeatedly used for diagnostic and predictive
calculations of the water flow vector velocity in shallow water bodies, for example, in [11]
for the Lagoon Etang de Berre (south of France) and the Azov Sea (south of Russia).

The second part of the article is devoted to the application of the difference scheme
described in the first part of the article, based on a linear combination of Upwind and
Standard Leapfrog schemes, to solve the problem of hydrodynamics in the field of complex
shapes. The second part of the article is organized as follows. Section 2 presents the
formulation of the problem of hydrodynamics in a two-dimensional domain. Section 3
describes the application of the pressure correction method to solve the above problem.
Section 4 describes approximation of the convection–diffusion problem using the method
of cell fullness. Section 5 describes the approximation of the equations obtained in Section 3
on the basis of the proposed modified scheme, while additionally considering the fullness
of the computational domain cells, which allows us to increase the calculations accuracy.
Section 6 provides an example of solving a model problem based on the difference scheme
described above and compares the accuracy of the resulting solution. Section 7 presents the
formulation of the suspension transport and three-dimentional hydrodynamics problems
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and the results of numerical experiments. In conclusion, an analysis of the results obtained
in the work is given.

2. Statement of the Hydrodynamics Problem

Consider the test problem of the flow of a viscous incompressible fluid between two
infinitely long coaxial circular cylinders based on Navier–Stokes equations. In the two-
dimensional computational domain, we place the coordinate system xOy perpendicular to
the axis of the cylinders, the origin of which lies on the axis of the cylinders. In a section
of the cylinder, the velocity field is set by the plane x = 0. It is required to determine the
movement of the liquid. For the mathematical description of the fluid dynamics problem,
the initial equations are:

• The motion equations [12]:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂P
∂x

+
∂

∂x

(
µ

∂u
∂x

)
+

∂

∂y

(
µ

∂u
∂y

)
, (1)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −1
ρ

∂P
∂y

+
∂

∂x

(
µ

∂v
∂x

)
+

∂

∂y

(
µ

∂v
∂y

)
, (2)

• The continuity equation for an incompressible fluid [13]:

∂u
∂x

+
∂v
∂y

= 0, (3)

where ~V = {u, v} is fluid flow velocity vector [m/s], ρ is the moving medium density
[kg/m3], P is the pressure [Pa], µ is the turbulent exchange coefficient [m2/s], t is the
variable in time [s], x and y are the variables in spatial coordinates [m].

Boundary conditions are added to Equations (1)–(3):

• The condition at the input and output boundaries is fluid flow:

u = u0, v = v0, ∂P/∂n = 0, (4)

• The condition of non-flowing and sliding is set on the side surfaces (in the case of
|~τ| = 0):

∂P/∂n = 0,
(
~V,~n

)
= 0, ρµ

(
∂~V/∂n

)
= −~τ (5)

or the condition of sticking:

∂P/∂n = 0, u = 0, v = 0, (6)

where~n is the inside normal vector, and ~τ = {τx, τy} is the tangential stress vector at the
researched coastal system bottom.

The expression for the tangential stress resulting from bottom friction, determined by
Van Dorn’s law, has the form:

~τ ≡
{

τx, τy
}
= ρCp~V

∣∣∣~V∣∣∣, (7)

where Cp is a dimensionless coefficient. Tangential stress occurs at the interfaces between
two media.

The hydrodynamic model in the three-dimensional case is built similarly.

3. Method of Splitting by Physical Processes for Solving Hydrodynamic Problems

Consider the numerical implementation of the hydrodynamics mathematical model
in a rectangular computational domain. A uniform grid is introduced with respect to a
time variable:

wh = {tn = nτ, n = 0, . . . , Nt, Ntτ = T},
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where τ is the time step, n is the index indicating the number of the time layer, Nt is the
number of time steps, and T is the upper bound in time.

Le us use the splitting schemes for physical processes [14]. In this case, the solution of
the original problem is reduced to solving the following equations:

The method of splitting by physical processes is used for the numerical solution of the
proposed problem. As a result, instead of the original Equations (1)–(3), equations in the
following form are solved:

• The equations systems for calculating the velocity vector field without taking into
account pressure:

un+σ − un

τ
+ u

∂u
∂x

+ v
∂u
∂y

=
∂

∂x

(
µ

∂u
∂x

)
+

∂

∂y

(
µ

∂u
∂y

)
, (8)

vn+σ − vn

τ
+ u

∂v
∂x

+ v
∂v
∂y

=
∂

∂x

(
µ

∂v
∂x

)
+

∂

∂y

(
µ

∂v
∂y

)
, (9)

• Poisson’s equations for calculating pressure:

∂2P
∂x2 +

∂2P
∂y2 =

ρ

τ

(
∂(un+σ)

∂x
+

∂(vn+σ)

∂y

)
, (10)

• Systems of equations for recalculation of the velocity vector field considering pressure:

un+1 − un+σ

τ
= −1

ρ

∂P
∂x

,
vn+1 − vn+σ

τ
= −1

ρ

∂P
∂y

. (11)

Here {u, v} is the water flow velocity vector in the previous (n-th) time layer,
{un+σ, vn+σ} is the water flow velocity vector on the intermediate ((n + σ)-th) time layer,
and

{
un+1, vn+1} is the water flow velocity vector at the current ((n + 1)-th) time layer.

4. Approximation of Diffusion and Convective Transport Operator

Consider the two-dimensional convection–diffusion equation:

∂c
∂t

+ u
∂c
∂x

+ v
∂c
∂y

=
∂

∂x

(
µ

∂c
∂x

)
+

∂

∂y

(
µ

∂c
∂y

)
+ f (12)

with boundary conditions:
∂c/∂n = αnc + βn, (13)

where c is a calculated function (for example, the concentration of suspended matter in
water), f is a source function describing the position in space and the intensity of the
suspended matter input, and αn and βn are dimensionless coefficients.

The test problem (12)–(13) is solved in a rectangular area. The discrete analogue of the
continuous problem is implemented on a uniform grid:

wh =
{

tn = nτ, xi = ihx, yj = jhy, n = 0, . . . , Nt, i = 0, . . . , Nx, j = 0, . . . , Ny;

Ntτ = T, Nxhx = Lx, Nyhy = Ly
}

,

where τ is the time step; Nt is the time steps number; T is the time interval value; hx, hy are
steps in spatial directions; Nx, Ny are the space steps number; and Lx, Ly are the maximum
dimensions of the area in the direction of the axes Ox, Oy.

To approximate Equation (12) by the time coordinate, we use schemes with weights:

cn+1 − cn

τ
+ u

∂(cn+σ)

∂x
+ v

∂(cn+σ)

∂y
=

∂

∂x

(
µ

∂(cn+σ)

∂x

)
+

∂

∂y

(
µ

∂(cn+σ)

∂y

)
+ f , (14)
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where cn+σ = σcn+1 + (1− σ)cn, and 0 ≤ σ ≤ 1 is the scheme weight.
The calculation cells have a rectangular shape and varying degrees of fullness. They

may be completely filled, incompletely filled with medium or not filled at all. Cell centers
are at distances hx/2 and hy/2 from nodes in the direction of the axes Ox and Oy, respec-
tively. Consider oi, j is the cell (i, j) fullness. Cells (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)
form the neighborhood of the node (i, j).

Introduce the coefficients q0, q1, q2, q3, q4, describing the fullness of the control areas
located in the cell neighborhood. Consider q0 is the fullness of the domain D0: x ∈
(xi−1/2, xi+1/2), y ∈

(
yj−1/2, yj+1/2

)
, q1 – D1: x ∈ (xi, xi+1/2), y ∈

(
yj−1/2, yj+1/2

)
, q2 –

D2: x ∈ (xi−1/2, xi), y ∈
(

yj−1/2, yj+1/2

)
, q3 – D3: x ∈ (xi−1/2, xi+1/2), y ∈

(
yj, yj+1/2

)
,

q4 – D4: x ∈ (xi−1/2, xi+1/2), y ∈
(

yj−1/2, yj

)
. Consider Ωm, where m = 0, . . . , 4 the filled

parts of the domains Dm. The expressions for calculating the coefficients qm have the form:

(qm)i, j =
SΩm

SDm

, (q0)i, j =
oi, j + oi+1, j + oi+1, j+1 + oi, j+1

4
, (q1)i, j =

oi+1, j + oi+1, j+1

2
,

(q2)i, j =
oi, j + oi, j+1

2
, (q3)i, j =

oi+1, j+1 + oi, j+1

2
, (q4)i, j =

oi, j + oi+1, j

2
.

A discrete analogue of the diffusion-convection Equation (12) with boundary condi-
tions (13) is written as [15]:

(q0)i, j

cn+1
i,j − cn

i,j

τ
+ (q1)i, jui+1/2, j

cn+σ
i+1,j − cn+σ

i,j

2hx
+ (q2)i, jui−1/2, j

cn+σ
i,j − cn+σ

i−1,j

2hx
+

+(q3)i, jvi, j+1/2

cn+σ
i,j+1 − cn+σ

i,j

2hy
+ (q4)i, jvi, j−1/2

cn+σ
i,j − cn+σ

i,j−1

2hy
=

= (q1)i, jµi+1/2, j
cn+σ

i+1,j − cn+σ
i,j

h2
x

− (q2)i, jµi−1/2,j
cn+σ

i,j − cn+σ
i−1,j

h2
x

−

−
∣∣∣(q1)i, j − (q2)i, j

∣∣∣µi, j
αxcn+σ

i,j + βx

hx
+ (q3)i, jµi, j+1/2

cn+σ
i,j+1 − cn+σ

i,j

h2
y

−

− (q4)i, jµi,j−1/2

cn+σ
i,j − cn+σ

i,j−1

h2
y

−
∣∣∣(q3)i, j − (q4)i, j

∣∣∣µi, j
αycn+σ

i,j + βy

hy
+ (q0)i, j fi,j. (15)

Thus, discrete analogues of convective and diffusion transfer operators were obtained
in the case of partial cell fullness. Discrete analogues of the convective u ∂c

∂x and diffusion

transfer operators ∂
∂x

(
µ ∂c

∂x

)
in the case of partial cell fullness have the form:

(q0)i, ju
∂c
∂x
' (q1)i, jui+1/2, j

ci+1, j − ci, j

2hx
+ (q2)i, jui−1/2, j

ci, j − ci−1, j

2hx
,

(q0)i, j
∂

∂x

(
µ

∂c
∂x

)
' (q1)i, jµi+1/2, j

ci+1, j − ci, j

h2
x

− (q2)i, jµi−1/2,j
ci, j − ci−1, j

h2
x

−

−
∣∣∣(q1)i, j − (q2)i, j

∣∣∣µi, j
αxci, j + βx

hx
.

The approximation error for this scheme is O
(

τ + h2
x + h2

y

)
at the inner nodes of the

grid and O
(
τ + hx + hy

)
at the boundary nodes. The scheme is stable for the pressure

correction method based on the maximum principle with restrictions on space steps [16]:
hx < |2µ/u|, hy < |2µ/v| or restrictions on the Reynolds number Re = u · l/µ ≤ 2N [17],
and l is the maximum domain size. If the stability condition of the difference scheme is not
met, you can do the following: either increase the size of the computational grid, which
entails an increase in computational labor costs, or change the difference scheme. Switching
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to “against the flow” schemes [18] is not recommended because they have a mesh viscosity.
In test calculations, when solving the system of Equations (8)–(9) based on the difference
scheme (15) in case of failure to meet the stability condition hx < |2µ/u|, the coefficient of
turbulent exchange in the direction of Ox will be taken equal to uhx/2, in the direction of
Oy – equal to vhy/2. It should also be noted that in the case of “against the flow” schemes,
the coefficient of turbulent exchange in the Ox direction becomes equal to µ + uhx/2, in the
Oy direction – equal to µ + vhy/2, which makes a greater contribution to the error of the
solution compared to the approach described above.

5. Approximation of the Convection–Diffusion Equations by a Modified Upwind
Leapfrog Scheme

Consider the modified Upwind Leapfrog difference scheme for the numerical solution
of the convection–diffusion equation:

∂c
∂t

+ u
∂c
∂x

=
∂

∂x

(
µ

∂c
∂x

)
, (16)

where x ∈ [0, l], t ∈ [0, T]. The boundary conditions and initial distribution are added:

c(0, x) = c0(x), c(t, 0) = c(t, l) = 0, u = const.

To solve problem (16) for large Pèclet grid numbers, the difference scheme, built
as a linear combination of the Upwind and Standard Leapfrog schemes, combined with
weights coefficients 2/3 and 1/3, which are obtained from the condition of maximizing the
approximation accuracy, will be written as:

cn+1
i − cn

i
τ

+
4
3

(
cn

i−1 − cn−1
i−1

2τ
+ u

cn
i − cn

i−1
hx

)
+

cn
i − cn−1

i
3τ

+

+u
cn

i+1 − cn
i−1

3hx
= 2µ

cn
i+1 − 2cn

i + cn
i−1

h2
x

, u ≥ 0,

cn+1
i − cn

i
τ

+
4
3

(
cn

i+1 − cn−1
i+1

2τ
+ u

cn
i+1 − cn

i
hx

)
+

cn
i − cn−1

i
3τ

+

+u
cn

i+1 − cn
i−1

3hx
= 2µ

cn
i+1 − 2cn

i + cn
i−1

h2
x

, u < 0.

The spatial splitting scheme is used to numerically implement the homogeneous
two-dimensional convection–diffusion Equation (12):

cn+1/2 − cn

τ
+ u

∂cn

∂x
=

∂

∂x

(
µ

∂cn

∂x

)
, (17)

cn+1 − cn+1/2

τ
+ v

∂cn+1/2

∂y
=

∂

∂y

(
µ

∂cn+1/2

∂y

)
. (18)

For the numerical implementation of the resulting equations system (17)–(18), add the
cell fullness coefficients in the linear combination of the Upwind and Standard Leapfrog
schemes:

• Equation (17) describing the transfer processes along the Ox axis is approximated as:

2q2,i,j + q0,i,j

3

cn+1/2
i,j − cn

i,j

τ
+ 5ui−1/2,jq2,i,j

cn
i,j − cn

i−1,j

3hx
+
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+ui+1/2,j min
(
q1,i,j, q2,i,j

) cn
i+1,j − cn

i,j

3hx
+

2∆xcn
i−1,jq2,i,j + ∆xcn

i,jq0,i,j

3
=

= 2µi+1/2,jq1,i,j
cn

i+1,j − cn
i,j

h2
x

− 2µi−1/2,jq2,i,j
cn

i,j − cn
i−1,j

h2
x

−

−
∣∣q1,i,j − q2,i,j

∣∣µi, j
αxcn

i, j + βx

hx
, ui,j ≥ 0; (19)

2q1,i,j + q0,i,j

3

cn+1/2
i,j − cn

i,j

τ
+ 5ui+1/2,jq1,i,j

cn
i+1,j − cn

i,j

3hx
+

+ui−1/2,j min
(
q1,i,j, q2,i,j

) cn
i,j − cn

i−1,j

3hx
+

2∆xcn
i+1,jq1,i,j + ∆xcn

i,jq0,i,j

3
=

= 2µi+1/2,jq1,i,j
cn

i+1,j − cn
i,j

h2
x

− 2µi−1/2,jq2,i,j
cn

i,j − cn
i−1,j

h2
x

−

−
∣∣q1,i,j − q2,i,j

∣∣µi, j
αxcn

i, j + βx

hx
, ui,j < 0, where ∆xcn

i,j =
cn−1/2

i,j − cn−1
i,j

τ
; (20)

• Equation (18) describing the transfer processes along the Oy axis is approximated as:

2q4,i,j + q0,i,j

3

cn+1
i,j − cn+1/2

i,j

τ
+ 5vi,j−1/2q4,i,j

cn+1/2
i,j − cn+1/2

i,j−1

3hy
+

+vi,j+1/2 min
(
q3,i,j, q4,i,j

) cn+1/2
i,j+1 − cn+1/2

i,j

3hy
+

2∆ycn+1/2
i,j−1 q4,i,j + ∆ycn+1/2

i,j q0,i,j

3
=

= 2µi,j+1/2q3,i,j
cn+1/2

i,j+1 − cn+1/2
i,j

h2
y

− 2µi,j−1/2q4,i,j
cn+1/2

i,j − cn+1/2
i,j−1

h2
y

−

−
∣∣q3,i,j − q4,i,j

∣∣µi, j
αycn+1/2

i, j + βy

hy
, vi,j ≥ 0; (21)

2q3,i,j + q0,i,j

3

cn+1
i,j − cn+1/2

i,j

τ
+ 5vi,j+1/2q3,i,j

cn+1/2
i,j+1 − cn+1/2

i,j

3hy
+

+vi,j−1/2 min
(
q3,i,j, q4,i,j

) cn+1/2
i,j − cn+1/2

i,j−1

3hy
+

2∆ycn+1/2
i,j+1 q3,i,j + ∆ycn+1/2

i,j q0,i,j

3
=

= 2µi,j+1/2q3,i,j
cn+1/2

i,j+1 − cn+1/2
i,j

h2
y

− 2µi,j−1/2q4,i,j
cn+1/2

i,j − cn+1/2
i,j−1

h2
y

−

−
∣∣q3,i,j − q4,i,j

∣∣µi, j
αycn+1/2

i, j + βy

hy
, vi,j < 0, where ∆ycn+1/2

i,j =
cn

i,j − cn−1/2
i,j

τ
. (22)

6. Solving of Hydrodynamics Test Problems

An important point in modeling hydrodynamics is the description of the vortex motion
of the aquatic environment, a narrow class of hydrodynamic problems with an analytical
solution. Therefore, to solve problems of the movement of the aquatic environment, we
resort to numerical methods of solution, which are detected on the basis of the presence of
an error. To check the accuracy of numerical methods, it is necessary to have an analytical
solution. Incorporating a well-known use of hydrodynamics, an available analytical solu-
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tion is Couette–Taylor analysis (flow between tested cylinders). Consider stationary fluid
flow between two infinitely long coaxial circular cylinders [19]:

u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂P
∂x

+ µ∆u, u
∂v
∂x

+ v
∂v
∂y

= −1
ρ

∂P
∂y

+ µ∆v, (23)

r1 ≤ r ≤ r2, r =
√

x2 + y2.

Test Problem I. Find the numerical solution of the fluid flow between two coaxial
semi-cylinders (x ≥ 0). The radius of the inner cylinder r1 = 5 m. The radius of the outer
cylinder r2 = 10 m. The calculation domain has a rectangular shape, and the size of the
side in the direction of the axis Ox is 10 m. In the direction of the axis, it is Oy – 20 m. The
components of the water flow velocity vector are u(0, y) = −5/y m/s, v(0, y) = 0 m/s
at x = 0. All other grid nodes are calculated in relation to the fluid flow velocity vector.
Sliding and non-flowing conditions are set on the inner and outer walls of the cylinder.

Test problem I has the analytical solution, which in a rectangular coordinate system is
determined by the expressions:

u(x, y) = − 5y
x2 + y2 , v(x, y) =

5x
x2 + y2 , P(x, y) = P(r1)−

12.5ρ

x2 + y2 + ρ/2. (24)

Consider the numerical solution of the proposed problem on a coarse grid, which
allows us to more accurately estimate the approximation error. The coarse grid has the
following parameters: the time step is 0.1 s, the space steps in the direction of the axes
Ox, Oy, respectively are 1 m. The grid has 21× 11 nodes, the time interval value is 10 s,
the coefficient of turbulent exchange µ = 1 m2/s, and the density of the water medium is
ρ = 1000 kg/m3.

To calculate the fullness of cells between circular cylinders, the formula was used:

oi,j =
1
hx

xi+1∫
xi

(
g
(

f1(x)/hy − j
)
− g
(

f2(x)/hy − j
))

dx, g(x) =


1, x > 1,
x, 0 6 x 6 1,
0, x < 0,

f1(x) =

{√
100− (10− x)2, 0 6 x 6 20,

0, x < 0, x > 20,
f2(x) =

{√
25− (10− x)2, 5 6 x 6 15,

0, x < 5, x > 15.

Based on cell fullness rates oi,j, the filling factors of the control areas (qk)i,j, 0 ≤ k ≤ 5
are calculated. The cell fullness function for a coarse computational grid is presented as an
array with the size 21× 11 at Table 1.

Table 1. Cell fullness function for grid 21× 11 nodes.

0 1 2 3 4 5 6 7 8 9

0 0.983 0.882 0.677 0.362 0.030 0 0 0 0 0
1 1 1 1 1 0.894 0.344 0 0 0 0
2 1 1 1 1 1 1 0.589 0.010 0 0
3 1 1 1 1 1 1 1 0.589 0 0
4 1 1 1 1 1 1 1 1 0.344 0
5 0.033 0.239 0.682 1 1 1 1 1 0.894 0.030
6 0 0 0 0.452 1 1 1 1 1 0.362
7 0 0 0 0 0.682 1 1 1 1 0.677
8 0 0 0 0 0.239 1 1 1 1 0.882
9 0 0 0 0 0.033 1 1 1 1 0.983
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Table 1. Cont.

0 1 2 3 4 5 6 7 8 9

10 0 0 0 0 0.033 1 1 1 1 0.983
11 0 0 0 0 0.239 1 1 1 1 0.882
12 0 0 0 0 0.682 1 1 1 1 0.677
13 0 0 0 0.452 1 1 1 1 1 0.362
14 0.033 0.239 0.682 1 1 1 1 1 0.894 0.030
15 1 1 1 1 1 1 1 1 0.344 0
16 1 1 1 1 1 1 1 0.589 0 0
17 1 1 1 1 1 1 0.589 0.010 0 0
18 1 1 1 1 0.894 0.344 0 0 0 0
19 0.983 0.882 0.677 0.362 0.030 0 0 0 0 0

Figure 1 shows the approximation of the problem (23). The color shows the water
flow |k0u| between two coaxial cylinders; the arrows show the direction of the fluid flow
velocity vector.

As a result of applying the cell fullness method, a fairly smooth solution of the problem
of water flow between two coaxial cylinders is obtained, which is shown in Figure 1a. If the
boundary between two media is approximated by steps, then there is a significant error in
determining the direction of the flow velocity vectors, which Figure 1b demonstrates as
a stepwise approximation. Figure 1c,d illustrate the accuracy of the obtained numerical
solutions (the difference between exact analytical and approximate solutions) in the case
of of using partial cell fullness (smooth boundary) and in the case of a stepped boundary,
respectively.

(a) (b)

Figure 1. Cont.
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(c) (d)

Figure 1. Numerical solution of Test Problem I: (a) the case of smooth boundary (the method of
cells fullness); (b) the case of a stepped boundary between two media; (c,d) the difference between
analytical and numerical solutions of the problem in the case of using partial cell fullness and in the
case of a stepped boundary, respectively.

The approximation error in the numerical solution of the test problem (23) with and
without the cell fullness method, that is, with stepwise approximation of the boundary, is
shown in Figure 2.

Figure 2. The dependences of the error in solving test problem I on the cylinders radius:
(a) using the method of cells fullness; (b) the case of a stepped boundary between two media.

A series of experiments was carried out on grids of various dimensions to study the
accuracy of the approximation by the proposed schemes. Table 2 shows the error values
of the numerical solution of the problem of fluid flow between two coaxial half-cylinders
depending on the size of the computational grid with and without the cell fullness method.

As a result of a series of experiments performed on a sequence of computational
grids of different dimensions, which are presented in Table 2, it can be concluded that
the problem of water flow between two cylinders is more smoothly approximated at the
boundary in the case of using the cell fullness method. An analysis of the data presented in
Table 2 shows that the splitting of the computational grid by eight times in the direction of
the axes Ox and Oy does not lead to a decrease in the approximation error of test problem I
as much as the cell fullness method allows.



Mathematics 2022, 10, 3248 11 of 18

Table 2. Dependence of the approximation error values on the computational grid size.

Grid Sizes 11 × 21 21 × 41 41 × 81 81 × 161

The maximum error value in the case of a smooth border, m/s 0.053 0.052 0.058 0.056
The average error value in the case of a smooth border, m/s 0.023 0.012 0.006 0.003
The maximum error value in the case of a stepped boundary, m/s 0.272 0.731 0.717 0.75
The average error value in the case of a stepped boundary, m/s 0.165 0.132 0.069 0.056

Figure 3a demonstrates the numerical solution of the convection–diffusion equations
for the test problem (23) using the difference scheme (15), while Figure 3b shows it using
the difference schemes (19)–(22). Figure 3c shows the difference between the velocity vector
fields vector obtained using the difference scheme (15) and the difference schemes (19)–(22).

(a) (b) (c)

Figure 3. Numerical solution of the water flow between two coaxial cylinders problem: (a) based on the
difference scheme (15); (b) based on the difference schemes (19)–(22); (c) the difference of the velocity
vector fields calculated on the basis of the difference scheme (15) and the difference schemes (19)–(22).

Test Problem II. Find a solution to the problem of transport of substances (12) between
two coaxial cylinders based on the difference scheme (15) and schemes (19)–(22). The fluid
flow field is given by the expression (24) with initial conditions:

c0(x, y) = (θ(−8.5− y)− θ(−9− y))(θ(1− x)− θ(0.5− x)).

Figure 4 shows a numerical solution to the problem of the transfer of substances, which
is described by a one-dimention non-stationary convection–diffusion equation, at small grid
Péclet numbers (where Peh = |u|h/µ, h is the step in the corresponding spatial direction).
The case of fulfilling the stability condition of the difference scheme (15) is considered.
The coefficient of turbulent exchange is taken to be equal to 0.5 m2/s. The calculated
interval is 20 s.

Figure 5 demonstrates the numerical solution of the test problem for large values of the
grid Péclet number. For this, the value of the turbulent exchange coefficient is taken equal to
0.01 m2/s, which indicates a significant predominance of convective transfer over diffusion.

Figures 4 and 5 show that a linear combination of the Upwind Leapfrog difference
scheme with weight parameter 2/3 and Standard Leapfrog difference schemes with weight
parameter 1/3 have lower approximation error for the convection–diffusion problem
solution at large grid Péclet numbers and therefore more accurately describes eddy currents,
including small-sized eddies in coastal systems.
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(a) (b) (c)

Figure 4. Numerical solution of the problem of the transfer of substances between two coaxial
cylinders at small grid Péclet numbers: (a) the initial distribution of the concentration field; (b) and
(c) the result of calculating the concentration field based on the difference scheme (15) and (19)–(22),
respectively.

(a) (b) (c)

Figure 5. Numerical solution of the problem of the transfer of substances between two coaxial
cylinders at large grid Péclet numbers: (a) the initial distribution of the concentration field; (b) and
(c) the result of calculating the concentration field based on the difference scheme (15) and (19)–(22),
respectively.

7. Mathematical Model of Suspension Transport and Hydrodynamics

To describe the suspended particles transport problem based on the convection–
diffusion equation, which has the form [20–22], we use:

∂c
∂t

+
∂(uc)

∂x
+

∂(vc)
∂y

+
∂((w + wg)c)

∂z
= µ

(
∂2c
∂x2 +

∂2c
∂y2

)
+

∂

∂z

(
ν

∂c
∂z

)
+ f , (25)

where c is the suspended matter concentration; ~V = {u, v, w} is the water flow velocity
vector; µ, ν are horizontal and vertical turbulent diffusion coefficients; wg is the rate of
suspended matter sedimentation under the influence of gravity; and f is a source function
describing the position in space and the intensity of the contaminants input.

Boundary conditions are added to Equation (25):

∂c/∂~n = 0, (~V,~n) > 0,

µ(∂c/∂~n)− wg(~V,~n) = 0, (~V,~n) ≤ 0.

Set the initial data for modeling the propagation of suspended particles during soil
dumping. Let the depth of a shallow reservoir be 10 m, the water flow velocity be 0.2 m/s.
The loading volume is 741 m3, the density of the bottom matter is 1600 kg/m3, the sed-
imentation rate according to Stokes is 2.042 mm/s and the proportion of dust particles
in the soil with diameter d less than 0.05 mm is 26.83%. Calculations are performed on
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a rectangular computational area with a length is 3 km and a width is 1.4 km. The time
interval is 2 h; the space step along the Ox axis is 20 m, space step along the Oy axis is 1 m.

Figure 6 shows the dynamics of changes in the concentration of suspended particles
(mg/L) over time. The values of the suspension concentration field in the section of the
calculated area by a plane passing through the discharge point and formed by vectors
directed vertically and along the flow are given.

A numerical experiment was carried out to calculate the dynamics of changes in the
suspended matter concentration. The movement of suspended particles in time from the
moment of soil discharge was calculated. Figure 6 shows a cutting plane passing through
the starting point of the soil discharge and vectors co-directed with the direction of the fluid
flow and the vertical axis. The time intervals were: 15 min, 30 min, 1 h, 2 h, respectively.
The currents are directed from left to right.

(a) (b)

(c) (d)

Figure 6. The values of the concentration field of suspended particles for different calculated intervals
after the moment of unloading the hold: (a) after 15 min; (b) after 30 min; (c) after 1 h; (d) after 2 h.

The processes of distribution of the mass of suspended particles and changes in the
topography of the bottom surface as a result of the sedimentation of particles can be
modeled on the basis of mathematical models of the transport of suspended particles.
Prediction of suspended-matter-spreading processes allows us to optimize the size of the
area used for soil dumping. Reduction of the used areas allows minimizing the damage to
the environment and marine life.

Consider modeling the transfer of suspended particles at different water flow velocities
(Figure 7).

When using central-difference schemes in the case of a high water flow velocity, it is
required to increase the size of the grids. When the size increases by N times, the number of
arithmetic operations increases by N5 times due to the increase in the number of calculation
nodes by N3 times and the decrease in the time step by N2 times. When using the presented
modification of the Upwind Leapfrog scheme, an increase in the speed of the fluid flow
does not lead to an increase in labor costs.

To calculate the components of the velocity vector of the water medium, a three-
dimensional model of the hydrodynamics of shallow reservoirs was used [11,23].
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(a) (b)

(c) (d)

Figure 7. Modeling the propagation of suspended particles during soil dumping at different water
flow velocities and different time intervals: (a) time interval is 30 min and initial velocity; (b) time
interval is 15 min and velocity increased by 2 times; (c) time interval is 6 min and velocity increased
by 5 times; (d) time interval is 3 min and velocity increased by 10 times.

The initial equations of hydrodynamics of shallow water bodies are:

• Equation of motion (Navier–Stokes):

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= −1
ρ

∂P
∂x

+
∂

∂x

(
µ

∂u
∂x

)
+

∂

∂y

(
µ

∂u
∂y

)
+

∂

∂z

(
ν

∂u
∂z

)
,

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= −1
ρ

∂P
∂y

+
∂

∂x

(
µ

∂v
∂x

)
+

∂

∂y

(
µ

∂v
∂y

)
+

∂

∂z

(
ν

∂v
∂z

)
, (26)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= −1
ρ

∂P
∂z

+
∂

∂x

(
µ

∂w
∂x

)
+

∂

∂y

(
µ

∂w
∂y

)
+

∂

∂z

(
ν

∂w
∂z

)
+ g;

• Continuity equation in the case of variable density:

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
+

∂(ρw)

∂z
= 0, (27)

where g is the acceleration of gravity.
Add the following boundary conditions to the system of Equations (26) and (27):

• On input:

u = u0, v = v0, w = w0, ∂P/∂n = 0, ∂~V/∂n = 0, (28)

• Lateral boundary (shore and bottom):

ρµ(∂u/∂n) = −τx, ρµ(∂v/∂n) = −τy,
(
~V,~n

)
= 0, (∂P/∂n) = 0, (29)

• Upper boundary:

ρµ(∂u/∂n) = −τx, ρµ(∂v/∂n) = −τy, w = −ω− (∂P/∂t)/ρg, ∂P/∂n = 0, (30)

where τx, τy is the tangential stress components, and ω is the liquid evaporation rate.
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Tangential stress components for free surface
{

τx, τy
}
= ρaCds|~w|

{
wx, wy

}
, where ~w

is the vector of wind speed relative to water, ρa is the atmospheric density, and Cds is the
dimensionless coefficient of surface resistance, which depends on the wind speed, which is
considered in the range 0.0016–0.0032 (in this article Cds = 0.0026).

The components of the tangential stress for the bottom, considering the movement of
water, can be written as

{
τx, τy

}
= ρCdb|V|{u, v}, where Cdb = gn2/h1/3, n = 0.04 is the

group coefficient of roughness in the Manning formula, 0.025–0.2; h = H + η is the water
area depth; H is the depth to undisturbed surface; and η is the free surface height relative
to the geoid (sea level).

For the software implementation of the two-dimensional and three-dimensional hydro-
dynamic models described in Sections 2 and 7, respectively, using the pressure correction
method described in Section 3, the authors of this article developed the software module
“Calculation of the aquatic environment movement” (“Azov3D.exe”). Figure 8 shows the
flow diagram of the developed software module.

Figure 8. The software module flow diagram.

Another practical problem is numerical modeling of wave processes in the coastal
zone. The solution of this problem is based on models of suspension transport and hy-
drodynamics. The computational area had dimensions of 50× 50 m and a depth of 2 m;
the highest point was 2 m above the undisturbed level. The source of disturbances was
at a distance of 200 m from the coastline. At the initial moment of time, the fluid was
at rest. For the numerical solution, a grid of 100× 100× 40 cells was used, with a time
step of 0.01 s. The distribution of suspended solids in the aquatic environment is given.
A situation was simulated in which a suspension ejection occurs at the zero moment of time.
The suspension source is located along the Ox coordinate, 5 m from the oscillation source
(the left boundary of the region), in the center of the computational region along the Oy
axis, and 20 cm below the liquid level along the Oz axis. The fluid was at rest at the initial
moment of time. With the help of computational experiments simulating the propagation
of a suspension in an aquatic environment in the presence of surface waves and with a
suspension density equal to the density of the aquatic environment, we could study the
effect of waves on the momentum transfer in the horizontal and vertical directions. The
results of calculations of the simulation of the propagation of suspended matter with a
density of 2700 kg/m3 are shown in Figure 9.
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(a) (b)

(c) (d)

Figure 9. Modeling the release (at the initial moment of time) and spread of suspended particles in
the aquatic environment: (a,c) suspension concentration after 2 s and 5 s, respectively; (b,d) pressure
field after 2 s and 5 s, respectively.

Figure 9 shows the simulation of such an important effect as the “jet effect” in which
an accelerated initial immersion of a “heavy” jet occurs during a volley of soil discharge.
Verification of the suspended matter transport model (horizontal turbulent exchange co-
efficient) was carried out on the basis of a study of the dependence of the mixing zone
width and is described in the work. A set of unified mathematical models has been devel-
oped to describe the transfer of multicomponent suspension and bottom materials under
conditions of complex, dynamically changing bottom geometry and the level elevation
function. The mathematical model of hydrodynamics includes three equations of motion,
describes the behavior of the level elevation function, flooding-drainage of the coastal area
and considers the change in the depth of the bottom of the water body and the variable
density, depending on the suspension concentration. The developed mathematical model
and the developed problem-oriented set of programs allow us to predict the appearance of
sea ridges and spits, their growth and transformation, and a change in the concentration
field in the event of a release from a source. We are also able to predict the silting of
approach navigation channels and the drift of hydraulic structures and structures.

8. Discussion

In this paper, mathematical models of hydrodynamics based on the Navier–Stokes
equations and the transport of substances based on the convection–diffusion reaction equa-
tion are considered. When solving the problem of hydrodynamics, the pressure correction
method is used, which imposes a restriction on the Reynolds number to fulfill the stability
condition of the difference scheme. The stability condition is satisfied in the case of an
increase in the number of calculation nodes and reducing the step in space, or by applying
another difference scheme. It is not recommended to use schemes “against the flow” [14],
since in this case a mesh viscosity appears. The construction of discrete analogs of hydrody-
namics and transport models was carried out on the basis of the developed vortex-resolving
difference scheme based on a linear combination of the difference scheme Upwind and Stan-
dard Leapfrog with weight coefficients 2/3 and 1/3, respectively. The weight coefficients
for the linear combination are obtained to minimize the approximation error. Numerical
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experiments have shown that the difference scheme proposed in the first part of the article
gives a lower grid viscosity, which increases the accuracy of modeling. It should also be
noted that in the numerical solution of the transfer problem using the proposed difference
scheme, in the case of large values of the grid Péclet number, there are no oscillations
associated with the approximation of the boundary by a polyline. The weight coefficients
for this linear combination of difference schemes are obtained as a result of minimizing the
approximation error.

The paper considers the development and application of the method by filling rect-
angular cells with a material medium, in particular, water. This method allows us to
improve the accuracy and smoothness of the numerical solution of the hydrodynamic
problem in regions of complex shapes. A number of numerical experiments were carried
out, demonstrating the advantages of the proposed difference schemes for solving problems
of computational fluid dynamics. Problems such as the flow of a viscous fluid between two
coaxial half-cylinders and the transfer of substances between coaxial half-cylinders were
studied on the basis of two-dimensional convection–diffusion models. An analysis of the
performed experiments showed that the relative error in the case of stepwise approximation
of the boundaries reaches 70%. The use of the cell filling method (smooth approximation of
the boundary) allows us to minimize the error, which in this case is equal to 6%. A series of
experiments was carried out, consisting of the fragmentation of the computational grid.
As a result, it is shown that an increase in the number of grid nodes does not lead to an
increase in accuracy, in contrast to the case of using the method of filling the cells with
a material medium. As a practical example of the application of the proposed schemes,
the problem of soil dumping is considered. The developed algorithms allow us to improve
the accuracy of modeling the transport of suspension plumes in the aquatic environment.
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