
Citation: Kovalnogov, V.N.; Fedorov,

R.V.; Karpukhina, T.V.; Simos, T.E.;

Tsitouras, C. Runge–Kutta Embedded

Methods of Orders 8(7) for Use in

Quadruple Precision Computations.

Mathematics 2022, 10, 3247. https://

doi.org/10.3390/math10183247

Academic Editor: Alicia Cordero

Barbero

Received: 9 August 2022

Accepted: 5 September 2022

Published: 7 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Runge–Kutta Embedded Methods of Orders 8(7) for Use in
Quadruple Precision Computations
Vladislav N. Kovalnogov 1, Ruslan V. Fedorov 1 , Tamara V. Karpukhina 1, Theodore E. Simos 1,2,3,4,5,*
and Charalampos Tsitouras 6

1 Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University,
32 Severny Venetz Street, 432027 Ulyanovsk, Russia

2 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung City 40402, Taiwan

3 Data Recovery Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641100, China
4 Department of Mathematics, University of Western Macedonia, GR52100 Kastoria, Greece
5 Department of Civil Engineering, Section of Mathematics, Democritus University of Thrace,

GR67100 Xanthi, Greece
6 General Department, Euripus Campus, National & Kapodistrian University of Athens,

GR34400 Psachna, Greece
* Correspondence: simos@ulstu.ru

Abstract: High algebraic order Runge–Kutta embedded methods are commonly used when stringent
tolerances are demanded. Traditionally, various criteria are satisfied while constructing these methods
for application in double precision arithmetic. Firstly we try to keep the magnitude of the coefficients
low, otherwise we may experience loss of accuracy; however, when working in quadruple precision
we may admit larger coefficients. Then we are able to construct embedded methods of orders eight
and seven (i.e., pairs of methods) with even smaller truncation errors. A new derived pair, as expected,
is performing better than state-of-the-art pairs in a set of relevant problems.

Keywords: initial value problem; Runge–Kutta; quadruple precision

MSC: 65L05; 65L06

1. Introduction

The initial value problem (IVP) of the first order has the following form

ζ ′ = f (x, ζ), ζ(x0) = ζ0 ∈ Rm, x ∈ [x0, xe], (1)

with f : R×Rm → Rm continuously differentiable.
Among the typical numerical approaches for addressing (1) are RK embedded meth-

ods, which are defined by the extended Butcher tableau [1,2] shown below

c A

w
ŵ

where A ∈ Rs×s with aij = 0, i ≤ j and wT , ŵT , c ∈ Rs. This is an s—stage RK pair and the
numerical approximation of the solution advances from (xn, ζn) to xn+1 = xn + hn after
evaluating at each step two approximations ζn+1, ζ̂n+1 to ζ(tn+1) of orders p and q (with
q < p), respectively, given by

ζn+1 = ζn + hn

s

∑
i=1

wi fni

Mathematics 2022, 10, 3247. https://doi.org/10.3390/math10183247 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10183247
https://doi.org/10.3390/math10183247
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7198-8461
https://orcid.org/0000-0002-9220-6924
https://orcid.org/0000-0001-6801-8117
https://doi.org/10.3390/math10183247
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10183247?type=check_update&version=1

Mathematics 2022, 10, 3247 2 of 12

and

ζ̂n+1 = ζn + hn

s

∑
i=1

ŵi fni,

with

fni = f (xn + cihn, ζn + hn

i−1

∑
j=1

aij fnj),

for i = 1, 2, . . . , s ≥ p.
The local error made is estimated in every step by [3]

εn+1 =
∥∥∥ζn+1 − ζ̂n+1

∥∥∥ · hp−q+1.

The above is used in order to change the step according to

hn+1 = 0.9 · hn ·
(

ε

εn+1

)1/p
,

where the user sets a very small positive tolerance ε, valid through the whole integration.
In case that ε < εn+1, we also use this formula but then we may accept hn = hn+1 as the
new decreased length of hn. More details in the subject can be retrieved from [3].

2. Runge–Kutta Pairs of Orders Eight and Seven

If the coefficient parameters in A, w, ŵ, and c fulfill certain algebraic criteria, an RK
pair of order p(q) is formed. A set of nonlinear equations describes these conditions. This
system’s general (parametric) solution is known only for orders up to five. However, no
practical application has been discovered for Cassity’s fifth-order families of approaches
discussed in [4]. Only specific families of this system’s general solution are known for
higher order approaches.The more free nodes ci, i = 2, 3, · · · , s there are, the easier it
is to locate individual pairings of these families that meet specific design requirements.
These nonstiff problem criteria are concerned with the reduction in certain truncation error
coefficients measure, and for mildly stiff issues with maximizing the stability region.

Since (1) is a system, we may embed independent variable x in ζ and consider only
autonomous systems ζ ′ = f (ζ). When used to an autonomous system of differential
equations, a Runge–Kutta method is said to be of algebraic order p if and only if

Ψ(τ) = 0 for every τ ∈ Ti, for i = 1(1)p (2)

where Ti is the set of i-th order (rooted) trees and

Ψ(τ) =
1

σ(τ)

(
X(τ)− 1

γ(τ)

)
.

σ, γ are integral functions of τ (symmetry and density function, respectively, in the termi-
nology introduced by Butcher [5]) and X is a certain composition of A, w, c (in case of the
lower order formula replace with ŵ). In the following the symbol T(i) denotes a vector
with elements all the elements of the set Ψ(Ti) in some arbitrary order.

In the case of a 8(7) pair, Equation (2) is expanded in 200 nonlinear algebraic equations
that must be satisfied by its higher order method and another 85 equations by its lower
order method as shown in Table 1. For a list of these equations see for example Fehlberg [6].
A more comprehensive study with symbolic code for fast derivation of the equations of
condition is given in [7]. The simplifying assumption

A · e = c, e = [1, 1, 1, . . . , 1, 1]T ∈ Rs, (3)

is fulfilled in every RK method with perhaps the only exception being the Runge–Kutta–
Oliver methods introduced in [8] and studied further in [9].

Mathematics 2022, 10, 3247 3 of 12

Table 1. Number of order conditions for order p.

p 1 2 3 4 5 6 7 8 9 10

length of T(i) 1 1 2 4 9 20 48 115 286 719

The minimal number of stages required for the construction of a 8(7) pair is 13 (i.e.,
hereafter s = 13) and such a method offers only 104 parameters in view of (3). Because the
number of unknowns is much fewer than the number of equations, and especially because
some of the latter equations are significantly nonlinear with respect to the components of
A, certain simplifying assumptions must be used to their solution.

Fehlberg was the first to construct such a pair; his pair has the disadvantage of produc-
ing identically zero error estimates for quadrature situations ζ ′ = f (x) in Equation (1). This
defect comes after the seventh-order formula satisfies the eighth-order condition b̂ · c7 = 1

8 .
In the following, whenever c is a vector, we represent componentwise multiplication by

ci = c ◦ c ◦ · · · ◦ c︸ ︷︷ ︸
i

(assuming c0 = e). For this multiplication (called Hadamard multiplication) we admit lower
order of precedence over the conventional dot product. We define C = diag(c) and we use
the notation c(j+) for vector c but with its first (j− 1) elements dropped. Accordingly, we
use the notation c(i,j) for the vector containing the elements of c beginning from index i
through j. When applying these notations to a relation, it is assumed that it applies to both
sides. See [10] for details in the issues described in this paragraph.

Various authors derived RK8(7) pairs after Fehlberg avoiding the quadrature defect; in
chronological order, Verner [11], Prince and Dormand [12], Papakostas [13], Papakostas and
Tsitouras [3,14], and Verner [15–17]. These pairs generally obey the following simplifying
assumptions

(
A · c = c2

2

)

(3+)

,
(

A · c2 =
c3

3

)

(3+)

,
(

A · c3 =
c4

4

)

(6+)

.

We additionally employ

w · (A + C− Is) = 0s, ŵ · (A + C− Is) = 0s

with Is ∈ Rs×s the identity matrix and 0s ∈ Rs the vector with zero components.
Then we experience a severe reduction in the number of equations to be satisfied. In

addition some elementary subsidiary equations can be solved instead—see the algorithm
below for details.

The authors mentioned above gave some general lines of how to construct various
types of embedded methods in a range of orders. A straightforward and explicit algorithm
for the derivation of embedded methods of orders eight and seven is presented below.

Thus, we firstly set

w2 = w3 = w4 = w5 = 0, ŵ2 = ŵ3 = ŵ4 = ŵ5 = 0, c12 = c13 = 1,

a13,12 = 0, aj2 = 0, j = 4, 5, · · · , 13, and aj3 = 0, j = 6, 7, · · · , 13.

Then we choose arbitrarily the coefficients

c2, c5, c6, c7, c8, c10, c11, a87, ŵ12, ŵ13, w13,

with the nodes being distinct from each other and at least one of ŵ13, w13 different from
zero. The rest coefficients are found successively by the algorithm given below.

Mathematics 2022, 10, 3247 4 of 12

• Set

c9 =
1
2
·

14c2
6(7c2

7c8 + c7(7c2
8 − 12c8 + 1) + c8)

+c6(14c2
7(7c2

8 − 12c8 + 1)− 7c7(24c2
8 − 33c8 + 4) + 14c2

8 − 28c8 + 3)
+14c2

7c8 + c7(14c2
8 − 28c8 + 3) + 3c8

7c2
6(7c2

7(15c2
8 − 10c8 + 2)− 2c7(35c2

8 − 26c8 + 6) + 14c2
8 − 12c8 + 3)

−7c6(2c2
7(35c2

8 − 26c8 + 6)− c7(52c2
8 − 42c8 + 11) + 12c2

8 − 11c8 + 3)
+7c2

7(14c2
8 − 12c8 + 3)− 7c7(12c2

8 − 11c8 + 3) + 21c2
8 − 21c8 + 6

• Set c4 = c6(4c5 − 3c6)/(2(3c5 − 2c6)), c3 = 2c4/3, a32 = c2
3/(2c2), a43 = c2

4/(2c3),
a54 = c2

5(3c3 − 2c5)/(6c4(c3 − c4))
• Solve w · ci = 1

i+1 , i = 1, 2, · · · 7, for w1, w6, · · · , w12.
• Solve ŵ · ci = 1

i+1 , i = 1, 2, · · · 6, for ŵ1, ŵ6, · · · , ŵ12.

Then all the remaining coefficients of matrix A are linearly depended on the following
56 equations and can be derived by solving directly the corresponding linear system.

• Solve (w · (C− Is) · A = 0s)(4−5), (w · (C− Is)2 · A = 0s)(4−5),
(

A · c = c2

2

)
(5−12)

,
(

A · c2 = c3

3

)
(5−12)

,
(

A · c3 = c4

4

)
(7−12)

, (w · (A + C− Is) = 0s)(4−10),

(ŵ · (A + C− Is) = 0s)(4−8), (ŵ · (C− Is) · A)4 = 0, w · (c ◦ (A · c4)) = 1
35 ,

w · (c2 ◦ (A · c4)) = 1
40 , w · (c ◦ (A · c5)) = 1

48 , ŵ · (c ◦ (A · c4)) = 1
35 , (A · e = c)(2−13)

for the remaining coefficients from matrix A.

Next we provide a Mathematica package that implements the algorithm above. The
following listing is 100% error free and is copied directly from the actual file.

(*--*)
BeginPackage["T87‘"];
Clear["T87‘*"];

T87::usage="T87[c2,c5,c6,c7,c8,c10,c11,a87,w13,ww12,ww13]
returns the coefficients matrices a,w,ww,c
of RK embedded pair of orders 8(7)"

Begin["‘Private‘"];
Clear["T87‘Private‘*"];

T87[c2_,c5_,c6_,c7_,c8_,c10_,c11_,a87_,w13_,ww12_,ww13_]:=
Module[{c, c3, c4, c9, w, ww, e, a, w1, w6, w7, w8, w9, w10, w11, w12, ww1, ww6, ww7, ww8,

ww9, ww10, ww11, ae, ac, ac2, ac3, cc, ii, baci, bbaci, a32, a43, a53, a54, a64, a65, a74,
a75, a76, a84, a85, a86, a94, a95, a96, a97, a98, a104, a105, a106, a107, a108, a109, a114,

a115, a116, a117, a118, a119, a1110, a124, a125, a126, a127, a128, a129, a1210, a1211, a134,
a135, a136, a137, a138, a139, a1310, a1311, a21, a31, a41, a51, a61, a71, a81, a91, a101,

a111, a121, a131},
c = {0, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, 1, 1};
w = {w1, 0, 0, 0, 0, w6, w7, w8, w9, w10, w11, w12, w13};
ww = {ww1, 0, 0, 0, 0, ww6, ww7, ww8, ww9, ww10, ww11, ww12, ww13};
e = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
a = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{a21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{a31, a32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{a41, 0, a43, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{a51, 0, a53, a54, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{a61, 0, 0, a64, a65, 0, 0, 0, 0, 0, 0, 0, 0},
{a71, 0, 0, a74, a75, a76, 0, 0, 0, 0, 0, 0, 0},
{a81, 0, 0, a84, a85, a86, a87, 0, 0, 0, 0, 0, 0},
{a91, 0, 0, a94, a95, a96, a97, a98, 0, 0, 0, 0, 0},
{a101, 0, 0, a104, a105, a106, a107, a108, a109, 0, 0, 0, 0},
{a111, 0, 0, a114, a115, a116, a117, a118, a119, a1110, 0, 0, 0},
{a121, 0, 0, a124, a125, a126, a127, a128, a129, a1210, a1211, 0, 0},
{a131, 0, 0, a134, a135, a136, a137, a138, a139, a1310, a1311, 0, 0}};

Mathematics 2022, 10, 3247 5 of 12

c9 = (14*c6^2*(7*c7^2*c8 + c7*(7*c8^2 - 12*c8 + 1) + c8) + c6*(14*c7^2*(7*c8^2 - 12*c8 + 1)
- 7*c7*(24*c8^2 - 33*c8 + 4) + 14*c8^2 - 28*c8 + 3) + 14*c7^2*c8
+ c7*(14*c8^2 - 28*c8 + 3) + 3*c8)/
(2*(7*c6^2*(7*c7^2*(15*c8^2 - 10*c8 + 2) - 2*c7*(35*c8^2 - 26*c8 + 6)
+ 14*c8^2 - 12*c8 + 3) - 7*c6*(2*c7^2*(35*c8^2 - 26*c8 + 6)
- c7*(52*c8^2 - 42*c8 + 11) + 12*c8^2 - 11*c8 + 3) + 7*c7^2*(14*c8^2 - 12*c8 + 3)
- 7*c7*(12*c8^2 - 11*c8 + 3) + 21*c8^2 - 21*c8 + 6));

c3 = (3*c2)/2; c4 = (9*c2)/4; a32 = (9*c2)/8; a43 = (27*c2)/16;
{w1, w6, w7, w8, w9, w10, w11, w12} =

Solve[{w.e == 1, w.c == 1/2, w.c^2 == 1/3, w.c^3 == 1/4, w.c^4 == 1/5,
w.c^5 == 1/6, w.c^6 == 1/7, w.c^7 == 1/8},

{w1, w6, w7, w8, w9, w10, w11, w12}][[1, All, 2]];
{ww1, ww6, ww7, ww8, ww9, ww10, ww11} =
Solve[{ww.e == 1, ww.c == 1/2, ww.c^2 == 1/3, ww.c^3 == 1/4, ww.c^4 == 1/5,

ww.c^5 == 1/6, ww.c^6 == 1/7},
{ww1, ww6, ww7, ww8, ww9, ww10, ww11}][[1, All, 2]];

ae = a.e - c; ac = a.c - c^2/2; ac2 = a.c^2 - c^3/3; ac3 = a.c^3 - c^4/4;
cc = DiagonalMatrix[c]; ii = IdentityMatrix[13];
baci = w.(a + cc - ii); bbaci = ww.(a + cc - ii);
{a53, a54, a64, a65, a74, a75, a76, a84, a85, a86, a94, a95, a96, a97, a98, a104, a105,
a106, a107, a108, a109, a114, a115, a116, a117, a118, a119, a1110, a124, a125, a126, a127,

a128, a129, a1210, a1211, a134, a135, a136, a137, a138, a139, a1310, a1311} =
Solve[Join[(w.(cc - ii).a)[[4 ;; 5]], (w.(cc - ii).(cc - ii).a)[[4 ;; 5]], ac[[5 ;; 12]],

ac2[[5 ;; 12]], ac3[[7 ;; 13]], baci[[4 ;; 10]], bbaci[[4 ;; 8]],
{(ww.(cc - ii).a)[[4]], -(1/35) + w.(c a.c^4), -(1/40) + w.(c^2 a.c^4),

-(1/48) + w.(c a.c^5), -(1/35) + ww.(c a.c^4)}] == Array[0 &, 44],
{a53, a54, a64, a65, a74, a75, a76, a84, a85, a86, a94, a95, a96, a97, a98, a104, a105,

a106, a107, a108, a109, a114, a115, a116, a117, a118, a119, a1110, a124, a125, a126, a127,
a128, a129, a1210, a1211, a134, a135, a136, a137, a138, a139, a1310, a1311}][[1, All, 2]];

{a21, a31, a41, a51, a61, a71, a81, a91, a101, a111, a121, a131} =
Simplify[Solve[ae[[2 ;; 13]] == Array[0 &, 12],

{a21, a31, a41, a51, a61, a71, a81, a91, a101, a111, a121, a131}][[1, All, 2]]];
Return[{a,w,ww,c}];
End[];
EndPackage[]];
(*--*)

This package can be retrieved from http://users.uoa.gr/~tsitourasc/t87.m, accessed
on 8 August 2022.

We spend about 0.01s for derivation of the coefficients (e.g., for PD8(7) given in [12])
after typing

In[1]:=T87[1/18,5/16,3/8,59/400,93/200,13/20,1201146811/1299019798,
-180193667/1043307555,1/4,2/45,0]

The coefficients of PD87 listed in [12] are continued fraction approximations accurate
to only 18 significant digits. Here we used a version of the coefficients accurate to 34
significant digits after properly chopping the coefficients found exactly above (i.e., as
Out[1]).

3. On Derivation of a New Runge–Kutta Pair of Orders Eight and Seven

PD87 [12] and DVERK78 [17] are among the dominant pairs of their kind and are
commonly used for higher accuracy computations. Their main advantage is the mini-
mal truncation error coefficients norm ‖T(9)‖2, i.e., the Euclidean norm of the 286 error
coefficients of ninth order (see Table 1). A little later, Verner presented a more robust
pair [18], which is implemented in Mathematica function NDSolve [19]. We name this pair
DVERK78b and its coefficients can be retrieved (for use in quad-precision) easily by typing

In[2]:=NDSolve‘EmbeddedExplicitRungeKuttaCoefficients[8,34]

The minimization of the Euclidean norm ‖T(9)‖2 is our main task here. Traditionally,
we try also to keep the magnitude of the coefficients low when using double precision
arithmetic (i.e., about 16 decimal digits). Then, a coefficient of size 105 along with tolerance

http://users.uoa.gr/~tsitourasc/t87.m

Mathematics 2022, 10, 3247 6 of 12

ε = 10−11 would cause a severe test in the margins of available digits; however, in quadru-
ple precision, we may admit these large coefficients even for tolerances as low as about
10−25. Thus, we may proceed in a new minimization process allowing the coefficients
to grow.

In order to accomplish this we use the differential evolution (DE) technique [20]. DE is
an iterative procedure; in every iteration, named generation g, we work with a “population”
of individuals. i.e., here the free parameters form the decades

(
c(g)

2 , c(g)
5 , c(g)

6 , c(g)
7 , · · · ŵ(g)

12 , w(g)
13

)
, i = 1, 2, · · · , N,

with N the population size. An initial population
(

c(0)2 , c(0)5 , c(0)6 , c(0)7 , · · · ŵ(0)
12 , w(0)

13

)
, i = 1, 2, · · · , N,

is randomly created in the first step of the method. Thus, at first we form a fitness function
that evaluates ‖T(9)‖2. Following that, the fitness function is assessed for each member
in the initial population. A three-phases sequential approach updates all of the persons
participating in each iteration (generation) g. Differentiation, crossover, and selection are
the phases involved. For the latter method, we utilized MATLAB [21] Software DeMat [22].
A MATLAB version of the algorithm is implemented for this purpose.

Among the various decades we obtained by the technique applied, we concluded the
following coefficients that are given in Mathematica format to ensure that are error free.
The following coefficients are ready for use with build-in function NDSolve.

Mathematics 2022, 1, 0 6 of 11

ε = 10−11 would cause a severe test in the margins of available digits; however, in quadru-
ple precision, we may admit these large coefficients even for tolerances as low as about
10−25. Thus, we may proceed in a new minimization process allowing the coefficients to
grow.

In order to accomplish this we use the differential evolution (DE) technique [20]. DE is
an iterative procedure; in every iteration, named generation g, we work with a “population”
of individuals. i.e., here the free parameters form the decades

(
c(g)

2 , c(g)
5 , c(g)

6 , c(g)
7 , · · · ŵ(g)

12 , w(g)
13

)
, i = 1, 2, · · · , N,

with N the population size. An initial population
(

c(0)2 , c(0)5 , c(0)6 , c(0)7 , · · · ŵ(0)
12 , w(0)

13

)
, i = 1, 2, · · · , N,

is randomly created in the first step of the method. Thus, at first we form a fitness function
that evaluates ‖T(9)‖2. Following that, the fitness function is assessed for each member
in the initial population. A three-phases sequential approach updates all of the persons
participating in each iteration (generation) g. Differentiation, crossover, and selection are
the phases involved. For the latter method, we utilized MATLAB [21] Software DeMat [22].
A MATLAB version of the algorithm is implemented for this purpose.

Among the various decades we obtained by the technique applied, we concluded the
following coefficients that are given in Mathematica format to ensure that are error free.
The following coefficients are ready for use with build-in function NDSolve.

In[2]:=T87evec= {10839870895445/185203278486104297,0,0,0,0,70876466420204/75470597442438275,
-16496614726651/75468957694148719,54859577937538923405/14355606386435513,

17895137500075704819/2362101251104030,-969063659258770673/19161965088242370,
-39193463899416576680/3455993185375433,-973424986199410385/155592419305288032,16491/120125}/10;
T87cvec= {3102/110773,41448895555141/353624691619188,41448895555141/235749794412792,

49442/119883,51187/105369,61011/376738,77114/79499,147909751614626799/152923788158104127,
74279/78046,72043/74409,1,1};

T87amat={ {3102/110773},
{-17033458900934993/132978864382888258,17659313382611255/71989792689293837},

{41448895555141/942999177651168,0,41448895555141/314333059217056},
{33544131897542527/99303639017753176,0,-123806032279621065/100880451772826828,

80881552191452041/62126727673226683},
{3901178494518027/70202052982346435,0,0,12244602153330846/48744104078022083,

11363782051482252/63479278340035273},
{7281184019796491/108906123149933189,0,0,8912953764743186/75237479424494327,

-1193193435755019/24043824215671157,3001381510813201/114340525306552991},
{-297808918551351805/103302384399153762,0,0,-2387409947307450796/38235137422988677,

-320655295147743895/172685972706995386,266830735262229145/73369592821183637,8174527/126711},
{-312230898179118543/111335375555652709,0,0,-5921685522031592717/97516557935639304,

-122516042059134140/66440638491697461,143089054978597281/39930960285352934,
1966780853930863533/31340008936176199,27204097600957/30119714219091834},

{-497327926559154029/208366132906665209,0,0,-2070519061247416919/40105304012179956,
-139926368413626755/79789745208684688,436822604663916242/133157501626893287,

4951999978536596383/92678477827402881,-1662171172972759/32043786293542537,
320510318790859/5467452906511140},

{-267997292446794835/94625648159795289,0,0,-1326916430444389167/21635054137957163,
-50510473210813287/27322222661367848,680595213260915461/188925642391189177,

1090597603926315985/17207867085312708,-818226826952911/56758278493554744,
794276136679319/44163223221855014,-495594365453263/165024671142376612},

{-286074472550848766/70568381571246193,0,0,-2666282586603439301/29766446888618900,
-394981932622811234/181671027945865139,354437914440687571/72293255173230666,

1737172167669457231/18855481952627537,-1908527156826626453/17978177470082379,
14359180611877865064/20075894067162869,-1863006586402493967/31715262582627044,

-5146117877451253921/9346764321565133},
{-2286460617615599450/148215689608432541,0,0,-21511651826330234931/52669819756106150,

-949790098629780736/69310896259636617,2488552272190713800/64326656295428697,
14577683994864478388/35463253730030943,-34626716477448076238/6579786536866391,
267076469802229885930/7436961774107587,-15666088518007151408/5323429123670105,

-39614246945332388915/1429199330541022,0}};

Mathematics 2022, 10, 3247 7 of 12Mathematics 2022, 1, 0 7 of 11

T87bvec= {959469921003535/20735873900418433,0,0,0,0,83661087663817387/226096222469839182,
228743606234324881/883020026679163794,3544120671195926375/8063503515187523,

164403934540876/64548125027903185,1872154679941434671/50440600905843744,
-3908844507545666995/8324248434152054,-402658040159189839/58491143516062232,16491/120125};

T87Coefficients[8,p_]:=N[{T87amat,T87bvec,T87cvec,T87evec},p];

MATLAB furnished the free coefficients in double precision (see, e.g., c2, c5, etc., in
vector T87cvec). Considering these free coefficients as exact, we were able to extract the
rest coefficients in quadruple precision as listed above.

Another issue that is interesting when dealing with (1) is the existence of large stability
intervals. For the eighth order formula (which the solution propagated) we form the
polynomial

I(t) = 1 + t +
1
2

t2 +
1
3!

t3 +
1
4!

t4 +
1
5!

t5 +
1
6!

t6 +
1
7!

t7 +
1
8!

t8

+(w · A7 · c) · t9 + (w · A8 · c) · t10 + (w · A9 · c) · t11 + (w · A10 · c) · t12.

There is no need to add the term t13 since a13,12 = 0 and in consequence w · A11 · c = 0.
The real stability interval has the form (t0, 0) with t0 < 0 and |I(t)| ≤ 1 holds for all t > t0.

The basic characteristics of the methods presented here can be found in Table 2. It is
obvious that our objective was met by far with RK8(7).

Table 2. Basic characteristics of the RK pairs considered.

Pair Maximum
Coefficient

Real Stability
Interval

∥∥∥T(9)
∥∥∥

2

DVERK8(7)b 5.9 (−4.52, 0) 7.55 · 10−6

PD8(7) 16.7 (−5.16, 0) 4.51 · 10−6

T8(7) 43463.3 (−5.08, 0) 3.89 · 10−8

4. Numerical Results

The Runge–Kutta pairs of orders eight and seven chosen for comparison are the
following

• DVERK78b: The pair proposed by Verner [18].
• PD87: The pair of [12] with coefficients in an enhanced 34 decimal digits version.
• T87: The pair constructed here.

The above selection is justified by the chosen methods being the most used ones.
DVERK78b is also implemented in MAPLE function dsolve [23] and its coefficients can be
retrieved using MATHEMATICA (see In[1] above).

All the problems were run in MATHEMATICA using the NDSolve function and ex-
ploiting the capabilities offered for explicit Runge–Kutta pairs [24].

The problems of the tests are the following:

4.1. Inhomogeneous Equation

The first test problem chosen is the inh◦m◦gene◦us equation:

ζ ′1 = ζ2

ζ ′2 = −100ζ1(x) + 99. sin(x),

ζ1(0) = 1, ζ2(0) = 11, with analytical solution [25]

ζ1(x) = cos(10x) + sin(10x) + sin(x), ζ2(x) = ζ ′1(x).

We integrated this problem in the interval x ∈ [0, 20π] for tolerances ε = 10−16,
10−17, · · · , 10−23, 10−24. We then recorded the cost (in function evaluations) versus the
achieved end-point accuracy for the three pairs. The corresponding efficiency plots are

MATLAB furnished the free coefficients in double precision (see, e.g., c2, c5, etc., in
vector T87cvec). Considering these free coefficients as exact, we were able to extract the
rest coefficients in quadruple precision as listed above.

Another issue that is interesting when dealing with (1) is the existence of large stability
intervals. For the eighth order formula (which the solution propagated) we form the
polynomial

I(t) = 1 + t +
1
2

t2 +
1
3!

t3 +
1
4!

t4 +
1
5!

t5 +
1
6!

t6 +
1
7!

t7 +
1
8!

t8

+(w · A7 · c) · t9 + (w · A8 · c) · t10 + (w · A9 · c) · t11 + (w · A10 · c) · t12.

There is no need to add the term t13 since a13,12 = 0 and in consequence w · A11 · c = 0.
The real stability interval has the form (t0, 0) with t0 < 0 and |I(t)| ≤ 1 holds for all t > t0.

The basic characteristics of the methods presented here can be found in Table 2. It is
obvious that our objective was met by far with RK8(7).

Table 2. Basic characteristics of the RK pairs considered.

Pair Maximum
Coefficient

Real Stability
Interval

∥∥∥T(9)
∥∥∥

2

DVERK8(7)b 5.9 (−4.52, 0) 7.55 · 10−6

PD8(7) 16.7 (−5.16, 0) 4.51 · 10−6

T8(7) 43463.3 (−5.08, 0) 3.89 · 10−8

4. Numerical Results

The Runge–Kutta pairs of orders eight and seven chosen for comparison are the
following

• DVERK78b: The pair proposed by Verner [18].
• PD87: The pair of [12] with coefficients in an enhanced 34 decimal digits version.
• T87: The pair constructed here.

The above selection is justified by the chosen methods being the most used ones.
DVERK78b is also implemented in MAPLE function dsolve [23] and its coefficients can be
retrieved using MATHEMATICA (see In[1] above).

All the problems were run in MATHEMATICA using the NDSolve function and ex-
ploiting the capabilities offered for explicit Runge–Kutta pairs [24].

The problems of the tests are the following:

4.1. Inhomogeneous Equation

The first test problem chosen is the inh◦m◦gene◦us equation:

ζ ′1 = ζ2

ζ ′2 = −100ζ1(x) + 99 · sin(x),

ζ1(0) = 1, ζ2(0) = 11, with analytical solution [25]

ζ1(x) = cos(10x) + sin(10x) + sin(x), ζ2(x) = ζ ′1(x).

We integrated this problem in the interval x ∈ [0, 20π] for tolerances ε = 10−16,
10−17, · · · , 10−23, 10−24. We then recorded the cost (in function evaluations) versus the
achieved end-point accuracy for the three pairs. The corresponding efficiency plots are

Mathematics 2022, 10, 3247 8 of 12

shown in Figure 1. The rightmost lower circle in Figure 1 may produced in Mathematica
after typing:

0 2 4 6 8 10 12 14 16 18

stages 105

10-26

10-24

10-22

10-20

10-18

10-16

10-14

e
rr

o
r

Inhomogeneous

T8(7)

DVERK8(7)b

PD8(7)

Figure 1. Efficiency plots for the inhomogeneous equation.

In[3]:=Needs["DifferentialEquations‘NDSolveProblems‘"];
In[4]:=Needs["DifferentialEquations‘NDSolveUtilities‘"];
In[5]:=system=NDSolveProblem[{{y1’[t]==y2[t],y2’[t]==-100*y1[t]+99*Sin[t]},

{y1[0]==1,y2[0]==11},{y1[t],y2[t]},{t,0,20*Pi},{},{},{}}];
In[6]:=CompareMethods[system, {1, 11}, {{"ExplicitRungeKutta",

"Coefficients" -> T87Coefficients,
"DifferenceOrder" -> 8, "StiffnessTest" -> False}},

WorkingPrecision -> 33, AccuracyGoal -> 24, PrecisionGoal -> 24]
Out[6]={{{101128,0},1314666,7.12428*10^-25}}

i.e., we spent about 13.1 · 105 stages and achieved more than 24 digits of accuracy. Observe
that the solution at the initial and at the end-point coincide.

4.2. Brusselator

Secondly we tried the Brusselator problem [26], which is formed after the laws of
chemical kinetics. A simplified version is given in [27] (p. 116), and has the form

ζ ′1 = 1 + ζ2
1ζ2 − 4ζ1

ζ ′2 = 3ζ1 − ζ2
1ζ2,

ζ1(0) = 1.5, ζ2(0) = 3. See also [28] (p. 22).
The analytical solution is not available. An end-point approximation of the solution

was found by a very accurate integration. We then integrated this problem in the interval
x ∈ [0, 20] for tolerances ε = 10−16, 10−17, · · · , 10−23, 10−24. We also recorded the cost
(in function evaluations) versus the achieved end-point accuracy for the three pairs. The
corresponding efficiency plots are shown in Figure 2.

Mathematics 2022, 10, 3247 9 of 12

0 1 2 3 4 5 6 7 8 9 10

stages 104

10-26

10-24

10-22

10-20

10-18

10-16

10-14

e
rr

o
r

Brusselator

T8(7)

DVERK8(7)b

PD8(7)

Figure 2. Efficiency plots for the Brusselator.

4.3. Two Body Problem

We continued with the Kepler problem with eccentricity 0.5 as in [29] which shares
the following equations

ζ ′1 = ζ3, ζ ′2 = ζ4, ζ ′3 = − ζ1(√
ζ2

1 + ζ2
2

)3 , ζ ′4 = − ζ2(√
ζ2

1 + ζ2
2

)3

with initial conditions ζ1(0) = 0.5, ζ2(0) = 0, ζ3(0) = 0, ζ4(0) =
√

3.
The analytical solution is shown in [30]. We also integrated this problem in the interval

x ∈ [0, 6π] for tolerances ε = 10−16, 10−17, · · · , 10−23, 10−24. We then recorded the cost
versus the achieved end-point accuracy for the three pairs. The corresponding efficiency
plots are shown in Figure 3.

0 1 2 3 4 5 6 7 8 9

stages 104

10-24

10-22

10-20

10-18

10-16

10-14

10-12

e
rr

o
r

Kepler

T8(7)

DVERK8(7)b

PD8(7)

Figure 3. Efficiency plots for the Kepler problem.

Mathematics 2022, 10, 3247 10 of 12

4.4. The Euler Problem

We finally tried the Euler problem as given in [27] (p. 244). Namely

ζ ′1 = −2ζ2ζ3

ζ ′2 =
5
4

ζ1ζ3

ζ ′3 = −1
2

ζ1ζ2 + g(x)

and the exterior force given as

g(x) = {
1
4 sin2 x when 4π ≥ x ≥ 3π

0 otherwise

with initial values ζ1(0) = 1, ζ2(0) = 0, ζ3 = 0.9.
The analytical solution is not available. An end-point approximation of the solution

was found by a very accurate integration. We then integrated this problem in the interval
x ∈ [0, 20] for tolerances ε = 10−16, 10−17, · · · , 10−23, 10−24. We also recorded the cost
versus the achieved end-point accuracy for all three pairs. The corresponding efficiency
plots are shown in Figure 4.

0 1 2 3 4 5 6 7 8 9 10

stages 104

10-26

10-24

10-22

10-20

10-18

10-16

10-14

e
rr

o
r

Euler

T8(7)

DVERK8(7)b

PD8(7)

Figure 4. Efficiency plots for the Euler problem.

Interpreting the results we observe a clear and wide distance in favor of our new
proposal since it takes advantage of the significantly smaller truncation error.

5. Conclusions

A new Runge–Kutta pair of orders eight and seven is proposed for use in high preci-
sion computations. A smaller truncation error is achieved at an affordable cost of larger
magnitude of the coefficients. Its performance is illustrated in a set of relevant problems.

Mathematics 2022, 10, 3247 11 of 12

Author Contributions: Conceptualization, T.E.S. and C.T.; Data curation, V.N.K., R.V.F., T.V.K., T.E.S.
and C.T.; Formal analysis, V.N.K., R.V.F., T.V.K., T.E.S. and C.T.; Funding acquisition, T.E.S.; Investiga-
tion, V.N.K., R.V.F., T.V.K., T.E.S. and C.T.; Methodology, T.E.S. and C.T.; Project administration, T.E.S.;
Resources, V.N.K., R.V.F., T.V.K., T.E.S. and C.T.; Software, R.V.F., T.V.K., T.E.S. and C.T.; Supervision,
T.E.S. and C.T.; Validation, V.N.K., R.V.F., T.E.S. and C.T.; Visualization, V.N.K., R.V.F., T.V.K. and
T.E.S.; Writing—original draft, C.T.; Writing—review & editing, T.E.S. All authors have read and
agreed to the published version of the manuscript.

Funding: The research was supported by a Mega Grant from the Government of the Russian
Federation within the framework of the federal project No. 075-15-2021-584.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Butcher, J.C. Implicit Runge-Kutta processes. Math. Comput. 1964, 18, 50–64. [CrossRef]
2. Butcher, J.C. On Runge-Kutta processes of high order. J. Austral. Math. Soc. 1964, 4, 179–194. [CrossRef]
3. Tsitouras, C.; Papakostas, S.N. Cheap error estimation for Runge-Kutta methods. SIAM J. Sci. Comput. 1999, 20, 2067–2088.

[CrossRef]
4. Cassity, C.R. The complete solution of the fifth order Runge-Kutta equations. SIAM J. Numer. Anal. 1969, 6, 432–436. [CrossRef]
5. Butcher, J.C. The Numerical Analysis of ODEs: Runge-Kutta and General Linear Methods; Wiley: Chichester, UK, 1987.
6. Fehlberg, E. Classical Fifth, Sixth, Seventh, and Eighth Order Runge-Kutta Formulas with Stepsize Control, TRR-287; NASA: Marshall

Space Flight Center: Huntsville, AL, USA, 1968.
7. Famelis, I.T.; Papakostas, S.N.; Tsitouras, C. Symbolic derivation of Runge-Kutta order conditions. J. Symbolic Comput. 2004, 37,

311–327. [CrossRef]
8. Oliver, J. A Curiosity of Low-Order Explicit Runge-Kutta Methods. Math. Comput. 1975, 29, 1032–1036. [CrossRef]
9. Tsitouras, C. Explicit Runge-Kutta methods for starting integration of Lane–Emden problem. Appl. Math. Comput. 2019, 354,

353–364. [CrossRef]
10. Papakostas, S.N.; Tsitouras, C.; Papageorgiou, G. A general family of explicit Runge-Kutta pairs of orders 6(5). SIAM J. Numer.

Anal. 1996, 33, 917–936. [CrossRef]
11. Verner, J.H. Explicit Runge-Kutta methods with estimates of the local truncation error. SIAM J. Numer. Anal. 1978, 15, 772–790.

[CrossRef]
12. Prince, P.J.; Dormand, J.R. High order embedded Runge-Kutta formulae. J. Comput. Appl. Math. 1981, 7, 67–75. [CrossRef]
13. Papakostas, S.N. Algebraic Analysis and Development of Numerical ODE Solvers of the Runge-Kutta Type. Ph.D. Thesis,

National Technical University, Athens, Greece, 1996. Available online: https://www.didaktorika.gr/eadd/handle/10442/6561
(accessed on 8 August 2022).

14. Papakostas, S.N.; Tsitouras, C. High Phase-Lag-order Runge-Kutta and Nyström pairs. SIAM J. Sci. Comput. 1999, 21, 747–763.
[CrossRef]

15. Verner, J.H. A contrast of some Runge-Kutta formula pairs. SIAM J. Numer. Anal. 1990, 27, 1332–1344. [CrossRef]
16. Verner, J.H. Some Runge-Kutta formula pairs. SIAM J. Numer. Anal. 1991, 28, 496–511. [CrossRef]
17. Verner, J.H. Numerically optimal Runge–Kutta pairs with interpolants. Numer. Algor. 2010, 53, 383–396. [CrossRef]
18. Verner, J.H. Available online: https://www.sfu.ca/~jverner/RKV87.IIa.Robust.00000754677.081208.FLOAT40OnWeb (accessed

on 8 August 2022).
19. NDSolve: Mathematica Function. Available online: https://reference.wolfram.com/language/ref/NDSolve.html?q=NDSolve

(accessed on 8 August 2022).
20. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J.

Glob. Optim. 1997, 11, 341–359. [CrossRef]
21. MATLAB Version R2019b; The Mathworks, Inc.: Natick, MA, USA, 2019.
22. Storn, R.; Price, K.; Neumaier, A.; Zandt, J.V. DeMat. Available online: https://github.com/mikeagn/DeMatDEnrand (accessed

on 25 March 2022).
23. dsolve, Maple Function. Available online: https://www.maplesoft.com/support/help/maple/view.aspx?path=dsolve/dverk78

(accessed on 8 August 2022).
24. “ExplicitRungeKutta” for NDSolve. Available online: https://reference.wolfram.com/language/tutorial/NDSolveExplicitRungeKutta.

html (accessed on 8 August 2022).
25. Tsitouras, C.; Simos, T.E. High algebraic, high phase-lag order embedded Numerov-type methods for oscillatory problems. Appl.

Math. Comput. 2002, 131, 201–211. [CrossRef]

http://doi.org/10.1090/S0025-5718-1964-0159424-9
http://dx.doi.org/10.1017/S1446788700023387
http://dx.doi.org/10.1137/S1064827596302230
http://dx.doi.org/10.1137/0706038
http://dx.doi.org/10.1016/j.jsc.2003.07.001
http://dx.doi.org/10.1090/S0025-5718-1975-0391514-5
http://dx.doi.org/10.1016/j.amc.2019.02.047
http://dx.doi.org/10.1137/0733046
http://dx.doi.org/10.1137/0715051
http://dx.doi.org/10.1016/0771-050X(81)90010-3
https://www.didaktorika.gr/eadd/handle/10442/6561
http://dx.doi.org/10.1137/S1064827597315509
http://dx.doi.org/10.1137/0727076
http://dx.doi.org/10.1137/0728027
http://dx.doi.org/10.1007/s11075-009-9290-3
https://www.sfu.ca/~jverner/RKV87.IIa.Robust.00000754677.081208.FLOAT40OnWeb
https://reference.wolfram.com/language/ref/NDSolve.html?q=NDSolve
http://dx.doi.org/10.1023/A:1008202821328
https://github.com/mikeagn/DeMatDEnrand
https://www.maplesoft.com/support/help/maple/view.aspx?path=dsolve/dverk78
https://reference.wolfram.com/language/tutorial/NDSolveExplicitRungeKutta.html
https://reference.wolfram.com/language/tutorial/NDSolveExplicitRungeKutta.html
http://dx.doi.org/10.1016/S0096-3003(01)00133-3

Mathematics 2022, 10, 3247 12 of 12

26. Lefever, R.; Nicolis, G. Chemical Instabilities and sustained oscillations. J. Theor. Biol. 1971, 30, 267–284. [CrossRef]
27. Hairer, E.; Nørsett, S.P.; Wanner, G. Solving Ordinary Differential Equations I: Nonstiff Problems; Springer: Berlin, Germany, 1993.
28. Sofroniou, M.; Knapp, R. Advanced numerical differential equation solving in Mathematica. In Wolfram Mathematica Tutorial

Collection; Wolfram Research: Champaign, IL, USA, 2008.
29. Tsitouras, C. A tenth order symplectic Runge-Kutta and Nyström method. Cele. Mech. Dynam. Astron. 1999, 74, 223–230.

[CrossRef]
30. Tsitouras, C.; Papageorgiou, G. Runge-Kutta Interpolants Based on Values from Two Successive Integration Steps. Computing

1990, 43, 255–266. [CrossRef]

http://dx.doi.org/10.1016/0022-5193(71)90054-3
http://dx.doi.org/10.1023/A:1008346516048
http://dx.doi.org/10.1007/BF02242920

	Introduction
	Runge–Kutta Pairs of Orders Eight and Seven
	On Derivation of a New Runge–Kutta Pair of Orders Eight and Seven
	Numerical Results
	Inhomogeneous Equation
	Brusselator
	Two Body Problem
	The Euler Problem

	Conclusions
	References

