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Abstract: This paper presents an adaptive control scheme to face the challenge of rejecting input and
output disturbances. The research is put on a layer of the design and start-up of chemical plants. The
emphasis is on handling disturbances appearing in a narrow band of frequencies, which illustrates
standard forms of disturbances in the alluded kind of systems. The controller is made up of a central
RS structure that stabilizes the closed-loop plant. A second layer boosts the control law performance
by adding the Youla–Kucera (YK) filter or Q parametrization and taking advantage of the internal
model principle (IMP). This practice aids in modeling unknown disturbances with online control
adjustment. We probe the resultant compensator for three non-isothermal continuous stirred tank
reactors connected in series. The plant should conduct a first-order exothermic reaction consuming
reactant A, while an isothermal operation stays and the outlet concentration is close to its nominal
value. The primary concerns are open-loop instability and steady-state multiplicity in the plant’s
first unit. The control objective is to reject input and output disturbances in a band of frequencies of
0.0002 Hz to 0.007 Hz, whether there are variants or not in time. We test the controller with input
signals depicting both variations in the auxiliary services and abrupt changes. We then compare
the executions of the resultant control law with a model-based predictive control (MPC). We find
comparable responses to multiple disturbances. However, the adaptive control offers an effortless
control input. We also conclude that the adaptive controller responds well to reference changes, while
the MPC fails due to input constraints.

Keywords: adaptive control; RS control; robust control; non-isothermal CSTR; disturbance rejection;
serial process

MSC: 93C73; 93C40

1. Introduction

Industrial chemical plants are made up of interconnected units. Changes in the feed
stream make the outputs of a unit fluctuate and disturb the units downstream. Thus, the
connections between processing units that share streams mean losing degrees of freedom.
The nature and source of input disturbances in these systems are varied. These can be
small and slow fluctuations, such as alterations in environmental conditions. At other
times, imperceptible changes degrade the plant performance gradually, for instance, due to
equipment fouling. Then, random or periodic fluctuations in pressure, flow, or temperature
in the fed streams occur, for example, by transients in the auxiliary services. Such distur-
bances yield inputs with a type of behavior that can be represented by a sum of periodic
signals and can be treated as signals falling within a reduced frequency range. Otherwise,
sharp and severe changes may occur due to unexpected operation of the plant in unstable
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or critically stable regions. Reference changes represent alike substantial transition. The
inputs are abrupt and also within a narrow frequency band in the last two examples. The
disturbance model accompanying the control design proposed here integrates a Dirac pulse
as excitation. As a result, we ensure that this type of disturbance can be shaped. In a
broad sense, the disturbances are endogenous and exogenous. The first class consists of
unmeasured, uncertain, or unknown internal dynamics. The second class includes external
sources, such as environmental changes and unit interactions. The control law synthesis can
deal with several performance specs, but one of the main features is to assess its potential
for disturbance rejection. In a closed-loop simulation, the described disturbances are input
signals, such as positive or negative small-amplitude steps, slow ramp-type changes, or
oscillations built up by weighted sums of sinusoidal signals of varied frequencies in short
intervals. These input changes can be continuous or shift with different time spans and may
co-occur. The parametric uncertainty and the non-modeled phenomena can be accounted
for as disturbances. However, the closed-loop system can cope with these other dynamics
because the controller is based on a robust design that meets the robustness margins.

An overview of the literature on process control is given with a focus on disturbance
rejection schemes. One of the most practiced approaches to address this problem is the
active disturbance rejection control (ADRC). This technique’s core is the real-time estimation
of a generalized disturbance that couples transients induced by endogenous and exogenous
disturbances [1–4]. As the PID control, the ADRC is an error-driven control scheme
rather than a model-driven scheme. It uses extended state observers (ESO) to estimate
the global disturbance online. The generalized disturbance is assumed to be unstructured
and depends on input and output signals in an unknown way. Then, the feedback control
action achieves the rejection of the generalized disturbance. A review of the main features
of the ADRC technique is given in [5,6].

The ADRC, thought initially for nonlinear systems, needs nonlinear ESOs and address-
ing other common issues in studying nonlinear systems. Gao [7] and later [8] introduced
the linear active disturbance rejection control (LADRC) for controller scaling of a larger
plant class. It is based on a simple parameterization with linear gains bandwidth tuning.
For simplicity, the same bandwidth is rated for both the observer and control; the larger the
bandwidth, the better the rejection of disturbances. The linear approach makes it easier to
analyze system stability and frequency response compared to the nonlinear one. With a
different perspective, Liu et al. [9] proposed to obtain model information in a frequency-
based LADRC. This last scheme was proved to control a complex chemical process with
two structures; only one receives online information from a system model. As a result,
the LADRC with the model knowledge had a faster response, better overall performance,
and a greater capacity to reject disturbances. Meng et al. [10] implemented in a four-tank
system both non-linear and linear ADRC schemes, calling it L/ADRC, and obtained as a
result an observation and compensation of the disturbance, as well as the transition process
for reference input and achieved good position control.

With a distinct approach, Wang et al. [11] extended the ADRC structure into an internal
model control (IMC) framework. This theory lies on the standard open-loop frequency-
domain analysis. Lastly, the ADRC control performance grows by tuning an integral gain.
At the same time, Carreño-Zagarra et al. [12] proposed a scheme that meets the PI control
and the linear ADRC. It uses generalized proportional–integral (GPI) observers, an ESO
class. This scheme was used to obtain a robust output feedback control to regulate the
pH in a photobioreactor. Wei et al. [13] deduced that a PD controller is not good enough
to eliminate disturbances and, besides, the pure high-order integrator is challenging to
stabilize. Instead, they proposed to obtain a robust control for the active disturbance
rejection of the U model (explained as the conversion in the closed-loop of a plant to be
G(s) = y(s)/u(s) = 1, by designing a control law based on an inverse model of the plant).
The desired closed-loop behavior is fixed to deal with the system needs. The scheme
integrates the control of the U model and the Glover–McFarlane control (a control design
that resolves system performance and robustness). A newer algorithm was given by
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Ren et al. [14]. In this strategy, the PD in the ADRC was replaced with a proportional
integral type generalized predictive control (PI-GPC) to track the reference and reject
disturbances. This scheme was applied to control a distillation column with a long delay.
Further research works where the ADCR is used were reported by Buche et al. [15,16],
who used an adaptive disturbance compensation filter to handle significant plant modeling
uncertainties. According to the survey, for chemical processes, the ADCR is one of the
control schemes most widely used for disturbance rejection.

A related approach also uses observers to estimate a global disturbance. It was
proposed by An et al., 2016 [17]. They designed a disturbance observer-based anti-windup
feedback control scheme. The control objective was to regulate velocity and altitude in
an air-breathing hypersonic vehicle with input saturation. The control challenge was to
model the global or lumped disturbance, which, like the ADRC approach, carries the
overall influence of potential uncertainties and disturbances. The control scheme addressed
stability robustness and steady-state error. Then, the control performance was enhanced
by considering an anti-windup property to deal with input constraints. As a result, the
reference tracking was achieved with smooth control inputs.

Adaptive regulation is another of the most recognized strategies for disturbance rejec-
tion. In this case, typical applications are for mechanical, electrical, and electromechanical
systems. The adaptive scheme leads to an asymptotic attenuation of the effects due to
unknown or time-varying disturbances. One specifies a dynamic model of these in the
closed-loop system as the primary measure to settle the problem. In this scheme, the
internal model principle (IMP) aids in performing an indirect adaptive control as done
by Chen and Tomizuka [18]. Once a disturbance model is met, the parameters can be
tuned. Hu and Pota [19] estimated a narrow-band noise perturbation via the IMP. They
then devised a disturbance observer (DOB) using a band-pass filter with multiple narrow
bands. The resulting perturbation model gives robust stabilization for the convergent
parameters. Wang et al. [20] used the IMP to solve the issue of trajectory tracking coupled
with perturbation rejection in random systems. This control with mixed feedforward and
feedback structure was conceived by assigning poles to form an augmented system. The
tunable parameters made the following error small and the random system stable.

Youla–Kucera parameterization enables the entry of the internal model of disturbance
into the controller by updating the parameters of the Q polynomial (YK filter). In the
presence of unknown disturbances, it is likely to build a direct control scheme where the
parameters of Q are set so that we do not need to calculate the controller further. The
estimation of the polynomial Q is subject to the denominator of the perturbation model [21].
A close algorithm for direct adaptive regulation was presented by Valentinotti et al. [22].
Their technique was well suited for rejecting unstable perturbations in batch fermentation
with Saccharomyces cervisiae. The operational objective was to maximize biomass production
while keeping the substrate concentration at a critical point in the reactor. As a result, the
control law kept constant the ethanol concentration. On the other hand, the substrate cell’s
consumption was modeled as an exponential growing perturbation that the control was
intended to cancel. A direct adaptive control law was computed based on linear models,
YK parameterization, and the IMP. It is worthy to note that this method needs to estimate
the Q polynomial online (for the study case, only one parameter has been estimated, which
specifies the cell growth rate).

We found that the outlined adaptive control strategy for disturbance rejection has
already been tested in different systems. However, we mainly revisited control techniques
for systems exposed to narrow-band disturbances. In this context, we refer first to the
control problem of an active suspension. Prepared for this system, Landau [23] launched
a benchmark to treat multiple unknown perturbations in a small range of frequencies,
assumed along with time variants. The challenge was attenuating one, two, and three
sinusoidal disturbances in the range of 50 to 95 Hz. The control objective was to obtain an
attenuation of 40 dB. The controllers submitted to the benchmark used models from a YK
factorization with a proper choice of polynomials. Then, a feedback structure produced per-
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turbation attenuation (at least asymptotically) through an adaptive approach that accounts
for a model of unknown perturbations. Airimi et al. [24], and Castellanos Silva et al. [25]
illustrated direct adaptive regulation schemes that couple YK and IMP parameterization.
Castellanos Silva et al. [25] made a thorough selection of the assigned closed-loop poles
for computing a central controller. Later, Castellanos et al. [26] suggested an ameliorated
scheme involving an adaptive Youla–Kučera IIR filter, called the ρ-notch structure (i.e., the
poles of the disturbance model are roots on the unit circle). Another proposal to deal with
narrow-band disturbances was for noise cancellation in an acoustic duct. In [27], a control
scheme founded on the YKP and IMP worked out this issue. The experiment involved
exciting the loudspeaker with a single sinusoidal signal tone and running the adaptive
controller to cancel the noise in a high-performance microphone. This control scheme
performed well for the presumed narrow range of frequencies.

Still, on the same topic, Landau et al. [28] carried out practical research on damping
multiple narrow-band disturbances. At this time, the work cared for different frequency
regions. The idea was to quantify the interference arising when leading with close frequen-
cies. A robust control was the preferred technique, which used the knowledge of how the
disturbance frequencies vary. Then, a direct adaptive control algorithm also grounded on
the IMP, and the YK parameterization improved the basic control scheme. As a result, the
control law faced multiple disturbances better. Other research works about noise damp-
ing in an acoustic duct are those by Landau and Meléndez [29], Landau et al. [30] and
Airimitoaie et al. [31]. These imply two adaptive designs commonly built for active noise
compensation and viewed as vibration control. The first was with an FIR compensator
structure, and the second was YK parameterization of the feedforward noise compensator.
The second approach of [31] allows to contrast two points: stabilize the internal positive
feedback loop and attenuate the residual noise. Vau and Landau [32] developed a controller
with dual YK parameterization for the adaptation of controller parameters to deal with
modeling uncertainties; this methodology was tested in simulations and and implemented
in an active noise control system.

There are other relevant adaptive control approaches, whose designs introduce differ-
ent features and performance that could eventually be extrapolated to process applications.
The following research is described as an example. An adaptive control was proposed for
the electric system, but at this time, observers perform the disturbance estimate. It was
reported by Shen et al., 2021 [33], who synthesized an adaptive second-order sliding mode
control. The scheme was conceived with a twofold objective: to regulate the voltage in a
three-level neutral-point-clamped converter and to track the instantaneous power. The
nonlinear system was subject to parameter variation and external disturbances. Then, a
switched high-gain observer was used to estimate the disturbance. In contrast to a classic
observer design, the new one reduced the performance degradation caused by measure-
ment noise. A distinctive feature of this approach is that the control scheme does not need
knowledge of the disturbance boundaries as it usually is. Adaptive control has also been
combined with neural network-based structures. Wu et al., 2017 [34], presented a fuzzy
adaptive feedback control for networked control systems (NCSs). The NCSs use digital
communication networks to distribute their components in different geographical locations
rather than point-to-point communication. Their scheme reached unknown nonlinear
behavior in SISO NCSs. The challenge was to deal with intermittent and stochastic data
loss in the transmission process, which was inferred as a delay in the controller design. A
Pade approximation dealt with the delay. This fuzzy adaptive scheme preserved stability
and the desired closed-loop behavior in nonlinear and delayed systems with data loss.

In what follows, the search is more focused on our physical system. An operating
CSTR may move away from the nominal region due to interactions between variables,
interchanges with other units, disturbances, or properties changing over time. These
perturbations accentuate the impact of the plant’s nonlinearities and natural frequencies
on the outputs and stability of the system. It is worth noting that classical linear control
is insufficient for the regulation and tracking tasks in CSTR systems ([35]). As a result,
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a wide range of advanced control techniques has been reported to address a number of
challenges imposed by the inherent complex behaviors in CSTR. The literature in this
field is extensive. In a broad sense, one of the most applied techniques has been robust
control. It handles nonlinearities, uncertainty, interactions, and disturbances via coupled
or decoupled schemes. As an example, we cite the work of Prokop et al., 2019 [35]. They
designed a 2-degrees-of-freedom compensator with feedback and feedforward parts. Their
control objective was to regulate and track an uncertain CSTR. Their control synthesis
needed an uncertain linear model, including a family of all feasible plants modeled by the
ring of stable rational functions. A robust stability analysis was stated through a graphical
method. The method used the value set concept and the zero exclusion condition. Then, an
algebraic approach led to a Diophantine equation, which was solved to obtain all stabilizing
feedback controllers dealing with disturbance rejection. A second Diophantine equation
gave the condition for reference tracking.

There are many robust approaches. We cite another work testing and improving one
of them. Li et al., 2021 [36], studied a sliding control enhanced with an event-triggered
approach. The given asynchronous strategy regulated a CSTR subject to temperature
fluctuations. A Markov model described the perturbed system by replicating a multi-mode
switching behavior. Then, an asynchronous state observer estimated the unmeasured
states. In order to resolve whether the current data should be released in the switching
mode, an event-triggered approach dealt with packet loss, transmission delay, and random
disturbance. As an outcome, the control law reduced computation effort. The controller was
built to gain stability and finite time reachability of the sliding dynamics. Then, introducing
an adaptive part in a robust control is also an effective practice. In [37], two neural networks
(NNs)-based robust adaptive controllers were designed to face input nonlinearities and
unknown disturbances in CSTRs. The first NN overcame an unknown input dead zone,
whereas the second treated the issue of actuator saturation.

One way to approach the control of a nonlinear system is through global transforma-
tions to move from the original nonlinear model to an exact linear model with a different
set of variables. In [38], an adaptive scheme with intelligent control is given for an un-
certain CSTR. This work tested two transformations in a robust control for some duties.
Other standard and advanced techniques can be improved indeed by modern optimization
methods. Khanduja and Bhushan, 2019 [39], submitted a hybrid control for a CSTR which
offers a stable convergence. A PID was improved by the tuning procedure based on firefly
and biogeography optimization.

In this paper, we assumed that the disturbances into the system fall within a narrow
band of frequencies. Thus, we adapted the earlier mapped control structure based on
the disturbance model to control a chemical plant effectively. In summary, this paper
addresses disturbance rejection in three continuous stirred tank reactors linked in series by
adaptive control. In contrast to similar controllers for other types of systems, our approach
characterizes the input and output disturbances as signals in a narrow frequency band. We
looked for a twofold objective, regulation of the operating point and disturbance rejection.
Our scheme consists of a robust RST control enhanced by the YK filter and the IMP. The
design follows the dynamics of unknown perturbations that continuously alter the input
and output of the plant. We synthesized an adaptive control scheme. Later on, we assessed
its performance for different sorts of disturbances. As an outcome, we demonstrated that
the control law guarantees the disturbances rejection. A better performance was observed
in contrast with that obtained by an MPC, a well-established control technique.

The remainder of this paper is organized as follows. Section 2 introduces the plant
and the temperature sensor model. In Section 3, the adaptive controller design is explained.
Section 4 describes the control synthesis of the temperature control. In Section 5, the
controller performance trials are given. Finally, we conclude in Section 6.
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2. Plant Description

An irreversible exothermic first-order reaction A k→ B occurs in three continuous
stirred tank reactors (CSTR) connected in series. The feed stream (FRin ,1, TRin ,1 and CAin ,1)
enters R1, and the flow moving out of R3 (CA,3, TR,3 and FR,3) carries the process product.
A cooling jacket surrounds each CSTR to remove the heat produced by the reaction. The
cooling fluid fed at TJin ,i (with i the unit number) circulates in the jacket with a volumetric
flow FJ,i. A diagram of the system is shown in Figure 1, and Figure 2 shows relationships of
the system variables for the three CSTR reactors in series as they are within the controller.

Figure 1. System of three CSTR reactors in series.

Figure 2. Serial process block diagram for control.

To operate the units in series is a common form of process intensification because the
total volume of the reactors can be efficiently reduced. Moreover, to look for homogeneity
of temperature, concentration, and liquid properties in the reactors results in being more
manageable. On the other hand, interactions between units are indeed settled. It means that
disturbances in one process unit influence the dynamics of the subsequent. The ongoing
reaction can lead the configuration in series to unstable operation. These issues lead to a
further challenging control problem as opposed to the single-reactor control problem. From
a control point of view, the three reactors can be represented in Figure 2, where ui is the
manipulated variable and yi represents the flow output of unit i. The output of unit i is the
input of unit i + 1.

2.1. Non-Linear Model

The behavior of an CSTR is dictated by the conservation equations derived for the re-
actor and the cooling jacket under the assumptions of perfect mixing, negligible heat losses,
constant volume of the reactor (i.e., ideal level control), and non-isothermal operation. The
model of unit i (i = 1, . . . , Nu, where Nu is the number of units) is a set of three nonlinear
differential equations that reproduce the dynamic evolution of the concentration of the
reactant A, CA,i and the temperatures of the reactor TR,i and the cooling jacket TJ,i. The
global process is represented by a 9th order model (1). A study of the equilibrium states
and static stability predicted by the non-linear model, mainly for R1 is given in the next
section for the numerical example outlined in that part. The idea is to give insight into the
control challenges.
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Global material balance FR,i = FRin ,i

Component material balance dCA,i
dt =

FR,i
VR,i

(
CAin ,i − CA,i

)
− kiCA,i

Energy balance in the reactor dTR,i
dt =

FR,i
VR,i

(
TRin ,i − TR,i

)
− λkiCA,i

ρRCPR
− UAH,i

ρRCPR VR,i

(
TR,i − TJ,i

)
Energy balance in the cooling jacket dTJi

dt =
FJi
VJ,i

(
TJin ,i − TJ,i

)
+ UAH

ρJ CPJ VJ,i
(TR,i − TJ,i)

Kinetic equilibrium relationship (Arrhenius equation) ki = α exp
−EA

Rg TR,i

(1)

In the standard form, the nonlinear model becomes

ẋi = Ai(ui, ki(xi))xi + Bi(ui)ui (2)

yi = Cixi (3)

The states (xi), inputs (ui), and outputs (yi) for each unit of the serial process are given
as follows:

ẋi =
[

ẋi,j

]
=

ẋi,1
ẋi,2
ẋi,3

 =


dCA,i

dt
dTR,i

dt
dTJ,i

dt

, ui =
[
ui,j

]
=


ui,1
ui,2
ui,3
ui,4
ui,5

 =


FRin ,i
CAin ,i
TRin,i

TJin ,i
FJ,i

, yi =
[
yi,j

]
=

[
yi,1
yi,2

]
=

[
CA,i
TR,i

]
, ki =

[
α exp

− EA
Rg xi,2

]
(4)

The subscripts i and j stand for the unit process and the vector component, respectively.
The matrices Ai, Bi, and Ci of the nonlinear system are given in Appendix A.1.

2.2. Linear Model

We linearize Equations (2) and (3) around an operating point. From now on, we
distinguish between input variables (ui) and disturbances (di).

dxdv,i

dt
= Aixdv,i + Biudv,i + Eiddv,i i = 1, 2, 3. (5)

where Ai, Bi, and Ei are Jacobian matrices evaluated at the nominal operating point. The
model is expressed in terms of deviation variables, denoted by the subscript dv.

xdv,i =
[
xi,j − xi,j,ss

]
=

xdv,i,1
xdv,i,2
xdv,i,3

 =

CA,i − CA,i,ss
TR,i − TR,i,ss
TJ,i − TJ,i,ss

, udv,i =
[
ui − ui,ss

]
=
[
FJ,i − FJ,i,ss

]
,

ydv,i =
[
yi − yi,ss

]
=
[
TR,i − TR,i,ss

]
, and ddv,i =

[
di,j − di,j,ss

]
=

[
FR,i − FR,i,ss

TJin ,i − TJin ,i,ss

]
. (6)

The subscript ss denotes steady-state variables, udv,i ∈ <m1 is the vector of m1 input
variables, and ddv,i ∈ <m2 is the vector of m2 disturbances variables, xdv,i ∈ <n is the vector
of n state deviation variables (xdv,i = xi − xi,ss for i = 1, 2, 3), and ydv,i ∈ <r is the vector of
r output variables.

Ai,j =
∂ fi
∂xj

∣∣∣∣
xdv,i

, Bi =
∂ fi
∂ui

∣∣∣∣
udv,i

, Ci =
∂ fi
∂xi

∣∣∣∣
ydv,i

, Ei =
∂ fi
∂di

∣∣∣∣
ddv,i

with i = 1, 2, 3 (process unit) and j elements in the states vector. The matrices elements of
the linear system Ai, Bi, and Ei are given explicitly in Appendix A.2.
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Applying the Laplace transformation and recursively inserting variables of the up-
stream process unit, the transfer function of the system becomes

y(s) = G(s)u(s) + Gd(s)d(s) (7)

where y(s) is the output vector, u(s) is the input vector, d(s) is the disturbance vector, and
Mi = (sI −Ai,i)

−1.

G(s) =

 C1M1B1 0 0
C2M2 A2,1M1B1 C2M2B2 0

C3M3 A3,2M2 A2,1M1B1 C3M3 A3,2M2B2 C3M3B3

 =

G1,1 0 0
G2,1 G2,2 0
G3,1 G3,2 G3,3

. (8)

The transfer function of the multivariable process is a triangular matrix. Thus, the
response of a unit is influenced by the output of the previous one. However, a decoupled
design of the control law is proposed here, and the interaction between the process units is
assumed as a disturbance.

2.3. Temperature Sensor Simulation

We use the standard polynomial parameterization defined by the NIST ITS-90 Ther-
mocouple Database [40] to reproduce the behavior of a thermocouple type S. The model
determines the voltage across the device as a function of the temperature. This empirical
equation is used along with Newton’s Equation (9) which describes the heat flow into the
sensor, assuming the sensor as a finite mass with uniform temperature distribution. The
simulation of the temperature sensor dynamics dictates the thermal behavior depending
on the dissipation factor and the thermal time constant, and produces a small noise in the
measurement of the output of the system, i.e., the reactor temperature TR. For a constant
temperature recording, Figure 3 shows the noisy measured signal in an open-loop simu-
lation. The response is a signal oscillating in time with an amplitude of 0.3 K below the
nominal temperature value. Since Newton’s equation is a first-order differential equation,
the dynamic behavior of the sensor is also a disturbance occurring with a reduced frequency
range. This signal has evidently a small amplitude with respect to the measured value and
is inserted to the controller block in the closed-loop simulations.

QTR = Kdtc
dTR,i

dt
(9)

where TR is the temperature at port A on the thermocouple. QTR is the net heat flow to port
A. Kd is the value of the dissipation factor parameter. tc is the value of the thermal time
constant parameter. dTR/dt is the rate of change of temperature.

0 20 40 60 80 100 120

Time [h]

349.6

349.7

349.8

349.9

350

T
R

 [
K

]

Temperture sensor

72 73 74 75
349.7

349.8

349.9

350

Figure 3. Dynamic of temperature sensor.

3. Control Design

The control objective is to regulate the output composition of a disturbed and uncertain
process of three CSTR in series. The goal is to keep an isothermal operation while the
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reaction conversion holds the nominal condition. Figure 4 shows the proposed global
control scheme. The design deals with the fulfillment of the operating conditions specs
by a central RS-type polynomial control law (red dashed line in Figure 4). Besides, to
deal with disturbances and uncertainty at the input and output of the tanks, the control
law integrates adaptive control (red line in Figure 4). The adaptive frame consists of a
disturbance model, delivered in the form of a Youla–Kučera filter or Q filter, and a suitable
algorithm for online parameter adaptation. Q is given as a polynomial, then added to the
control scheme without effect on the performance of the central RS controller. From the
design point of view, the disturbances are modeled via a known structure since a specific
class of input changes is wielded. A known structure with unknown parameters is then
assumed to describe the disturbance transfer function. The disturbance signal is produced
by a Dirac pulse filtered with a deterministic model (disturbance transfer function). In this
way, the principle of the internal model makes disturbance rejection possible [21,41,42].

The strategy to update the control law is to estimate the filter Q online. An observation
vector of the disturbance is built from the measured input-output data of the plant, the
filter Q being a function of w(t) (Figure 4) and the chosen closed-loop poles and zeros. The
structure is equivalent to a FIR filter. The adaptive control loop is based on the least mean
square of the error computation and allows recalculating the polynomial S(q−1). Hence,
the disturbance rejection is asymptotically attained [29,30].

In this section dedicated to the control design, we used the delay operator q−1 for
describing the system’s behavior in the time domain. In the next section, we describe
the numerical simulation with the complex variable z−1 for characterizing the system’s
behavior in the frequency domain.

Figure 4. Adaptive control scheme for a CSTR.

3.1. Central RS Controller

The control structure to be implemented is the local loop control, where the inputs
of a unit are used to control the outputs of the same unit. The central RS controller is a
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polynomial controller, designed by pole placement. For three CSTR reactors connected in
series, the transfer function in closed loop with local control is given by

L =

G1,1(q−1) 0 0
G2,1(q−1) G2,2(q−1) 0
G3,1(q−1) G3,2(q−1) G3,3(q−1)

K1,1(q−1) 0 0
0 K2,2(q−1) 0
0 0 K3,3(q−1)


=

G1,1(q−1)K1,1(q−1) 0 0
0 G2,2(q−1)K2,2(q−1) 0
0 0 G3,3(q−1)K3,3(q−1)

 (10)

To obtain Equation (10), the model was linearized around an operating point by the
standard approach of the Taylor’s series expansion and the knowledge of the Jacobian
linearization process. Then, the Laplace transform was applied. As a serial process, it is
split into sub-processes that we call units, where the states depend on the states in the
same unit and the states of the previous one. Hence, the shape of the transfer matrix is a
lower diagonal. For the case of simple control loops, the feedback gain is a diagonal matrix
because each control affects only the unit where it is applied. For more details, see [43]. To
deal with the rejection of exogenous disturbances, an adaptive block is added to the RS
controller. An adaptive control as shown in Figure 4 is synthesized for each reactor (local
loop control structure ui = Ki,i(q−1)yi).

RS Robust Control

The RS robust control synthesis is obtained from the linear model of the plant in
discrete time, given in (11)

Gi,i(q−1) =
q−dB(q−1)

A(q−1)
(11)

where

A(q−1) = 1 + a1q−1 + · · ·+ anA q−nA (12)

B(q−1) = b1q−1 + · · ·+ bnB q−nB = q−1B∗ (13)

B∗(q−1) = b1 + · · ·+ bnB q−nB+1 (14)

where d is the plant time delay given as the number of sampling periods, A(q−1), B(q−1),
B∗(q−1) are polynomials in the complex variable q−1, nA, nB, and nB − 1 represent their
orders. The controller Ki,i is expressed in (15), in terms of R(q−1) and S(q−1).

Ki,i(q−1) =
R(q−1)

S(q−1)
=

r0 + r1q−1 + · · ·+ rnR q−nR

1 + s1q−1 + · · ·+ snS q−nS
(15)

The output y(t) and the input u(t) of the plant are, respectively,

y(t) =
q−dB(q−1)

A(q−1)
u(t) +

q−dB(q−1)

A(q−1)
v(t) (16)

S(q−1)u(t) = −R(q−1)y(t) (17)

where v(t) is the resulting additive disturbance on the input of the system, R(q−1), S(q−1)
are polynomials in q−1 with orders nR, nS

R(q−1) = r0 + r1q−1 + · · ·+ rnR q−nR

= R′(q−1)HR(q−1) (18)

S(q−1) = 1 + s1q−1 + · · ·+ snS q−nS

= S′(q−1)HS(q−1) (19)
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where HR(q−1) and HS(q−1) are pre-specified and fixed parts of the controller that perform
tasks such as rejecting disturbances, reducing the steady-state error (HS(q−1)) or opening
the loop (HR(q−1)). The R(q−1) and S(q−1) polynomials of the control law are obtained
by specifying the desired performance. The procedure is to select the closed-loop poles to
generate the Bézout identity associated with the control problem. The Bézout identity gives
the closed-loop poles in the form of P(q−1) and is written as indicated by (20), as a function
of the polynomials R(q−1), S(q−1), and the open-loop plant model given by a A(q−1) and
B(q−1), then it is solved for each process unit.

P(q−1) = A(q−1)S(q−1) + B(q−1)R(q−1) (20)

After pole assignment, to ensure general robustness, the design of the controller is
achieved by shaping the sensitivity functions of the closed-loop system. In our design,
robustness is obtained by managing both the delay margin and the modulus margin. The
sensitivity functions are transfer functions that relate disturbances to the system output Syp
as in (21) or input Sup as in (22). The setting of the sensitivity functions Syp and Sup must
be performed within the allowed values of the margins [44].

Syp(q−1) =
A(q−1)S(q−1)

A(q−1)S(q−1) + B(q−1)R(q−1)
(21)

Sup(q−1) =
−A(q−1)R(q−1)

A(q−1)S(q−1) + B(q−1)R(q−1)
(22)

For a disturbance in the plant input signal, the input–output disturbance sensitivity
function is the transfer function that accounts for the effect of the input disturbance v(t) on
the system output. It is written as

Syv(q−1) =
B(q−1)S(q−1)

A(q−1)S(q−1) + B(q−1)R(q−1)
(23)

3.2. Adaptive Scheme for Input and Output Disturbances Rejection

A practical approach to mitigate the effect of disturbances is to introduce the distur-
bance dynamics into the closed-loop system. This update is performed by applying the
internal model principle [41,45].

3.2.1. Internal Model Principle

The effect of the input disturbance (v(t)) on the output is written as

y(t) =
B(q−1)S(q−1)

P(q−1)
v(t) = Syv(q−1)v(t) (24)

We assume that the disturbance v(t) is modeled as a signal passing through a filter
and is modeled by

v(t) =
Np(q−1)

Dp(q−1)
δ(t) (25)

where δ(t) is a Dirac impulse, NP(q−1) and Dp(q−1) are coprime polynomials, and nNP , nDP
represent the order. This approach has been used in [32,46–48]. P(q−1) is an asymptotically
stable polynomial, converges asymptotically towards zero if and only if the polynomial
S(q−1) in the RS control has the form

S(q−1) = Dp(q−1)S′(q−1) (26)

HS(q−1) = Dp(q−1)
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This way, it becomes feasible to include disturbances in the control loop and then
reject them.

3.2.2. Youla–Kučera (YK) Parameterization

Using YK parameterization or Q parameterization, the controller polynomials R(q−1)
and S(q−1) obtain the form

R(q−1) = R0(q−1) + A(q−1)Q(q−1) (27)

S(q−1) = S0(q−1)− q−dB(q−1)Q(q−1) (28)

The central controller R0(q−1) and S0(q−1) is computed by poles placement, given the
plant model and the desired closed-loop performance through P(q−1) as in (20)

P(q−1) = A(q−1)S0(q−1) + q−dB(q−1)R0(q−1) (29)

Equations (27) and (28) characterize the set of controllers assigning the closed-loop
poles as defined by P(q−1), and Q(q−1) is a polynomial of the form

Q(q−1) = α0 + α1q−1 + · · ·+ αnQ q−nQ (30)

The internal model of the perturbation is introduced in the control synthesis by
calculating Q(q−1) through the solution of (31).

S′(q−1)Dp(q−1) + q−dB(q−1)Q(q−1) = S0(q−1) (31)

where Dp(q−1), d, B(q−1), and S0(q−1) are known, and S′(q−1) and Q(q−1) are unknown.
Equation (31) has a unique solution for S′(q−1) and Q(q−1) with nS0 ≤ nDp + nB + d− 1,
nS′ = nB + d− 1, nQ = nDp − 1 which depends on the structure of the disturbance model.
Q parameterization, i.e., the calculation of the polynomial Q(q−1), avoids the controller R-S
having to be recalculated. In the proposed adaptive control scheme, the Q filter parameters
are estimated online. The estimation algorithm is built based on an error equation that
takes into account the difference between the optimal Q polynomial and its current value.

The system output in the presence of an input disturbance is expressed as

y(t) =
B(q−1)

[
S0(q−1)− q−dB(q−1)Q(q−1)

]
P(q−1)

×
Np(q−1)

Dp(q−1)
δ(t) (32)

=
S0(q−1)− q−dB(q−1)Q(q−1)

P(q−1)
w(t)

where

w(t) =
B(q−1)Np(q−1)

Dp(q−1)
δ(t) (33)

The a priori error, defined as ε0(t + 1) is calculated from the estimate of Q(q−1) at
time t, i.e, Q̂(t, q−1)

εo(t + 1) =
S0(q−1)

P(q−1)
w(t + 1)− q−dB∗(q−1)

P(q−1)
Q̂(t, q−1)w(t) (34)

Afterward, we can obtain the a posteriori error (using Q̂(t + 1, q−1))

ε(t + 1) =
S0(q−1)

P(q−1)
w(t + 1)− q−dB∗(q−1)

P(q−1)
Q̂(t + 1, q−1)w(t) (35)

also considering S0(q−1) from (31) we obtain
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ε(t + 1) =

[
S′(q−1)Dp(q−1) + q−dB∗(q−1)Q(q−1)

]
P(q−1)

w(t + 1)− q−dB∗(q−1)

P(q−1)
Q̂(t + 1, q−1)w(t) (36)

ε(t + 1) =
[

Q(q−1)− Q̂(t + 1, q−1)
] q−dB∗(q−1)

P(q−1)
w(t) + η(t + 1) (37)

where

η(t) =
S′(q−1)Dp(q−1)

P(q−1)
w(t) (38)

=
S′(q−1)q−dB∗(q−1)Np(q−1)

P(q−1)
δ(t) (39)

is a signal that tends asymptotically to zero due to the selection of P(q−1). The estimated
polynomial becomes

Q̂(t, q−1) = α̂0(t) + α̂1(t)q−1 + · · ·+ α̂nQ(t)q
−nQ (40)

and its corresponding vector of estimated parameters is

θ̂(t) =
[
α̂0(t), α̂1(t) . . . α̂nQ(t)

]T
.

We define the parameters vector in accordance with the optimal polynomial Q as

θ =
[
α0, α1, . . . , αnQ

]T
, and

w2(t) =
q−dB∗(q−1)

P(q−1)
w(t) (41)

then, by setting the following observation vector,

φT(t) = [w2(t), w2(t− 1) . . . w2(t− nQ)] (42)

from (37), the a posteriori error becomes

ε(t + 1) =
[
θT − θ̂(t + 1)

]
φ(t) + η(t + 1) (43)

and from (34), the adaptation error a priori turns into

εo(t + 1) = w1(t + 1)− θ̂T(t)φ(t) (44)

with

w1(t + 1) =
S0(q−1)

P(q−1)
w(t + 1) (45)

w2(t) =
q−dB∗(q−1)

P(q−1)
w(t) (46)

w(t + 1) = A(q−1)y(t + 1)− q−dB∗(q−1)u(t) (47)

where
B(q−1)u(t + 1) = B∗(q−1)u(t)

The adaptation error a posteriori is obtained from (35)

ε(t + 1) = w1(t + 1)− θ̂(t + 1)φ(t). (48)
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The following parametric adaptation algorithm seeks to minimize the error by a
recursive least squares criterion in order to estimate the parameters [49]:

θ̂(t + 1) = θ̂(t) + F(t)φ(t)ε(t + 1) (49)

ε(t + 1) =
ε0(t + 1)

1 + φT(t)F(t)φ(t)
(50)

ε0(t + 1) = w1(t + 1)− θ̂T(t)φ(t). (51)

The adaptive gain matrix is calculated as follows:

F(t + 1) =
1

λ1(t)

F(t)− F(t)φ(t)φT(t)F(t)
λ1(t)
λ2(t)

+ φT(t)F(t)φ(t)

 (52)

F(t) is a matrix with dimension nR × nR, where nR is the number of parameters to
estimate, F(0) is a diagonal matrix for which it is suggested to choice large values, as the
optimal values of the parameters to be estimated are unknown. Different adaptation gain
profiles for the adaptation gain F(t) may be used, according to the selection of λ1(t) and
λ2(t), as described in [44,50].

4. Control Synthesis for Temperature Control of a 3 CSTRs System

In this section, we present a numerical case. The purpose is to regulate the temperature
in a set of 3-CSTR in series. The nominal operating conditions of the system are first defined.
Then, an open-loop analysis gives insights into the dynamic nature of the system. In the
end, the aim is to synthesize and test an adaptive and robust control law.

4.1. Numerical Case

Consider a process formed by the three serial CSTR shown in Figure 1. The control
objective is to keep an isothermal operation of the 3-CSTR at TR,i = 350 K (i = 1, 2, 3). The
last control goal is to prevent the concentration in the reactors from varying with input
changes. The control problem concerns rejecting narrowband disturbances. In Table 1,
the equilibrium point, which is the nominal condition of the process, is shown [51]. The
parameters for the dynamic model and the input variables are also given.

We take advantage of the static and dynamic analysis tools to delve deeper into the
behavior of a CSTR. R1 was found to have the most complex behavior in the series of three.
Therefore, we focus on the numerical case for this unit. Phase portraits follow the evolution
of a system variable over time. They are Cartesian geometric representations, usually
plotted in two dimensions. Different trajectories can occur depending on initial conditions.
To discern relevant dynamic regions, we obtained phase portraits of R1 by the simulation
of model (1). With the phase portrait, we gained knowledge of the equilibrium states in the
nonlinear CSTR. The details are shown in a static performance map but give insights into
the system’s dynamics. In Figure 5, the reactor temperature is matched to the concentration
of A in R1. We begin the discussion on the stable and unstable zones. The resulting
patterns have revealed a stable equilibrium at high concentration and low temperature.
So, a low conversion point is around 8 kmol m−3 and 300 K. Trajectories with initial points
below 330 K and concentrations above 7 kmol m−3 always converges to stable points with
low conversion, whereas trajectories with initial points above 360 K exceed and may go
beyond 420 K, the safe limit (Figure 5a). Then, between 320 K and 360 K, there is a large
zone of instability seen at the points where the trajectories of the arrows indicate opposite
directions. We also analyze the risk of thermal runaway. This condition is clearly observed
in Figure 5b. If the initial states are placed where the arrows point to a constant gain in
temperature, a thermal runaway occurs. This zone is larger for trajectories starting at high
concentrations (or low conversion levels). The unit placed first in the reactor train naturally
starts with a high concentration of the reactant to be consumed. Thus, it is normal that
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subsequent units are less likely to be unstable. The total of trajectories with initial reactor
temperatures above 330 K result in the continuous growth of the reactor temperature for an
open loop evolution. Additional observations were obtained by relating the reactor and
jacket temperatures at a constant concentration. In Figure 5c,d, the isothermal operation
states are horizontal lines, but the states conjugating arrows with opposite directions are
unstable. The jacket temperature always converges to the same value for trajectories with
initial reactor temperatures between 345 K and 355 K. For different initial concentrations of
A, the reactor behavior shifts, and the jacket temperature is no longer necessarily conserved.

To conclude, R1 operating at different initial conditions can effortlessly evolve to high
temperatures or the stable point at low conversion. Furthermore, the region with high
conversion and intermediate temperatures is unstable in an open-loop operation. The
remarks given highlight the need for an efficient control design.

The Van Heerden diagram [52] is built from the steady-state conservation equations
for a jacketed exothermic CSTR. The graph relates the heat of reaction QG and the heat
consumed by the cooling fluid QR vs. the effluent temperature TR,i. The diagram allows
multiple equilibrium states to be located and the stability of the process to be probed. The
stability criterion of Van Heerden [52] states that if the slope of the heat removal line QR is
greater than the slope of the heat generation curve Qg, the static stability for the operating
point of the CSTR is verified (Figure 6).

Table 1. Nominal operating conditions and parameters.

Input conditions

CAin ,1 8.01 kmol m−3 FR,i * 0.004 377 m3 s−1

TRin ,1 294 K TJ,i * 294K

Steady state values

CA,1 2.1692 kmol m−3 FJ,1 0.452 m s−1

CA,2 0.58 kmol m−3 FJ,2 0.0033 m3 s−1

CA,3 0.16 kmol m−3 FJ,3 0.000 619 75 m3 s−1

TR,i * 350 K TJ,2 329 K
TJ,1 300 K TJ,3 344 K

Parameters

α 25.75× 106 s−1 λ −69.71× 106 J kmol−1

E 69.71× 106 J kmol−1 U 851 W m2 K−1

ρR 801 kg m−3 AH,i 27.5 m2

ρJ 1000 kg m−3 VJ,i 1.225 m3

CPR 3137 J kg−1K−1 VR,i 14.4 m3

CPJ 4183 J kg−1 K−1 R 8314 J kmol−1 K
* i = 1, 2, 3.

In the CSTR set, the behavior of the first reactor R1 displays multiple steady states
and evolves towards instability at the nominal operation. The referred Figure 6a shows
two equilibrium states of R1, where the heat of reaction QG equals the heat removed by the
cooling fluid QR. The low-temperature state (point 1) leads to low conversion and is a stable
state. In contrast, the high-temperature state (point 2) gives high conversion but is unstable.
In Figure 6b, the specification for the operation of R1 is the high conversion state 2, for
which a small change makes it evolve to the stable and unwanted low conversion.
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(a) (b)

(c) (d)

Figure 5. Phase portrait of R1. (a) Trajectories of TR,1 vs. CA,1 for TJ,1 = 300 K; (b) Directions
of the trajectories with TJ,1 constant; (c) Trajectories of TR,1 vs. TJ,1 for CA,1 = 2.1727 kmol m−3;
(d) Directions of the trajectories with CA,1 constant.
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Figure 6. Van Heerden diagram and conversion condition. (a) Heat removal vs. heat generated (CSTR 1);
(b) Concentration of CA (CSTR 1).

The SISO discrete-time transfer functions match the nonlinear static performance of
the plant at the operating point. Thus, the linear dynamic model allows to verify the
stability features of the open-loop operation.

G1,1(z−1) =
y1(z−1)

u1(z−1)
=

−0.038(1− z−1)(1 + 0.937z−1)

(1− 1.007z−1)(1 + z−1)(1− 0.8124z−1)
(53)
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A controller corrects the instability at the desired equilibrium point. The control action
is essential if the reactor operates in areas close to unstable points.

In R2 and R3 there is no unstable behavior. The poles defining the system’s dynamics
are indeed within the unit circle. The stable performance of R2 and R3 is then given by
their linear SISO transfer functions:

G2,2(z−1) =
y2(z−1)

u2(z−1)
=

−0.23(1 + 0.9z−1)(1− z−1)

(1− 0.962z−1)(1− 1.996z−1 + 0.996z−2)
(54)

G3,3(z−1) =
y3(z−1)

u3(z−1)
=

−0.1305(1− 2z + z−2)

(1− z−1)(1− 0.992z−1)(1− 0.973z−1)
(55)

4.2. Central RS Controller

As explained in Section 3, the design of the RS controllers was supported by the
knowledge of the closed-loop performance. Then, to conceive the controller of R1, the
dominant poles were used to ensure stability. Afterward, the choice of auxiliary poles
allows to adjust the sensitivity functions, which gives robustness to the closed-loop system.

The designation of the dominant and auxiliary poles sets the desired closed-loop
performance of the plant. It also allows for the building of the Bezout Equation (20). Its
solution yields the polynomials R-S, which are part of the CSTR 1 central controller, as
stated in (56):

K1,1(z−1) =
R1(z−1)

S1(z−1)
=
−7.29 + 11.72z−1 − 4.46z−2

1− 0.85z−1 − 0.19z−2 (56)

The polynomials R-S, which are part of the CSTR 2 central controller, are

K2,2(z−1) =
R2(z−1)

S2(z−1)
=
−4.57 + 7.38z−1 − 2.83z−2

1− 0.32z−1 − 0.67z−2 (57)

The polynomials R-S, which are part of the CSTR 3 central controller, are

K3,3(z−1) =
R3(z−1)

S3(z−1)
=
−0.45 + 0.91z−1 − 0.45z−2

1− 1.06z−1 + 0.061z−2 (58)

The closed-loop poles of the central controller were computed as in (29) by pole
placement. So the Nyquist criterion is met at least for the nominal plant when specifying
the closed-loop poles. The minimum distance between the Nyquist graph and the critical
point defines a stability margin known as the modulus margin, which is generally related
to the uncertainty of the plant model and is equal to the inverse of the modulus of Syp (21).
Another stability margin is the delay margin. Both margins are plotted to build a template
that we use to calibrate the sensitivity function Syp. Figure 7 plots the sensitivity functions
of the central controller. It is also evident that the plot respects both margins; therefore, the
controller has robust stability. For more details see Section 7.2 of [53].

4.3. Adaptive Scheme for Oscillating Feed Stream Flow and Output Sensor Noise

We started the parameter adaptation algorithm under the assumption that no knowl-
edge provides a first estimate. So the initialization was performed by giving the gains
F1(0) = 1× 104, F2(0) = 1× 103, and F3(0) = 100 for the controller designs of R1, R2, and
R3, respectively. The adaptation gain profile was Decreasing gain for CSTR 1 and CSTR 3
and Fixed forgetting factor for CSTR 2. The number of parameters to estimate depends on
the type of disturbance and the judgment of the designer [50]. For the serial process, the
number of estimated parameters is defined as nR,i (with i=1, 2, 3). In particular, for each
reactor (Ri), nR1 = 6, nR2 = 2, and nR3 = 2.
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Figure 7. Sensitivity functions for serial process. (a) Output sensitivity functions Syp; (b) Input
disturbance–output sensitivity functions Svy; (c) Input sensitivity functions Sup.

5. Results and Discussion

The control objective for the case presented here is to maintain an isothermal operation
in the three reactors. Indirectly, the output compositions must also stay around the nominal
values. Temperature regulation provides safety, while indirect composition control keeps
the product quality.

We evaluated the controller’s performance in two simulation scenarios: (i) the first
calls for perturbing the system with abrupt changes (such as a reference change). (ii) The
second one encompasses changes in the currents from auxiliary services. In the closed-
loop simulator, the nonlinear model always gave the plant dynamics. The disturbances
were signals that modify the feed stream variables over time. These were interpreted as
sinusoidal, random functions with frequencies from 0.0002 Hz to 0.007 Hz. The choice
of the bandwidth range to define the disturbance frequencies was made by means of a
frequency analysis of the open-loop system. In summary, we consider the natural frequency
bandwidth of the plant and we added ±1/4 of this range. The system simulation also
retained the temperature sensor’s dynamics. We used integral performance indices to
compare the adaptive control law with a model-based multivariable predictive control.

The predictive control design relies upon a linear invariant in time plant, a quadratic
cost function, and restrictions in the form of linear inequalities as reported in [54]. The
prediction of the future behavior of the plant was made by a linear state-space model in
discrete time (presented in Section 2.2). The tuning parameters of the MPC controller are
the prediction horizon (HP = 10Ts) , and the control horizon (HC = 5TS). The constraints
depend on the operating limits. These were set for (i) the control inputs u(k), the flow
entering to the jacket of the reactors FJ,i, and (ii) the controlled variables, i.e, the reactors
temperatures TR,i.

The performance indicators used were the integral squared error (ISE) to measure
large errors (59), the integral absolute error (IAE (60)), the integral time-weighted absolute
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error (ITAE) to measure persistent errors (61), and integral time-weighted squared error
(ITSE (62)). The performance indicators are defined as follows:

ISE =
∫ ∞

0
e(t)2dt (59)

IAE =
∫ ∞

0
|(e(t))|dt (60)

ITAE =
∫ ∞

0
t|e(t)|dt (61)

ITSE =
∫ ∞

0
t|e(t)2|dt (62)

where e(t) is the error, specified as the difference between the reference and the output
reactor temperature, TR,i over time (t), with i = 1, 2, 3.

Comparative tests help us to assess the performance of both controllers. The error
was calculated in the closed-loop dynamic tests until the response reached a steady state
after input changes. The tests were run at all times, assuming the noise of the temperature
sensors as output disturbances. As stated before, we assumed reference changes to mean
operating outside the nominal condition. We also perturbed the system with continuous
fluctuations around the nominal operating condition. These were taken as sinusoidal
narrow band signals and describe the interactions, variations from previous processes or
ancillary services, or non-linearities of the plant.

5.1. Abrupt Disturbance: Reference Change at First Reactor R1

The first test scenario assesses the system response to sharp input disturbances. Thus,
we simulated the closed-loop system with reference changes in TR,1. The first shift started
after 100 min, then changes of ±4 K were driven every 166 min. The reference shift in R1
alters the inlet condition of the subsequent reactor R2, and the same is true for the set of
second and third reactors.

For the adaptive control, we designed a polynomial T1(z−1) to deal with reference
tracking in the first reactor. We calculated it from T1(z−1) = P1(1)/B1(1). In Figure 8, the
reactor temperature TR,1 is traced. The graph tracks the reference changes over time. One
can observe that the reactor temperature stabilizes nearly 50 min after any change.
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351

352
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354
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K
]
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Adaptive control

Figure 8. Performance of adaptive controller in presence of an abrupt change in temperature in
reactor R1—output temperature TR,1.

Temperature change in the reactors means an evolution of the concentration variables.
The deviations in the input and output of R1 cause indeed a fluctuation of the output
concentration in R2 and R3. Figure 9 shows the concentration dynamics in the three
reactors. On the other hand, it is worthy to note that the outlet temperature in reactors
two and three are held close to the reference, which means that they, at all times, hold an
isothermal operation. See in Figure 10 the temperature evolution.
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Figure 9. Performance of adaptive controller under an abrupt abrupt change in temperature in reactor
R1—Concentration CA,i evolution.
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(b) Temperature in reactor R3.

Figure 10. Performance of adaptive controller in presence of an abrupt change in temperature in
reactor R1—output temperature TR,2 and TR,2.

The effort to manipulate the input variable to match the reference was more significant
in the first reactor than it was for the downstream units. If the temperature in R1 drops
from a high temperature to the nominal value (350 K), the cold fluid flow steps up. In any
case, in the driven test, the flow stayed within the allowable limits, which the valve features
enforce (see Figure 11). For the driven tests, the control input in reactors R2 and R3 does
not go beyond the operating limits. However, significant flow changes took place when the
reference moved ±4 K. Given that R1 operates at a higher temperature than the coming
up units, the cooling jackets of reactors R2 and R3 carried lower down cold fluid flow (see
Figure 11b,c, respectively).

The MPC control was unable to make the baseline change in the first reactor. Being
a multivariable controller, added to the interaction between variables due to being a
multivariable serial process, it was a difficult task to continue with the calculation of the
control signals of the reactors R2 and R3 in such a way that a slow response was obtained,
making it difficult to maintain the temperature. In reactors 2 and 3, the jacket flows FJ,2
and FJ,3 show a trend toward the maximum flow limit allowed by design and operation as
shown in Figure 11b,c, respectively.

During the first 100 min of simulation, the behavior is similar to that with the adaptive
control; however, after the disturbance is applied, the control effort makes a very abrupt
change, from a value very close to the stable state up to the maximum flow allowed in the
cooling jacket. Even so, this change is not enough to make the temperature change to the
new reference. The control effort reaches the physical limits established in the design. The
jacket flow signal of the first reactor saturates at the limit value of the restrictions, as can be
seen in Figure 11a.

Figure 12a updates the parameters estimated in the course of the trajectory tracking in
R1. Likewise, Figure 12b,c update control parameters in reactors R2 and R3. Opposite to
the R1 update, the parameters estimates for reactors R2 and R3 fit at all times their optimal
values, which correspond to the nominal point. In fact, the impact on the subsequent
reactors, produced by the reference change in R1, is weakened by the control loop of the
first reactor.
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Figure 11. Performance of adaptive controller under an abrupt change in temperature in reactor R1

in Jacket flows.
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(a) Estimated parameters reactor R1.
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Figure 12. Performance of adaptive controller under an abrupt change in temperature in reactor
R1—parameter evolution.

5.2. Variations in the Auxiliary Services: Simultaneous Disturbances in FJ,1 and TRin ,1

Industrial plants operate, aided by services that supply heat or material streams to
their units. These streams have disturbed variables that influence the processing units by
random or periodic fluctuations. In the system of three reactors in series, disturbances can
be sensed in the inlet temperature TRin ,i of the reactors and the flow rate of their cooling
jacket, FJ,i. The second test scenario evaluates the performance of the adaptive control
scheme for damping input disturbances. To this end, we simulated the closed-loop system
subject to simultaneous disturbances. The simulations were run with perturbations on the
two input variables in R1: TRin ,1 and FJ,1.
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Now, the control objective is to reject simultaneous disturbances. We assumed that
additive perturbations merge variations of the jacket flow of reactor R1 and the reactor inlet
temperature to simulate the system. Likewise, we suppose that the cooling fluid comes
from an auxiliary service or another processing unit. Hence, the variations of the jacket
flow were built as additive disturbances in the control signal, FJ,1. The input signals are
periodical sinusoidal functions, applied at simulation time from 16 min to 810 min. These
evolved in time with distinct amplitudes and biases. The input signal is composed of
a first sinusoidal wave with an amplitude of ±15% of the nominal FJ,1 and a frequency
of 0.000955 Hz, plus a bias, occurring until time 200 s. The next 200 s, the signal shifts
to a sinusoidal wave with an amplitude of ±10% of the nominal FJ,1 and a frequency of
0.000795 Hz. This wave train repeats itself to time 810 min. In Figure 13a, the disturbance
signal of the jacket flow is shown in orange.
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Figure 13. Variations in the auxiliary services: simultaneous Disturbances in FJ,1 and TR,in.

Additionally, we ran the simulation test with disturbances in the reactor inlet tem-
perature TRin ,1. Such changes in the inlet stream reproduce the impact of environmental
shifts and interactions with other processes and auxiliary service equipment. The inlet
temperature changed at t = 50 min. This continuous disturbance signal was the sum of
three sinusoidal functions with distinct amplitudes and frequencies (see Figure 13b). Three
frequencies were chosen, f1 = 0.002 Hz, f2 = 0.00698 Hz, and f3 = 0.00681 Hz. Their
amplitude was 9 K around the nominal value.

The concurrent perturbations cause deviations of ±0.6 K in the controlled variable
in the first reactor (see Figure 14). The temperature of reactors R2 and R3 are close to
their reference values. The disturbance in R1 is damped, and its repercussion on the other
reactors drops due to the control action in R1. Figure 15 shows the concentration dynamics
in the three reactors.

We handle performance indexes in Table 2 to make a quantifiable test of the control
performance. The ISE index helps to rate the efficacy of the adaptive control to hold on
to the output variable near the reference. The substantial ITAE and ITSE point out that
the signal oscillates. This result is not surprising, as the input disturbances are sinusoidal.
Even if the controllers keep down their impact, slight oscillation stays over time.

Table 2. Performance indicator of controllers simultaneous disturbance.

Performance Indicators

REACTOR Controller ISE IAE × 103 ITSE ITAE × 105

1 Adaptable 7.5 2.01 2.25× 107 1002
MPC 351.8 1.02 1.76× 107 509

2 Adaptable 6.1× 10−6 0.82 18.25 0.408
MPC 0.0038 5.51 188.3 2.75

3 Adaptable 0.00013 9.52 390.04 4.76
MPC 0.0031 10.14 157.02 5.07
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(c) Temperature in reactor R3.

Figure 14. Performance of adaptive controller under a simultaneous disturbance -Temperature output
in each reactor, TR,i.
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Figure 15. Performance of adaptive controller for simultaneous disturbances in FJ,1 and TRin ,1

—concentration CA,i evolution.

Disturbance rejection is attained for both control laws in the first reactor R1 with
a similar control effort. See Figure 13a; in the first few minutes of the simulation, the
controller counteracts the inlet temperature variation in the three reactors. On the other
hand, the adaptive control does not lead to high flow feeding of the jacket. The highest
effort also comes in the first few minutes of simulation for each reactor, as seen in Figure 16.

0 100 200 300 400 500 600 700 800

Time [min]

0

2

4

6

8

F
J
,2

[k
m

o
l/
m

3
]

10
-3

Steady-state

Maximum

Adaptive control

MPC

(a) Law of control reactor R2.

0 100 200 300 400 500 600 700 800

Time [min]

0

0.5

1

1.5

F
J
,3

[k
m

o
l/
m

3
]

10
-3

Maximum

MPC

Steady-state

Adaptive control

(b) Law of control reactor R3.

Figure 16. Performance of adaptive controller under a simultaneous disturbance—Jacket flow of R2

and R3.
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The control effort made by the MPC for the jacket flow of the third reactor has more
aggressive changes and presents many oscillations during the entire simulation time
compared to the jacket flow provided by the adaptive control (see Figure 16b). The expected
behavior of the cooling flow of the third reactor must be “softer”, indicating the attenuation
of the disturbances in the previous units.

The controller updated the parameters estimated after a disturbance in the jacket
flow. The change of the parameters for reactor R1 is shown Figure 17a. We also estimated
online the parameters for reactors 2 and 3. Still, a minor divergence of their values was
observed due to disturbance weakening by the control in the first reactor (see Figure 17b,c,
respectively).

Some general remarks on the design and performance of the controller are as follows:
Actuators in CSTR control loops are valves. A control valve is a device that manipulates a
working fluid to compensate for disturbances and maintain the output at the set point. In
this work, the control input is directly the cooling fluid flow, so we do not use a valve model
to design the controller. This fact is equivalent to assuming that the valve instantaneously
reaches a specific position or that the dead time and the time response are minor. We also
consider that the control signal is not constrained, which means that the control design
neglects the nonlinearities caused by input saturation.
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Figure 17. Performance of adaptive controller under a simultaneous disturbance—Parameter evolution.

For reactor tanks, the rule of thumb indicates that the flow fed through a valve can
reach a value of two or up to three times the nominal value. Outside these limits, the
control signal saturates, the closed-loop behavior degrades, and the system can become
unstable. The designed control provides a conservative response with a smooth signal
that does not exceed three times the nominal value. For this reason, the control law does
not degrade. The temperature was subject to changes of up to ±9 K around the nominal
value for the simultaneous disturbance test. At the same time, the flow entering the jacket
was perturbed with variations of up to 15%. Even with these significant disturbances, the
control law did not exceed the possible physical limits.

Aspects of the control synthesis that aided in achieving the performance seen in the
tests are as follows: the pole placement searched for a performance away from high fre-
quencies but ensured closed-loop stability. The pole assignment gave robust stability, as the
sensitivity functions fit perfectly within the robustness margins (Figure 7a). Disturbances
at the inputs do not significantly influence the outputs, except in the third reactor when
very low-frequency disturbances, such as a reference shift, are involved (Figure 7b). The
control law provides high tolerance to disturbances at the control inputs since the input



Mathematics 2022, 10, 3224 25 of 29

sensitivity curves are smooth curves with variations in a small range, and no rapid or large
amplitude changes are shown over the entire frequency range (Figure 7c).

The control scheme has effectively regulated the concentration in the three reactors
indirectly. In the first control test, the concentration oscillates (Figure 9). In any case, the
conversion equals the reference or increases slightly, compared to the reference. The second
test stabilizes the concentration at the reference with short pulses (Figure 15).

6. Conclusions

At the beginning of this paper, we gave an account of the most common types of
disturbances in chemical plants. Inputs to such processes and disturbances were portrayed
as signals within a short frequency span. Thus, we proposed an adaptive control scheme to
reject narrow-bandwidth disturbances. Here, we describe the closed-loop system elements
and the main outcomes.

Reactors have been broadly used to investigate process control strategies because of
their dynamic traits. We tested our control scheme in a 3-CSTR plant. This plant behavior
is nonlinear and engages in interactions as the reactors are cascaded. The nonlinear
mathematical model obeys the conservation equations and replicates these features. The
reaction of A is exothermic and yields a product for which the concentration determines the
product quality. The lower the concentration of A, the higher the reaction conversion. We
studied the steady state behavior of R1 with the aid of phase portraits and the Van Heerden
diagram. We concluded that R1 is liable to run in thermal instability regions, have multiple
equilibrium points, and risk of thermal reactor runaway. Under these circumstances,
temperature regulation is a better choice than direct concentration control. The first option
leads to operating in safe regions and prevents the need for a state observer design to
estimate a nonmeasurable variable. Because temperature strongly affects concentration,
temperature control becomes an indirect composition control. The R1 unit effortlessly can
lead to unsafe operation and low-quality products. It is indeed an intensified process that
replaces a single reactor. The control in the serial process becomes more demanding than
regulating a single reactor. However, the gain in safety, volume, efficiency, and cost show
just cause for the control challenge.

The control scheme is composed of two parts. The first part is a fixed design, whereas
the second engages an online update. The central control is an RS polynomial block struc-
ture. This compensator keeps the stability by pole placement based on a linearized model
for the serial units given as a triangular matrix of transfer functions. The robust design con-
cerned shaping the closed-loop sensitivity functions and checking the robustness margins,
which engaged tolerance to non-linearities, unmodeled dynamics, output disturbances
(sensor noise) and interaction between units in series. Then, a second part of the control
scheme uses a recursive least square optimizing the filter Q to correct the disturbance model.
Thus, adaptive control alludes to updating online the disturbance model rather than the
control design. A filter estimated the input disturbance online. With this information, the
closed-loop performance improved tolerance to input disturbances. An excitation injected
through a Dirac delta function allowed abrupt disturbances to be modeled, then damped.

An S-type thermocouple was an element for temperature measurement in the plant
simulator. This type of sensor has high accuracy and stability for applications with inert
and oxidizing atmospheres. The closed-loop simulator included a dynamic thermal model
of the sensor. On the other hand, the actuators were not modeled in the system. It is
known that common undesired behaviors of control valves lead to closed-loop instability.
Actuator saturation is one critical issue. However, our control design improved the pole
placement by calibrating the sensitivity functions with compliance of robustness margins.
This approach resulted in smooth control input, preventing input saturation issues for solid
disturbances.

The control test consisted of two scenarios: the first one entered disturbances that mean
sharp transients or reference changes. The second entered multiple input disturbances
that stood for variations in the auxiliary services stream. The control goal was to hold
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the isothermal operation of the plant and, in an indirect form, the product concentration
set point, despite the disturbances. The MPC is a well-established technique in advanced
control for chemical processes. We confronted the adaptive controller effectiveness with that
of an MPC. The trial of the two control schemes for the case of multiple input disturbances
resulted in similar performance, but the MPC implies a more significant steady-state error.
Otherwise, both control laws show low but persistent oscillations, but the control effort is
more significant for the MPC, mainly in the second and third reactors. For the reference
change scenario, we conclude that the effectiveness of the adaptive single input-single
output control scheme surpassed that of the multivariable predictive controller, which
demonstrates the control law tolerance to interactions of the multivariable plant. In brief,
for the conducted tests, the controller parameters evolve significantly over time in both
case studies. Thus, the tests confirmed the relevance of estimating and updating the model
of unknown disturbances.
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Appendix A

Appendix A.1. Non-Linear Model

Ai =
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Appendix A.2. Linear Model

Ai =
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Ai-1 =


FR,i
VR,i

0 0

0 − FR,i
VR,i

0
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 (A5)
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 (A6)

Ci =

C1 0 0
0 C2 0
0 0 C3

 (A7)

Ei =

E1 0 0
0 E2 0
0 0 E3

 (A8)
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