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Abstract: Facilitated by advanced digital technologies, reliability managers can monitor system
working cycles during the whole life cycle. Such a technological realization can help reliability
managers ensure system reliability in real time by monitoring working cycles. In this paper, by
incorporating a limited random working cycle, rebate and charge into warranty theory, a random free
repair warranty with rebate and charge (RFRW-RC) is devised to ensure system reliability during the
warranty stage. Under RFRW-RC, the rebate removes manufacturers’ responsibility for continuing
to ensure system reliability, while the charge is a support where manufacturers continue to ensure
system reliability. The warranty cost of RFRW-RC is derived, and a random discrete free repair
warranty (RDFRW) is presented by simplifying RFRW-RC. By mixing random age replacement last
(RARL) and classic age replacement (CAR), a random hybrid age replacement (RHAR) is designed
in order to ensure system reliability during the post-warranty stage. In such an RHAR, RARL is
applied to extend the replacement time during the post-warranty stage in order to maximize the
remaining life of the system through warranty, and CAR is used to lower the maintenance cost of the
system through warranty. The cost rate of RHAR is modeled, and the cost rate of RDFRW is offered
as well by discussing parameter values. The decision variable is optimized by minimizing the cost
rate model. The properties of the presented models are explored from numerical perspectives.

Keywords: working cycle; warranty; rebate; random hybrid age replacement; cost rate

MSC: 93E20

1. Introduction

The reliability guarantee of the system is a key component of the system life cycle
management. From the viewpoint of the operation and maintenance, the reliability guar-
antee of the system could be classified into the reliability guarantee during the warranty
stage and the reliability guarantee during the post-warranty stage. Usually, the warrantor
or manufacturer is in charge of the reliability guarantee during the warranty stage, and the
warrantee or user is responsible for the reliability guarantee during the post-warranty stage.

From the perspective of the manufacturer, many warranty policies (models) have
been studied to guarantee system reliability during the warranty stage. Depending on
the maintenance method, the warranty policies of existing works can be divided into
three categories of research. The first category of research is to design classic warranty
policies, wherein the first failure time of the system is characterized as a distribution
function (this field has been presented in Refs. [1–3]), and classic maintenance technologies
(repair, replacement or preventive maintenance) are used to ensure the system reliability.
This category of warranty can be found in Refs. [4–11]. Under the support of random
maintenance policies in Refs. [12–15], the second category of research aims at modeling
random warranty policies where random working cycles were incorporated into warranty
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theory. For example, by incorporating random working cycles into a renewing pro-rate
replacement warranty (RPRW), Ref. [16] designed a two-dimensional random renewing
pro-rate replacement warranty with a refund (2DRRPRW with R) where a partial refund
is used to maintain fairness; Ref. [17] designed the two-dimensional free repair warranty
first (2DFRWF) and two-dimensional renewing free repair warranty last (2DFRWL) by
incorporating limited random working cycles into the warranty period; Ref. [18] integrated
limited random working cycles into the warranty period and designed the two-dimensional
renewing free replacement warranty first (2DRFRWF) and two-dimensional renewing free
replacement warranty last (2DRFRWL). The third category of research is to design condition-
based warranty policies by means of a stochastic process in Refs. [19–28], which can be
found in Refs. [29–31]. Further classification and details on warranty policies can be found
in Refs. [32,33].

To guarantee system reliability during the post-warranty stage, many maintenance
policies have been modeled from the viewpoint of the consumer. Occasionally, this type of
policy is called a post-warranty maintenance policy. Similar to the classification of warranty
policies, the post-warranty maintenance policies of existing works can be divided into
three types of research. Under the assumption that the first failure time of the system is
modeled as a distribution function, the first type of research is to model the post-warranty
maintenance policies by means of classic maintenance technologies, which have been
presented in Refs. [34–37]. The second type of research is to devise random post-warranty
maintenance policies by incorporating random working cycles into the post-warranty stage,
which have been provided in Refs. [38–41]. The objective of the third type of research is to
devise condition-based post-warranty maintenance policies, wherein system deterioration
is characterized as a stochastic process. For example, Ref. [42] designed a condition-based
post-warranty maintenance policy by assuming that a stochastic process can characterize
deterioration process.

For a multi-limitation warranty, the case at which the warranty expires is multidimen-
sional. Under a multi-limitation warranty, if a warranty limitation is reached early, then the
warrantee related to this situation could perceive that they is treated unfairly because their
warranty service period is shorter than each of the warranty service periods produced by
other warranty limitations. If the rebate in Refs. [43,44] is offered to this type of warrantee,
then the warrantee’s unfairness can be removed, and the warrantor disrupts responsibility
for continuing to ensure system reliability. Under a multi-limitation warranty, if a warranty
limitation is reached last, then the warranty cost absorbed by the warrantor is greater than
the warranty cost produced by the case where a warranty limitation is reached earlier. If
the warrantor charges the warrantee whose warranty expiry occurs last, then the warrantor
can recover warranty costs, and the system reliability is further ensured by the warrantor.
However, rebates and charges have seldom been used to handle the above problem.

After consulting the literature on post-warranty maintenance policies, it is found
that post-warranty maintenance policies are seldom designed based on the difference of
system ages. Under a multi-limitation warranty, the different warranty limitations produce
different system ages. For a system through a multi-limitation warranty, if its age is greater,
then its reliability function becomes lower. According to reliability theory, this fact signals
that the maintenance cost during the post-warranty stage will be greater. Conversely, if its
age is smaller, then its reliability function is still higher. Such a fact signals that the longer
remaining life during the post-warranty stage has not been used. These results imply that
under a multi-limitation warranty, how to reduce the maintenance cost of an older system
and to maximally use the longer remaining life of a younger system is a problem that must
be solved. However, scholars and practitioners have not yet solved this problem.

In this paper, by incorporating a limited random working cycle, a rebate, a charge
and minimal repair into the warranty stage, a random free repair warranty with rebate
and charge (RFRW-RC) is designed to ensure system reliability during the warranty stage,
wherein the rebate maintains fairness and disrupts manufacturers’ responsibility for con-
tinuing to ensure system reliability, while the charge is a support where manufacturers
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continue to ensure system reliability. The warranty cost of RFRW-RC is derived, and the
related special model is obtained. By incorporating random age replacement last (RARL)
in Refs. [15,17] and classic age replacement (CAR) into the post-warranty stage, a ran-
dom hybrid age replacement (RHAR) is modeled to ensure system reliability during the
post-warranty stage, wherein RARL is applied to extend the replacement time during the
post-warranty stage so as to maximally use the remaining life during the post-warranty
stage and CAR is used to lower the maintenance cost during the post-warranty stage.
The cost rate of RHAR is modeled, and special cost rates are also offered by discussing
parameter values. The decision variable is optimized by minimizing the cost rate of RHAR.
From a numerical perspective, the properties of the presented models are explored, and
insights are found.

The organization of this paper is listed below. Section 2 defines a novel warranty
model, derives a warranty cost model and presents a special warranty model. In Section 3,
a random maintenance model is established to ensure system reliability during the post-
warranty stage. Similarly, Section 3 presents the conditions for the existence and uniqueness
of the optimal solution. Section 4 explores the properties of the proposed models and
performs sensitivity analysis on some key parameters. Section 7 concludes the paper.

2. Warranty Models

Similar to Refs. [15,38], the assumptions used are listed as follows: the system performs
projects at working cycles, and the working cycles Yi of the ith (i = 1, 2, . . .) project are
random working cycles that are independent and obey an identical distribution function
G(y) = Pr{Yi < y}, wherein memory does not exist; the first failure time X obeys the
distribution function F(x) = Pr{X < x}, whose failure rate function is r(u); and the time
to repair or replacement is negligible.

2.1. Warranty Model Definition

Denote a time span and the number of random working cycles by w and n (0 < n < ∞),
respectively; let Sn be the working time, where the nth random working cycle is completed

by the system, where Sn =
n
∑

i=1
Yi; then, a warranty is defined below.

• The expiry of the warranty service is triggered by the nth random working cy-
cle completion.

• If the nth random working cycle is completed before the end of the time span w, the
warrantor will provide the warrantee with a rebate related to the shortage time w− Sn.

• If the nth random working cycle is still not completed until the end of the time span w,
the warrantee will be charged a fee related to the excess time Sn − w to ensure system
reliability during the time span (w, Sn − w]. Here, such a fee is named a charge.

• The system is minimally repaired at each failure before the expiry of the warranty, and
the warrantor absorbs the cost of each minimal repair. Here, such a cost is named the
repair cost.

Because both rebate and charge are considered in such a warranty, this warranty is
named a random free repair warranty with rebate and charge (RFRW-RC), which can be
explained concisely by Figure 1.

Notes: 1© When the nth random working cycle is completed before the end of the
time span w, the warrantor provides the related warrantee with a rebate to remove the
responsibility for continuing to ensure the system reliability during the interval (Sn, w];
such a rebate can remove the unfairness of the warrantee whose warranty expires earlier.
2©When the nth random working cycle is still not completed by the end of the time span w,

by charging a fee from the related warrantee, the warrantor is responsible for continuing to
guarantee the system reliability during the interval (w, Sn]. 3© The case in which RFRW-RC
expires includes two types, which are “RFRW-RC expires at the nth random working cycle
completion before the time span w” and “RFRW-RC expires at the nth random working cycle
completion after the time span w”.
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2.2. Warranty Cost Model

RFRW-RC requires that the system is minimally repaired at failure before the nth
random working cycle completes. Denote the unit repair cost by cm. Then, according to
reliability theory, until the nth random working cycle is completed before the end of the
time span w, the total repair cost C1(Sm) of the warrantor can be computed as

C1(Sn) = cm

∫ Sn

0
r(u)du (1)

where Sn < w.
RFRW-RC signals that when the nth random working cycle is completed before the

end of the time span w, the warrantor needs to offer a rebate that is dependent on the
shortage time w− Sn. This implies that such a rebate can be characterized as a function
with respect to the variable w− Sn. Such a rebate function can be denoted with respect to
the variable w− Sn by R(Sn). Then, such a rebate function R(Sn) is modeled as

R(Sn) = a(1− Sn/w)bcm

∫ w

Sn
r(u)du (2)

where Sn < w, a > 0 and b > 0.
By summing Equations (1) and (2), the total cost TC1(Sm) under the case where the nth

random working cycle is completed before the end of the time span w can be represented by

TC1(Sm) = C1(Sn) + R(Sn) = cm

∫ Sn

0
r(u)du + a(1− Sn/w)bcm

∫ w

Sn
r(u)du (3)

By Ref. [45], the working time Sn is a random variable whose distribution func-

tion G(n)(s) and reliability function G(n)
(s) are modeled as Stieltjes convolution

G(n)(s) = Pr{Sn < s} =
∫ s

0 G(n−1)(s− u)dG(u) and Stieltjes convolution G(n)
(s) =

Pr{Sn > s} = 1−
∫ s

0 G(n−1)(s− u)dG(u), respectively. When the nth random working
cycle completes before the end of the time span w, the system’s warranty service period
equates to the working time Sn, where Sn < w. Furthermore, such a working time Sn is
subject to the distribution function H(s) as

H(s) = Pr{Sn < s|Sn < w} = Pr{Sn < s}/Pr{Sn < w} = G(n)(s)/G(n)(w) (4)

where 0 < s < w.
By means of the distribution function H(s) in Equation (4), the total cost TC1(Sn) can

be rewritten as

ETC1 =
∫ w

0
TC1(s)dH(s) = cm

∫ w

0

(∫ s

0
r(u)du + a(1− s/w)b

∫ w

s
r(u)du

)
dG(n)(s)/G(n)(w) (5)
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As indicated in RFRW-RC, when the nth random working cycle is completed after the
end of the time span w, the warrantee provides a charge to the warrantor. Such a charge
depends on the excess time Sn − w. In other words, this charge alike is characterized as a
function with respect to the variable Sn − w. Let P(Sn) be a charge function with respect to
the variable Sn − w. Then, the charge function P(Sn) is modeled as

P(Sn) = α(1 + w/(Sn − w))β × cm

∫ Sn

w
r(u)du (6)

where Sn > w, α > 0 and β > 0.
Similarly, according to reliability theory, until the nth random working cycle is com-

pleted after the end of the time span w, the total repair cost C2(Sn) of the warrantor can be
computed as

C2(Sn) = cm

∫ Sn

0
r(u)du (7)

where Sn > w, which is different from Sn < w in Equation (1).
By algebraic operation on Equations (6) and (7), the total cost TC2(Sn) under the case

where the nth random working cycle is completed after the end of the time span w can be
represented by

TC2(Sn) = C2(Sn)− P(Sn) = cm

(∫ Sn

0
r(u)du− α(1 + w/(Sn − w))β

∫ Sn

w
r(u)du

)
(8)

When the nth random working cycle is completed after the end of the time span w,
the system’s warranty service period equates to the working time Sn, where Sn > w. Such
a working time Sn obeys the distribution function I(s) as

I(s) = Pr{Sn < s|Sn > w} = Pr{Sn < s}/Pr{Sn > w} = G(n)(s)/G(n)
(w) (9)

where s > w.
By means of the distribution function I(s) in Equation (9), the total cost TC2(Sn) can

be rewritten as

ETC2 =
∫ ∞

w
TC2(s)dI(s) = cm

∫ ∞

w

(∫ s

0
r(u)du− α(1 + w/(s− w))β

∫ s

w
r(u)du

)
dG(n)(s)/G(n)

(w) (10)

Because the probabilities that the nth random working cycle is completed before or

after the end of the time span w are represented by G(n)(w) and G(n)
(w), the warranty cost

TWC of RFRW-RC can be derived as

TWC = G(n)(w)× ETC1 + G(n)
(w)× ETC2

= cm

(∫ w
0

(∫ s
0 r(u)du + a(1− s/w)b∫ w

s r(u)du
)

dG(n)(s) +
∫ ∞

w

(∫ s
0 r(u)du− α(1 + w/(s− w))β∫ s

w r(u)du
)

dG(n)(s)
)

= cm

(∫ ∞
0
(∫ s

0 r(u)du
)
dG(n)(s) + a

∫ w
0 (1− s/w)bdG(n)(s)−

∫ ∞
w

(
α(1 + w/(s− w))β∫ s

w r(u)du
)

dG(n)(s)
)

= cm

(∫ ∞
0 G(n)

(s)r(s)ds +
∫ w

0

(
a(1− s/w)b∫ w

s r(u)du
)

dG(n)(s)−
∫ ∞

w

(
α(1 + w/(s− w))β∫ s

w r(u)du
)

dG(n)(s)
)

(11)

When w→ 0 (or w→ ∞ ) and α→ 0 (or a→ 0), the rebate and charge are removed
from RFRW-RC. Under this case, the warranty cost TWC of RFRW-RC can be reduced to

lim
w→0
α→0

TWC = cm

∫ ∞

0
G(n)

(s)r(s)ds (12)

In this cost model, discrete data, i.e., the nth random working cycle completion, is a
unique warranty limitation. Therefore, the warranty model that corresponds to this cost
model can be named a random discrete free repair warranty (RDFRW), and the cost in
Equation (12) is the warranty cost of RDFRW.
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3. Random Maintenance Policy

In Ref. [17], the system reliability after the expiry of warranties is ensured by random
age replacement first and last, wherein the system through warranty is replaced at failure,
at the first working cycle completion or at a replacement time, whichever occurs first
and last. However, the authors did not differentiate the size of the system ages when the
presented warranties expired. From the reliability perspective, under the case where the
reliability and life cycle are given, it is universal that a smaller system age signals that a
longer remaining life after the expiry of the warranty has never been used, and a larger
system age signals that the maintenance cost after the expiry of the warranty is greater.
Such phenomena mean that how to maximally use a longer remaining life of the system
through warranty and to lower the maintenance cost after the expiry of the warranty are
problems to be solved. In view of this, under the assumption that RFRW-RC ensures system
reliability during the warranty stage, this section will present a random maintenance policy
to solve this problem.

3.1. Random Maintenance Policy Definition

Letting T be a working time, the system reliability after the expiry of RFRW-RC is
guaranteed by the following random maintenance policy.

• If RFRW-RC expires at the nth random working cycle completion before the end of the
time span w, then random age replacement last (RARL) is applied to ensure system
reliability after RFRW-RC expiration so as to maximally use the remaining life after
the expiry of RFRW-RC. The key cause of using RARL is that, compared with random
age replacement first (RARF) and classic age replacement (CAR), the replacement time
produced by RARL is greatest, which signals that the remaining life after the expiry of
RFRW-RC will be maximally used by means of RARL.

• If RFRW-RC expires at the nth random working cycle completion after the end of the
time span w, then classic age replacement (CAR) is applied to ensure system reliability
after the expiration of RFRW-RC in order to lower the maintenance cost after the
expiry of RFRW-RC. The key cause of using CAR is that compared with RARL, the
replacement time produced by CAR is shorter, which signals that the maintenance
cost after the expiry of RFRW-RC will be lowered by means of CAR.

Obviously, such a random maintenance policy is simultaneously composed of RARL
and CAR. Therefore, we name it a random hybrid age replacement (RHAR).

3.2. The Objective Function of RHAR

To model RAHR conveniently, we define that the life cycle of the system is a duration
that begins from the completion of a new system installation and ends the replacement
occurrence at the warrantee’s cost, which is similar to Refs. [34,37]. It is obvious that this
type of life cycle includes the warranty service period produced by RFRW-RC and the
operation time of RHAR.

3.2.1. Total Cost Model during the Life Cycle

When RFRW-RC expires at the nth random working cycle completion, the system age
is equal to the working time Sn. Let r(Sn + u) be a failure rate function at age Sn. Then, the
first failure time X f of the system through RFRW-RC is subject to the distribution function
Fm(x; Sn) and reliability function Fm(x; Sn) satisfying the following expressions:

Fm(x; Sn) = 1− exp{−
∫ x

0
r(Sn + u)du}

and
Fm(x; Sn) = 1− Fm(x; Sn) = exp{−

∫ x

0
r(Sn + u)du}
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RHAR requires that if RFRW-RC expires at the nth random working cycle completion
before the end of the time span w, then RARL is used to ensure the reliability of the system
through RFRW-RC. Therefore, for the system through RFRW-RC at the nth random working
cycle completion before the end of the time span w, the probability pl1 that it is replaced at
the first working cycle completion after the working time T is given by

pl1 = Pr
{

T < Yf , Yf < X f

}
=
∫ ∞

T
Fm(y; Sn)dG(y) (13)

where Yf is the first working cycle after the expiry of RFRW-RC and obeys the distribution
function G(y).

Furthermore, the probability pl2 that such a system is replaced at the working time T
after the first working cycle completion is given by

pl2 = Pr
{

Yf < T, T < X f

}
= G(T)Fm(T; Sn) (14)

By probability theory, the event that the replacement is completed at failure is the
complementary event of the replacements at the nth random working cycle completion
and the working time T. Therefore, the probability pl3 that such a system is replaced at
failure can be computed by

pl3 = 1− pl1 − pl2 = 1−
∫ ∞

T
Fm(y; Sn)dG(y)− G(T)Fm(T; Sn) = 1−

∫ ∞

T
G(y)dFm(y; Sn) (15)

Let CF be a corrective replacement cost at failure; let CP (CP < CF) be a preventive
replacement cost at the first working cycle completion or the working time T. Then, when
RARL is used to ensure the reliability of the system through RFRW-RC at the nth random
working cycle completion before the end of the time span w, the operation cost Cl(T; Sn) of
RARL is given by

Cl(T; Sn) =
(
1−

∫ ∞
T G(y)dFm(y; Sn)

)
CF + G(T)Fm(T; Sn)CP + CP

∫ ∞
T Fm(y; Sn)dG(y)

= CP + (CF − CP)
(

Fm(T; s) +
∫ ∞

T G(y)dFm(y; s)
) (16)

Because the system age Sn obeys H(s) in Equation (4), the expected value ECl(T) of
the operation cost Cl(T; Sn) is expressed as

ECl(T) =
∫ w

0
Cl(T; s)dH(s) =

∫ w

0

(
CP + (CF − CP)

(
Fm(T; s) +

∫ ∞

T
G(y)dFm(y; s)

))
dG(n)(s)/G(n)(w) (17)

RHAR stipulates that if RFRW-RC expires at the nth random working cycle completion
after the end of the time span w, then CAR is used to ensure the system reliability after
RFRW-RC expiration. Therefore, the probability that the system through RFRW-RC at the
nth random working cycle completion after the end of the time span w is replaced at failure
is given by Fm(T; Sn). Furthermore, the probability that such a system is replaced at the
working time T is represented by Fm(T; Sn). According to reliability theory, the operation
cost C f (T; Sn) of CAR is given by

C f (T; Sn) = CFFm(T; Sn) + CPFm(T; Sn) = CP + (CF − CP)Fm(T; Sn) (18)

Because the system age Sn obeys I(s) in Equation (9), the expected value EC f (T) of
the operation cost C f (T; Sn) is given by

EC f (T) =
∫ ∞

w
C f (T; s)dI(s) =

∫ ∞

w
(CP + (CF − CP)Fm(T; s))dG(n)(s)/G(n)

(w) (19)

As mentioned above, the probabilities that the nth random working cycle is completed

before or after the end of the time span w are G(n)(w) and G(n)
(w). Therefore, under the
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case where RFRW-RC is used to ensure the system reliability, the expected operation cost
ECh(T) of RHAR is given by

ECh(T) = G(n)(w)× ECl(T) + G(n)
(w)× EC f (T)

=
∫ w

0
(
CP + (CF − CP)

(
Fm(T; s) +

∫ ∞
T G(y)dFm(y; s)

))
dG(n)(s) +

∫ ∞
w (CP + (CF − CP)Fm(T; s))dG(n)(s)

(20)

From the warrantee’s perspective, RFRW-RC can make them obtain a rebate and
absorb a charge of ensuring system reliability during the interval (w, Sn − w]. Therefore,
by replacing cm in the warranty cost model TWC with the unit failure cost c f , by revising

plus sign before the second term a(1− s/w)b∫ w
s r(u)du as subtraction sign, and by revising

the subtraction sign before the second term α
∫ ∞

w

(
(1 + w/(s− w))β∫ s

w r(u)du
)

dG(n)(s) as
plus sign, the total cost TCw produced by RFRW-RC is given by

TCw = c f

(∫ ∞

0
G(n)

(s)r(s)ds−
∫ w

0

(
a(1− s/w)b

∫ w

s
r(u)du

)
dG(n)(s) +

∫ ∞

w

(
α(1 + w/(s− w))β

∫ s

w
r(u)du

)
dG(n)(s)

)
(21)

By the life cycle definition, the life cycle of the system is a sum of the warranty service
period of RFRW-RC and the operation time of RHAR. This implies that the total cost during
the life cycle is composed of the total cost TCw produced by RFRW-RC as well as the
operation cost of RHAR. Therefore, by summing Equations (20) and (21), the expected total
cost LTC(T) during the life cycle is calculated as

LTC(T) = TCw + ECh(T)

= c f

(∫ ∞
0 G(n)

(s)r(s)ds−
∫ w

0

(
a(1− s/w)b∫ w

s r(u)du
)

dG(n)(s) +
∫ ∞

w

(
α(1 + w/(s− w))β∫ s

w r(u)du
)

dG(n)(s)
)

+
∫ w

0

(
CP + (CF − CP)

(
Fm(T; s) +

∫ ∞
T G(y)dFm(y; s)

))
dG(n)(s) +

∫ ∞
w (CP + (CF − CP)Fm(T; s))dG(n)(s)

(22)

3.2.2. Length Model of the Life Cycle

Under the case where RARL is used to ensure the reliability of the system through
RFRW-RC at the nth random working cycle completion before the end of the time span w,
the operation time Ll(T; Sn) of RARL is represented by

Ll(T; Sn) =
∫ ∞

T yG(y)dFm(y; Sn) +
∫ ∞

T yFm(y; Sn)dG(y) + G(T)Fm(T; Sn)T

=
∫ T

0 Fm(y; Sn)dy +
∫ ∞

T G(y)Fm(y; Sn)dy
(23)

When RFRW-RC expires at the nth random working cycle completion before the end
of the time span w, the system age Sn is subject to H(s) in Equation (4). Therefore, the
expected value Ll(T) of the operation time Ll(T; Sn) is given by

Ll(T) =
∫ w

0
Ll(T; s)dH(s) =

∫ w

0

(∫ T

0
Fm(y; s)dy +

∫ ∞

T
G(y)Fm(y; s)dy

)
dG(n)(s)/G(n)(w) (24)

In the case where CAR is used to ensure the system reliability after RFRW-RC expira-
tion, the operation time L f (T; Sn) of CAR is given by

L f (T; Sn) =
∫ T

0
xdFm(x; Sn) + Fm(T; Sn)T =

∫ T

0
Fm(x; Sn)dx (25)

When RFRW-RC expires at the end of the time span w before the nth random working
cycle completion, the system age Sn obeys I(s) in Equation (9). Therefore, the expected
value L f (T) of the operation time L f (T; Sn) is given by

L f (T) =
∫ ∞

w
L f (T; s)dI(s) =

∫ ∞

w

(∫ T

0
Fm(x; s)dx

)
dG(n)(s)/G(n)

(w) (26)
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As mentioned above, the probabilities that the nth random working cycle completes

before or after the end of the time span w are G(n)(w) and G(n)
(w). Therefore, under the

case where RHAR is used to ensure system reliability, the expected operation time ELh(T)
of RHAR is given by

ELh(T) = G(n)(w)× Ll(T) + G(n)
(w)× L f (T)

=
∫ w

0

(∫ T
0 Fm(y; s)dy +

∫ ∞
T G(y)Fm(y; s)dy

)
dG(n)(s) +

∫ ∞
w

(∫ T
0 Fm(x; s)dx

)
dG(n)(s)

(27)

As mentioned above, when the nth random working cycle completes before the end
of the time span w, the system’s warranty service period equates to the working time Sn,
where Sn < w; and such a working time Sn is subject to H(s) in Equation (4). Therefore,
when the nth random working cycle completes before the end of the time span w, the
expected value Eb[Sn] of the warranty service period Sn is represented by

Eb[Sn] =
∫ w

0
sdH(s) =

∫ w

0
sdG(n)(s)/G(n)(w) (28)

As presented above, when the nth random working cycle completes after the end
of the time span w, the system’s warranty service period equates to the working time Sn
(where Sn > w) obeying the distribution function I(s) in Equation (9). Therefore, when the
nth random working cycle is completed before the end of the time span w, the expected
value Ea[Sn] of the warranty service period Sn is given by

Ea[Sn] =
∫ ∞

w
sdI(s) =

∫ ∞

w
sdG(n)(s)/G(n)

(w) (29)

As mentioned above, the probabilities that the nth random working cycle is completed

before or after the end of the time span w are G(n)(w) and G(n)
(w). Therefore, the expected

length WSP of the warranty service period produced by RFRW-RC is represented by

WSP = G(n)(w)× Eb[Sn] + G(n)
(w)× Ea[Sn] =

∫ w

0
sdG(n)(s) +

∫ ∞

w
sdG(n)(s) =

∫ ∞

0
G(n)

(s)ds (30)

Obviously, when n tends to infinity, G(n)
(s) tends to one. This implies that n tends to

infinity, making
∫ ∞

0 G(n)
(s)ds tend to infinity. Therefore, the warranty service period of

RFRW-RC increases with increasing n.
By the life cycle definition, the life cycle of the system is a sum of the warranty service

period produced by RFRW-RC and the operation time of RHAR. Therefore, by summing
Equations (30) and (27), the expected length Lh(T) of the life cycle is calculated as

Lh(T) = WSP + ELh(T)

=
∫ ∞

0 G(n)
(s)ds +

∫ w
0

(∫ T
0 Fm(y; s)dy +

∫ ∞
T G(y)Fm(y; s)dy

)
dG(n)(s) +

∫ ∞
w

(∫ T
0 Fm(x; s)dx

)
dG(n)(s)

(31)

3.2.3. Cost Rate Models

The expected length Lh(T) of the life cycle and the expected total cost LTC(T) during
the life cycle are presented in Equations (31) and (22), respectively. Based on the renewal
rewarded theorem in Ref. [46], the expected cost rate ECR(T) can be given by

ECR(T) =

c f

(∫ ∞
0 G(n)

(s)r(s)ds−
∫ w

0

(
a(1− s/w)b∫ w

s r(u)du
)

dG(n)(s) +
∫ ∞

w

(
α(1 + w/(s− w))β∫ s

w r(u)du
)

dG(n)(s)
)

+
∫ w

0
(
CP + (CF − CP)

(
Fm(T; s) +

∫ ∞
T G(y)dFm(y; s)

))
dG(n)(s) +

∫ ∞
w (CP + (CF − CP)Fm(T; s))dG(n)(s)∫ ∞

0 G(n)
(s)ds +

∫ w
0

(∫ T
0 Fm(y; s)dy +

∫ ∞
T G(y)Fm(y; s)dy

)
dG(n)(s) +

∫ ∞
w

(∫ T
0 Fm(x; s)dx

)
dG(n)(s)

(32)
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3.3. Special Case Simplification

When w→ 0 and α→ 0 , the expected cost rate model in Equation (32) is reduced to

lim
w→0
α→0

ECR(T) =
c f
∫ ∞

0 G(n)
(s)r(s)ds +

∫ ∞
0 (CP + (CR − CP)Fm(T; s))dG(n)(s)∫ ∞

0 G(n)
(s)ds +

∫ ∞
0

(∫ T
0 Fm(x; s)dx

)
dG(n)(s)

(33)

As given above, w→ 0 and α→ 0 mean that RFRW-RC is simplified as RDFRW. In
addition, w→ 0 and α→ 0 mean that RARL is removed from RHAR, and thus RHAR is
simplified as CAR. In view of these, the model in Equation (33) is an expected cost rate
model, wherein RDFRW serves as a system warranty and CAR serves as a maintenance
policy to ensure system reliability after RDFRW expiration.

When w→ ∞ and a→ 0 , the expected cost rate model in Equation (32) is reduced to

lim
w→∞
α→0

ECR(T) =
c f
∫ ∞

0 G(n)
(s)r(s)ds +

∫ w
0

(
CP + (CF − CP)

(
Fm(T; s) +

∫ ∞
T G(y)dFm(y; s)

))
dG(n)(s)∫ ∞

0 G(n)
(s)ds +

∫ ∞
0

(∫ T
0 Fm(y; s)dy +

∫ ∞
T G(y)Fm(y; s)dy

)
dG(n)(s)

(34)

As presented above, w→ ∞ and a→ 0 mean that RFRW-RC is simplified as RDFRW.
In addition, w→ ∞ and a→ 0 mean that RARL is removed from RHAR, and thus RHAR
is simplified as RARL. Therefore, the model in Equation (34) is an expected cost rate model,
wherein RDFRW serves as a system warranty and RARL serves as a maintenance policy to
ensure system reliability after RDFRW expiration.

Similarly, some other special cases can be derived by setting the parameters of the
expected cost rate ECR(T), which will not be presented here.

3.4. Decision Variable Optimization

This subsection will seek the optimal RHAR, i.e., seek the optimal solution T∗ mini-
mizing ECR(T) in Equation (32). Similar to the above process, it can be used to seek the
optimal solutions of other cost rate models.

Because the expressions of G(y) and r(u) are not given, the optimal analytical solution
is difficult to obtain. By discussing the derivative of the cost rate ECR(T), the existence and
uniqueness of the optimal solution can be summarized, as shown below.

By differentiating ECR(T) with respect to T, the first-order derivative Fd(T) of the cost
rate ECR(T) is offered in Appendix A. dn(T) is denoted by the numerator of Fd(T), and its
expression is provided in Appendix B. Then, under the case of dn(T) = 0, the expression
below can be obtained:

∫ w
0 (CP+(CF−CP) fm(T;s)G(T))dG(n)(s)+

∫ ∞
w (CP+(CF−CP) fm(T;s))dG(n)(s)

G(T)
∫ w

0 Fm(T;s)dG(n)(s)+
∫ ∞

w Fm(T;s)dG(n)(s)

=
A+
∫ w

0 (CP+(CF−CP)(Fm(T;s)+
∫ ∞

T G(y)dFm(y;s)))dG(n)(s)+
∫ ∞

w (CP+(CF−CP)Fm(T;s))dG(n)(s)(∫ ∞
0 G(n)

(s)ds+
∫ w

0

(∫ T
0 Fm(y;s)dy+

∫ ∞
T G(y)Fm(y;s)dy

)
dG(n)(s)+

∫ ∞
w

(∫ T
0 Fm(x;s)dx

)
dG(n)(s)

) (35)

Obviously, the right-hand side of Equation (35) equates to the model in Equation (32).
Let ρ(T) equate to the left-hand side of Equation (35), i.e.,

ρ(T) =

∫ w
0 (CP + (CF − CP) fm(T; s)G(T))dG(n)(s) +

∫ ∞
w (CP + (CF − CP) fm(T; s))dG(n)(s)

G(T)
∫ w

0 Fm(T; s)dG(n)(s) +
∫ ∞

w Fm(T; s)dG(n)(s)

Then, the existence and uniqueness of the optimal solution T∗ minimizing ECR(T) in
Equation (32) can be summarized below.

Theorem 1. The existence and uniqueness of the optimal solution can be summarized as
For dn(0) ≥ 0, then
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• If dn(T) increases strictly to +∞ with respect to T, then a unique optimal solution T∗ exists
and satisfies T∗ = 0, and the optimal expected cost rate ECR(T∗) equates to ρ(0);

• if dn(T) decreases strictly to−∞ with respect to T, then a unique optimal solution T∗ exists
and satisfies T∗ = +∞, and the optimal expected cost rate ECR(T∗) equates to ρ(+∞);

• If dn(T) is nonmonotonic with respect to T and if the equation dn(T) = 0 has more than one
root, then at least an optimal solution T∗ exists and satisfies dn(T∗) = 0, and the optimal
expected cost rate ECR(T∗) equates to ρ(T∗).

For dn(0) < 0,

• if dn(T) increases strictly to +∞ with respect to T, then a unique and finite optimal solution
T∗ exists and satisfies dn(T∗) = 0, and the optimal expected cost rate ECR(T∗) equates
to ρ(T∗);

• If dn(T) is nonmonotonic with respect to T, and if dn(+∞) > 0, then at least a unique
optimal solution T∗ exists and satisfies dn(T∗) = 0, and the optimal expected cost rate
ECR(T∗) equates to ρ(T∗);

• If dn(T) decreases strictly to −∞ with respect to T, then a unique optimal solution T∗ exists
and satisfies T∗ = +∞, and the optimal expected cost rate ECR(T∗) equates to ρ(+∞).

By minimizing the cost rate, summarizing the existence and uniqueness of the optimal
solution is a research hotspot. Some research on the existence and uniqueness has been
provided in Refs. [47,48].

4. Numerical Examples

Driven by digital technologies, transfer robots are being frequently applied to power
the efficiency improvement of manufacturing industries. By means of digital technologies,
the usage data of the transfer robot can be teleported to monitoring centers. Without
exception, the working cycle that can reflect the historical working information of the
transfer robot is also monitored by digital technologies. Before usage, the transfer robot is
launched; after usage completion, the transfer robot is powered off. The interval between
launching and powering off belongs to a random working cycle.

In this paper, from the perspective of the cycle life, we have presented a random
warranty and post-warranty maintenance model to ensure system reliability during the
whole cycle life. Although the mathematical models related to them have derived from the
perspective of probability, the partial characteristics of the models presented in this paper is
very difficult to mined in form of analytical analysis. In view of this, from the perspective
of a numerical analysis, this section will mine the properties of the models presented by
means of transfer robots.

Assume that the first failure time X of such systems is defined as a random variable obey-
ing a Weibull distribution function F(x) = 1− exp(−

∫ x
0 r(u)du) = 1− exp(−

∫ x
0 ε(u)δdu),

where ε, δ > 0; all random working cycles are assumed to obey an identical distribution
function G(y) = 1− exp(− λy), where λ > 0; assume that the values of some of the pa-
rameters are listed in Table 1, while other parameters that do not include decision variables
are assigned whenever applied.

Table 1. Parameter values.

cm c f a b ε δ α β

0.1 0.1 1 1 0.3 1 1 1

5. Exploration of the Properties of the Presented Warranty Models

Figure 2 has been plotted to explore the properties of RFRW-RC.
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Figure 2a with w = 2 shows that the warranty cost of RFRW-RC decreases with respect
to the warranty term n; the warranty cost of RFRW-RC increases with the failure rate λ. The
increase of the warranty term n enhances the manufacturer’s charge, which can reduce the
manufacturer’s warranty cost. Therefore, the former case occurred. The former signals that
the warranty cost of RFRW-RC is a decreasing function with respect to the warranty term n.
This is different from 2DFRWF and 2DFRWL in Ref. [17], under which the warranty cost of
each warranty model is an increasing function with the increase in the warranty term n.
Figure 2b with n = 2 shows that the warranty cost of RFRW-RC increases with the span
time w; the warranty cost of RFRW-RC also increases with the failure rate λ. The increase
in the span time w enhances the manufacturer’s rebate that can increase the manufacturer’s
warranty cost. Therefore, the first case occurred. In Figure 2, the cause that the failure rate
λ affects the warranty cost of RFRW-RC has been explained in Ref. [17], and here no longer
present them.

Figure 3 explores the properties of RDFRW. Figure 3 shows that with the increase in n,
the warranty cost of RDFRW increases while the warranty cost of RDFRW decreases with
the increase in λ. The key cause of the former is that the increase in n enlarges the warranty
range and thus enhances the warranty cost of RDFRW. The key cause of the latter is that
the increase in λ shortens the working cycle, which shrinks the warranty range, and thus,
the warranty cost of RDFRW is reduced. Therefore, all change laws drawn from Figure 3
hold true.
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6. Exploration of the Properties of the Presented Random Maintenance Models

Figure 4 (where w = 2, λ = 2 and n = 2) has been prepared to validate the existence
and uniqueness of the optimal RHAR.
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Figure 4. Illustration of the optimal RHAR.

Figure 4 manifests that the optimal working time T∗ exists uniquely. Therefore, the
optimal RHAR exists uniquely. Figure 4a, where CP = 12, shows that the increase in CP
lengthens the optimal working time T∗ and enhances the optimal value ECR(T∗) of the
cost rate. The cause of the former is that the increase in CP can enhance the expected total
cost LTC(T) during the life cycle.

Figure 4b, where CR = 20, shows that the increase in CR enhances the optimal value
ECR(T∗) of the cost rate and reduces the optimal working time T∗. The cause of the former
is similar to the cause of Figure 4a.
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By comparing the above change laws, it is observed that a lower preventive replace-
ment cost can reduce the optimal value of the cost rate while being unable to lengthen the
system’s service period after warranty expiration; inversely, a lower corrective replacement
cost can reduce the optimal value of the cost rate while lengthening the system’s service
period after warranty expiration.

Table 2 presents how the time span w affects the optimal RHAR. As presented in
Table 2, the increase in w shortens the optimal working time T∗ and decreases the optimal
value ECR(T∗) of the cost rate. This signals that the increase in the time span w can lower
the optimal value ECR(T∗) of the cost rate and shorten the system’s service period after
warranty expiration.

Table 2. The influence on the optimal RHAR of w (where n = 2, CR = 20 and CP = 12 ).

Optimal RHAR w = 1 w = 2 w = 3 w = 4
T∗ 1.29 1.28 1.26 1.18

ECR(T∗) 9.6764 9.6394 9.5680 9.4677

Table 3 has been plotted to explore how the warranty term n affects the optimal RHAR.
Table 3 shows that the increase in n shortens the optimal working time T∗ and decreases
the optimal value ECR(T∗) of the cost rate, which are similar to Table 2. This change law
means that the relationship between a longer warranty service period and a longer service
period after warranty expiration is catching one and losing another.

Table 3. The effect of n on the optimal RHAR (where w = 0.5, CR = 20 and CP = 12 ).

Optimal RHAR n = 1 n = 2 n = 3
T∗ 1.96 1.03 0.04

ECR(T∗) 11.1599 9.6773 8.0181

Figure 5 (where w = 2, λ = 2 and n = 2) has been prepared to verify if the optimal
CAR exists uniquely.
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Figure 5 indicates that the optimal working time T∗ uniquely exists. Therefore, the
optimal CAR exists uniquely. Figure 5a, where CP = 12, shows that the increase in CP
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lengthens the optimal working time T∗ and enhances the optimal value ECR(T∗) of the
cost rate. Figure 5b, where CR = 20, shows that the increase in CR enhances the optimal
value ECR(T∗) of the cost rate and reduces the optimal working time T∗. The above laws
are similar to the changes in Figure 4, and therefore, the insights are similar to those of
Figure 3. In Figure 5, the cause that the increase in CP and CR enhances the optimal value
ECR(T∗) is similar to the cause of Figure 4.

Table 4 explores how the warranty term n affects the optimal CAR. As indicated in
Table 4, the increase in n shortens the optimal working time T∗ and decreases the optimal
value ECR(T∗) of the cost rate. This is similar to Table 3. Such signals that the increase in
the warranty term n can lower the optimal value of the cost rate and shorten the system’s
service period after warranty expiration. Therefore, similar to Table 3, this change law
means that the relationship between a longer warranty service period and a longer service
period after warranty expiration is catching one and losing another.

Table 4. The effect of n on the optimal AR (where λ = 2, CR = 20 and CP = 12 ).

Optimal CAR n = 1 n = 2 n = 3
T∗ 2.53 1.79 0.92

ECR(T∗) 10.1289 8.8347 7.5431

Figure 6 (where w = 2, λ = 2 and n = 2) has been drawn to verify if the optimal
RARL exists uniquely. Figure 6 shows that the optimal working time T∗ exists uniquely,
which means that the optimal RARL exists uniquely. Figure 6a, where CP = 12, shows
that the increase in CP lengthens the optimal working time T∗ and enhances the optimal
value ECR(T∗) of the cost rate. Figure 6b, where CR = 20, shows that the increase in CR
enhances the optimal value ECR(T∗) of the cost rate and reduces the optimal working
time T∗. The above laws are similar to Figures 4 and 5, and therefore, the explanations and
insights are similar to those of Figures 4 and 5.
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Table 5 has been provided to explore how the warranty term n affects the optimal
RARL. Table 5 shows that the increase in n shortens the optimal working time T∗ and
decreases the optimal value ECR(T∗) of the cost rate. This is similar to Tables 3 and 4. This
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signals that the increase in the warranty term n can lower the optimal value of the cost rate
and shorten the system’s service period after warranty expiration. Without exception, the
insights are the same as those of Tables 3 and 4.

Table 5. The effects of n on the optimal RARL (where λ = 2, CR = 20 and CP = 12 ).

Optimal RARL n = 1 n = 2 n = 3
T∗ 2.24 1.3 0.59

ECR(T∗) 10.6495 9.2572 7.8312

Note: in this paper, three types of maintenance policies have been provided to ensure
system reliability during the post-warranty stage and have been analyzed as well as
validated in form of some key parameters in models. The selection of the maintenance
policy is affected by many factors. Cost or/and time are two types of key measure to select
a best maintenance policy. From the viewpoint of a cost or time measure, Refs. [] have
presented a comparative method to select the best maintenance policy. In view of this, we
have not presented the selection of the best maintenance policy; please consult the above
literature for this.

7. Conclusions

By defining limited random working cycles, a rebate and a charge as warranty terms,
this paper devises a novel warranty, which is named a random free repair warranty with
rebate and charge (RFRW-RC). In such an RFRW-RC, the rebate is used to remove the
manufacturer’s responsibility for continuing to ensure the system reliability, and the charge
serves as a support where the manufacturer is responsible for continuing to ensure the
system reliability. The warranty cost of RFRW-RC is derived and analyzed. By discussing
terms of RFRW-RC, a special warranty model is presented, which is named the random
discrete free repair warranty (RDFRW). For RDFRW, discrete data, i.e., limited random
working cycles, are a unique warranty limitation, and minimal repairs are used to eliminate
all failures. By simplifying the warranty cost of RFRW-RC, the warranty cost of RDFRW
is obtained. Under RFRW-RC, the cases in which the system’s warranty expires can
be classified into two types. The first type is that the system’s warranty expires at the
completion of the limited random working cycles before a span time (i.e., warranty period),
and the second type is that the system’s warranty expires at a span time after the completion
of limited random working cycles. This means that RFRW-RC produces two different
system ages. By differentiating system ages, a random hybrid maintenance policy is
designed to ensure the system reliability after RFRW-RC expiration. This random hybrid
maintenance policy is named the random hybrid age replacement (RHRA) policy, under
which the random age replacement last (RARL) policy is used to ensure the reliability of the
system through RFRW-RC at the completion of limited random working cycles before the
end of a time span, and classic age replacement (CAR) is applied to ensure the reliability of
the system through RFRW-RC at the completion of limited random working cycles after
a span time. The objective function of RHRA is constructed, and the decision variable is
optimized. By discussing parameter values, the objective function of RDFRW is presented.
Finally, the presented models are illustrated from the viewpoint of numerical values. It is
shown that the warranty cost of RFRW-RC does not necessarily increase with the increase
in the number of random working cycles.

In recent years, pushed by the rapid development and wide application of advanced
digital technologies, some countries are eagerly building nations, such as Germany and
China. From the application’s perspective, all models presented in this paper can be ap-
plied in systems integrated with advanced digital technologies. In this paper, we confined
problems to the system whose deterioration is characterized by a lifetime’s distribution
function, and ignored the system whose deterioration is characterized by either a degra-
dation process, a lifetime’s distribution function or both. Therefore, for the system whose
deterioration is characterized by either a degradation process, a lifetime’s distribution
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function or both, some warranty models and post-warranty maintenance models can also
be constructed. In addition, post-warranty maintenance models in this paper were con-
structed in the case where a warranty model considering ‘whichever occurs first’ is planned
to ensure the system reliability during the warranty stage. In the case where a warranty
model considering ‘whichever occurs last’ is planned to ensure system reliability during the
warranty stage, constructing post-warranty maintenance models seldom appears, which is
a future research direction.
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Appendix A

The first-order derivative Fd(T) of the cost rate ECR(T) is derived as

Fd(T) =

(∫ w
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where

A = c f
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Appendix B

The numerator dn(T) of Fd(T) is computed as

dn(T) =

( ∫ w
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Obviously,
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dn(0) =
(∫ ∞
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