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Abstract: The fine identification of vehicle color can assist in criminal investigation or intelligent
traffic management law enforcement. Since almost all vehicle-color datasets that are used to train
models are collected in good weather, the existing vehicle-color recognition algorithms typically show
poor performance for outdoor visual tasks. In this paper we construct a new Rain Vehicle Color-24
dataset by rain-image rendering using PS technology and a SyRaGAN algorithm based on the
Vehicle Color-24 dataset. The dataset contains a total of 40,300 rain images with 125 different rain
patterns, which can be used to train deep neural networks for specific vehicle-color recognition
tasks. Experiments show that the vehicle-color recognition algorithms trained on the new dataset
Rain Vehicle Color-24 improve accuracy to around 72% and 90% on rainy and sunny days, respectively.
The code is available at humingdi2005@github.com.

Keywords: rain rendering; deep convolutional neural network; rain datasets; identification of vehicle
color; single-image deraining algorithm
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1. Introduction

With the development of computer vision technology and hardware, vision algorithms
based on deep learning have achieved unprecedented performances, and are increasingly
applied to practical scenarios. For example, color recognition is applied in vehicle track-
ing [1–11]. In order to train vehicle-color recognition algorithms, scholars have constructed
multiple vehicle-color datasets. For example, the vehicle-color dataset by Chen et al. [1]
included eight color categories, and each image contained one vehicle. The dataset col-
lected by Jeong et al. [3] contains seven colors, and Tilakaratna et al. [12] expanded their
dataset to 13 categories. Hu et al. [4] constructed a new benchmark vehicle-color dataset,
Vehicle Color-24, with 24 colors, and proposed a novel vision color recognition (VCR)
method based on a Smooth Modulation Neural Network with Multi-Scale Feature Fusion
(SMNN-MSFF). The Vehicle Color-24 includes 10,091 images with a total of 31,232 vehicles,
and each image contains up to nine vehicles. These datasets and algorithms have been
very conducive to vehicle recognition tasks. However, the images of the above datasets
are mostly collected in good weather. On the other hand, criminal investigation or intelli-
gent traffic management law enforcement often encounter bad conditions, especially rainy
weather [5].

The raindrops are likely to turn into rain streaks due to their high density and fast
speed. Rain streaks will typically produce reflection or refraction, and often blur and
deform the images captured by cameras, which poses challenges for subsequent visual
tasks. Studying low- and high-level tasks has become a hot research direction [5]. Many
scholars have paid attention to the joint processing of low- and high-level tasks. The

Mathematics 2022, 10, 3210. https://doi.org/10.3390/math10173210 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10173210
https://doi.org/10.3390/math10173210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5568-5321
https://doi.org/10.3390/math10173210
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10173210?type=check_update&version=2


Mathematics 2022, 10, 3210 2 of 18

generalization in object detection is improved by embedding domain adaptation, image
restoration, style transfer, or other modules into object detection methods or few-shot learn-
ing mechanisms [6–9,13–16]. However, these works all require additional modules, which
will undoubtedly increase the burden of outdoor equipment. To solve this problem, a natu-
ral solution is to construct image datasets with rich diversity and in various environments
for specific tasks, which can be used to train models facing subsequent high-level tasks
without adding modules, while still improving generalization. However, it is very expen-
sive to collect such datasets in practice, so this paper constructs the Rain Vehicle Color-24
dataset by rain-image-rendering technology toward this end. It aims to address the specific
vehicle-color recognition task.

There exists much literature on the construction of rain image datasets. For example,
Garg and Nayar (2006) used a particle simulator to synthesize rain patterns, and then su-
perimposed the rain patterns with clean backgrounds to synthesize the rain image [17,18].
Hu et al. [19] and Tremblay et al. [20] rendered rain images based on the complex fusion of
background and rain layers. Data-driven synthetic rain images based on a generative adver-
sarial network (GAN) have recently received increasing attention [20–22]. Wang et al. [23]
constructed a large-scale real-rain image dataset, i.e., SPA-Data (spatial attentive data).
However, rain vehicle-color image datasets are rare.

Inspired by the above works, this paper constructs a Rain Vehicle Color-24 dataset by
rendering rain images using photoshop (PS) technology and the SyRaGAN algorithm [24].
The Rain Vehicle Color-24 dataset has a total of 40,300 rain images with 125 kinds of rain-
streak patterns, which is beneficial in improving the generalization of the deep neural
network models for the fine identification of vehicle colors. Using the benchmark datasets,
Rain100L and Rain Vehicle Color-24, we trained the current state-of-the-art (SOTA) algo-
rithm PReNet network [25] and the lightly weighted LDVS deraining network [26] to
obtain the models PReNet1, LDVS1, PReNet2 and LDVS2. After testing on both syn-
thetic and real data, these above models showed obvious advantages for the deraining
task. Vehicle-color recognition methods trained on the new datasets showed improved
performance for vehicle-color classifying in both sunny and rainy conditions.

The main contributions of this paper are as follows:

(1) This paper constructs the Rain Vehicle Color-24 dataset by rain-image-rendering
technology, in order to address the specific task of the vehicle-color fine recognition.
Both model-based and data-driven-based rendering are used: the former synthesizes
300 images by PS to form one subset in which clean background images are from
the Vehicle Color-24; the latter, i.e., the SyRaGAN network, synthesizes 8000 vehicle
images to form another subset in which clean background images are also from the
Vehicle Color-24;

(2) This dataset helps to increase the performance of vehicle-color recognition methods
on rainy days since the Rain Vehicle Color-24 dataset consists paired vehicle-color
rain images with various rain patterns;

(3) We improve the performances of existing algorithms for vehicle-color identification
in rainy conditions. Vehicle-color identification plays a key role in intelligent traffic
management and criminal investigation. However, existing algorithms are typically
trained on the datasets collected in good weather conditions, which suffer from poor
performance in poor weather conditions, such as rainy weather. In this paper, we
show that our newly constructed dataset is critically beneficial to the performances of
existing algorithms for vehicle-color identification in rainy conditions.

The rest of this paper is structured as follows: Section 2 reviews the related work;
Section 3 introduces construction of the Rain Vehicle Color-24; Section 4 compares complex
experimental results in detail; Section 5 concludes the paper.
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2. Related Work
2.1. Photoshop (PS) Technology

At present, PS is the main synthetic rain image technology. Garg and Nayar (2006)
synthesized various types of rain patterns, and then directly added them to the correspond-
ing clean background images to obtain paired rain images. There has been some work on
the simple stacking of background and rain layers. For example, Li et al. [17] proposed a
paired rain-image test set (Rain12) composed of one type of rain pattern and 12 background
images to synthesize 12 rain images. Yang et al. [18] constructed a dataset (Rain100H)
containing 1900 rain/clean image pairs, with 1800 image pairs for training and 100 image
pairs for testing. These datasets are often used as comparative datasets; however, the types
of rain streaks are relatively simple. There has also been research on the complex fusion
of background and rain layers. For example, Li et al. [27] used PS to add noise to form
rain patterns of different intensities and directions, and then synthesized the rain images
based on the screen blend model (SBM), producing the dataset DDC-Data. Wang et al. [28]
constructed a dataset QSMD-Data using synthetic rain images based on a screen-shrouded
model (SBM).

The process of PS technology is as follows (as shown in Figure 1):

Figure 1. Synthesis process of rain image using photoshop software [5].

(1) First, the rain-streak patterns under the conditions of two light sources with different
angles of illumination and different camera directions are constructed.

(2) Then, the rain images are synthesized according to the raindrop-modeling equation:

ωn = [n(n− 1)(n + 2)σ/(ρr3
0)]

1/2, (1)

r(t, θ, φ) = r0[1 + A2,0sin(ω2t)P2,0(θ) + A3,1sin(ω3t)cos(φ)P3,1(θ)], (2)

where r is the surface tension, ρ is the density of water, θ is the angle, φ is the azimuth,
r0 is the size of the raindrop, A2,0 and A3,1 are the amplitudes, and ωn is the frequency,
Pn,m(θ) is the Legendre function that describes the dependence of the shape on the angle
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θ for the mode (n,m). The parameters are usually set by empirical knowledge (Garg and
Nayar, 2006 [29]), and the rain pattern is synthesized by formulas (1) and (2).

(3) Finally, the synthesized rain pattern is directly added to the clean background image
to get the rain image.

2.2. Data-Driven Rain-Image-Rendering Technology

There are also semi-automatic methods to collect rain images. For example, Qian et al. [30]
collected a paired raindrop image dataset. Jin et al. [31] constructed the rain image dataset,
RaidaR, under a wide range of circumstances, using cameras on the roof. However, due
to the high cost of data collection, in practice, real paired rain images are not sufficient
to train models; therefore, most methods are trained with the help of rendering data.
Wei et al. [21] synthesized a rain image dataset by an unsupervised learning mechanism
with a constrained CycleGAN network, resulting in a dataset Rain200L with more types
of rain-streak patterns and more realistic visual effects. Wang et al. [22] used a Bayesian
model to construct a rain-image generation network to generate more than 120 rain-streak
patterns. Further exploration of more reasonable and accurate rain-image synthesis models
and the generation of more realistically rendered rain images are also important research
directions. In addition, the construction of a specific vehicle rain-image dataset for specific
vehicle target detection will be very much meaningful and badly needed.

2.3. Single-Image Rain-Removal Algorithm

Algorithms for single-image rain removal are mainly divided into two categories:
traditional model-driven method and data-driven deep neural network [5]. Model-driven
algorithms rely on the statistical analysis of rain streaks and background scenes, and use
priors on rain streaks and background layers to build a rain-removing model to iteratively
give explicit solutions. Chen et al. [32] constructed a generalized low-rank model, and
they distinguished the low-rank rain pattern as a separate layer from the background layer.
Lou et al. [33] proposed a highly discriminative sparse coding method to separate the rain
pattern from the background layer.

On the other hand, data-driven deep neural network algorithm for rain removal was
first proposed by Fu et al. [34]. The algorithm reconstructs a clean background layer after
removing the rain pattern from the high-frequency layer. Li et al. [27] divided the rain-
removal network into two stages: decomposition and combination. They then used the
residuals of the synthetic and original rain images to train the network to improve the rain-
removal performance. Ren et al. [25] proposed a simple and effective rain-removal network,
i.e., the Rain-Removal Network Baseline Progressive Recurrent Network (PReNet). Since
then, a variety of algorithms have been proposed, e.g., lightweight pyramid network
(LPNet) algorithm [35], local binary pattern conditional generative adversarial network
(LBP-CGAN) [36], lightweight single-image deraining algorithm incorporating visual
saliency (LDVS) [26]

Since PReNet is one of the simple and effective single-image rain-removal algorithms,
and LDVS is one of the lightweight algorithm, they will be trained on the Rain100L and
Rain Vehicle Color-24 benchmark rain datasets. Moreover, we combine the subsequent
target recognition algorithms to examine whether the dataset Rain Vehicle Color-24 can
improve the performance of the algorithm’s modeling of the low- and high-level joint task
and the low-level rain-removal task. The details are given in Sections 4.2 and 4.3.

2.4. Vehicle-Color Recognition Algorithms

Due to its practical significance, vehicle-color recognition has attracted much atten-
tion in computer vision. The literature mainly falls into two categories: manual feature-
based methods and emerging data-driven deep learning methods [1–11]. Among others,
Hu et al. [5] proposed a novel VCR method based on a Smooth Modulation Neural Network
with Multi-Scale Feature Fusion (SMNN-MSFF), which is then trained and evaluated on
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the dataset “Vehicle Color-24” with 24 vehicle-color classes. Vehicle Color-24 consists of
10, 091 vehicle images from a 100 h urban road surveillance video.

In this paper, we perform rain-image rendering using the Vehicle Color-24 dataset to
construct a specific task dataset for vehicle-color recognition. The objective is to improve
the performance of the low- and high-level joint tasks in vehicle-color fine recognition or
improve the generalization of vehicle-color fine recognition in bad weather.

3. Construction of Rain Vehicle Color-24
3.1. Vehicle Color-24

Firstly, 8000 vehicle images are selected from the existing Vehicle Color-24 as a clean
background image with resolution 1747 × 982. The dataset consists of 10,091 vehicle
images captured from urban road surveillance videos, with a total of 31,232 vehicles and
24 colors. The authors preprocessed the dataset, including lighting adjustment, dehazing,
etc. Samples from Vehicle Color-24 are shown in Figure 2.

(a) Red (b) Dark red (c) Pink (d) Orange

(e) Green (f) Yellow (g) Lemon yellow (h) blue

(i) Black (j) White (k) Earthy yellow (l) Champagne

(m) Brown (n) Dark gray (o) Grass green (p) Gray

(q) Silver gray (r) Dark orange (s) Cyan (t) Dark brown

(u) Red orange (v) Dark green (w) Dark blue (x) Purple

Figure 2. Samples from Vehicle Color-24.

3.2. Rendering by PS

We randomly selected 300 images from Vehicle Color-24, and used PS software to
generate rain patterns of different directions, sizes, and thicknesses by adjusting parameters
such as motion blur and color level. We then superimposed 120 kinds of rain streaks with
300 clean background images from the Vehicle Color-24 dataset to construct a subset of
Rain Vehicle Color-24. As a result, we have more types of rain patterns to ensure the
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diversity of rain images in the new dataset. The partial rain image samples of the rain
image subset are shown in Figure 3.

(a) simple (b) moderate (c) complex

Figure 3. Examples of subset by PS. The three images are rendered by PS from simple, moderately
complex, and complex scenes, respectively. We set the parameters’ noise, angle, distance, and
Gaussian blur as (40%,−20, 50, 0.5), (106%,−87, 48, 0.3), (146%, 53, 33, 0.5), respectively, for
rendering the three rain images.

Figure 3 shows sample instances of this subset, which includes three kinds of images.
Every image is formed by a different rain-streak pattern imposed onto a clean vehicle image
from a different scene. Three scenes are classified into simple scenes (a single vehicle in an
image taken under a clear sky), moderately complex scenes (many vehicles in an image
taken under a clear sky), and complex scenes (many vehicles in an image taken under gray
skies), respectively.

3.3. Rendering by the SyRaGAN Algorithm

In order to further enrich the types of rain streaks, this paper uses the SyRaGAN
algorithm [24] to render rain patterns on the Vehicle Color-24 dataset to construct another
subset. SyRaGAN is inspired by the mapping network used in the latest I2I (image-
to-Image) translation method, which maps the random noise space to the rain-pattern
representation space to generate diverse rain patterns. SyRaGAN consists of the feature
map network M, encoder network E, two generators G, and two discriminators D. The
network input consists of the clean background image xc and the rain image xr to produce
the synthesized rain images xsr1 and xsr2 as output, while Sz and Sr are the extracted rain
patterns from the network (see Figure 4).

The rain-image rendering process is as follows. First, the clean background image
and the rain image are respectively input into the SyRaGAN network, and the rain noise is
extracted by the mapping network M to produce various rain styles. Second, rain streak is
added to the clean background image to generate the rain image. Finally, the generated
images are discriminated using the discriminator D. By this way, the network is optimized
to generate rain images with various styles. For each image, five kinds of rain images with
different directions, sizes, and thicknesses can be correspondingly generated.

To construct a dataset with diversity as wide as possible, we sampled one kind of
clean background image with a single vehicle in a image named as “simple scene”, and
rendered it into five rain images with five rain-streak patterns (Figure 5). Second, we
sampled one kind of clean background sample with many vehicles in a image named
as “medium scene”, and rendered it into five different rain images with five rain-streak
patterns (Figure 6). Third, we sampled one kind of many vehicles under gray skies, which
we named as “complex scene”, and rendered it into five different rain images with five
rain-streak patterns (Figure 7). In processes such as those from the clean vehicle dataset
Vehicle Color-24, 8000 image samples are fed into SyRaGAN to obtain 40,000 vehicle rain-
image samples. Combined with the rain data subset generated by PS technology, 40,300 rain
images are finally obtained, with a resolution of 512× 384.
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Figure 4. SyRaGAN network structure overview [24]. M is the feature extracting module, E is the
encoder, and D are the discriminators. The inputs are clean background image xc and rain image xr,
and the outputs are the synthesizing rain images xsr1, . . . , xsr2. Further, Sz, Sr are the extracted rain
patterns from the network.

(a) Original (b) Type 1 (c) Type 2

(d) Type 3 (e) Type 4 (f) Type 5

Figure 5. Rendered rain images with single vehicle. (a) Original clean image; (b–f) rendered rain
images with 5 kinds of different rain-streak patterns.

(a) Original (b) Type 1 (c) Type 2

(d) Type 3 (e) Type 4 (f) Type 5

Figure 6. Rendered rain images with many vehicles. (a) Original clean image; (b–f) rendered rain
images with 5 kinds of different rain-streak patterns.
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(a) Original (b) Type 1 (c) Type 2

(d) Type 3 (e) Type 4 (f) Type 5

Figure 7. Rendered rain vehicle images under gray skies (the first image is original clean background
image, and the rest are rendered rain images with five different types).

To summarize, the previous dataset Vehicle Color-24 was labeled according to 24 stan-
dard vehicle colors, but lacked corresponding rain images. This paper leverages SyRaGAN
and PS technologies to constitute Rain Vehicle Color-24. Some samples are illustrated
in Figure 8.

(a) Red (b) Dark red (c) Pink (d) Orange

(e) Green (f) Yellow (g) Lemon yellow (h) Blue

(i) Black (j) White (k) Earthy yellow (l) Champagne

(m) Brown (n) Dark gray (o) Grass green (p) Gray

(q) Silver gray (r) Dark orange (s) Cyan (t) Dark brown

(u) Red orange (v) Dark green (w) Dark blue (x) Purple

Figure 8. Illustrations of some samples from Rain Vehicle Color-24.
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4. Experimental Results

In this paper we used the metrics PSNR and SSIM to evaluate the quality of the
recovered images. The formulas [37] are

MSE =
1

H ×W

H

∑
i=1

W

∑
j=1

(X(i, j)−Y(i, j))2, (3)

PSNR = 10log10
(2n − 1)2

MSE
, (4)

SSIM(X, Y) = ( 2uXuY+C1
uX2+uY

2+C1
) ∗ ( 2σXσY+C2

σX2+σY
2+C2

) ∗ ( σXY+C3
σXσY+C3

). (5)

4.1. Experimental Setup

In this paper, we first used Rain100L and Rain Vehicle Color-24 as benchmark datasets
to train the two deraining networks PReNet [25] and LDVS [26], to obtain the deraining
network models PReNet1, LDVS1, PReNet2, and LDVS2. We then tested them on the
synthetic and real rain images. In addition, we used Faster-RCNN [38] to detect objects for
vehicle-color classification after deraining by PReNet1, LDVS1, PReNet2, and LDVS2. The
experimental results showed that deraining performance is improved after being trained
by the Rain Vehicle Color-24, and the performance of Faster-RCNN in subsequent vehicle-
color fine recognition processes is also improved. All mean average precisions (mAPs) of
vehicle-color classification are improved when corresponding specific vehicle recognition
deep neural networks are trained on Rain Vehicle Color-24.

4.2. PReNet Model Trained on Rain100L and Rain Vehicle Color-24
4.2.1. PReNet Network

Ren et al. [25] proposed a better and simpler baseline deraining network with six
recurrent modules. Specifically, by repeatedly unfolding a shallow ResNet, progressive
ResNet(PRN) was proposed to take advantage of recursive computation. In this paper,
we introduce a recurrent-layer LSTM module to extract the dependencies of deep features
across stages, forming the final framework, which we refer to as progressive recurrent
network (PReNet). As for loss functions, single-MSE or negative-SSIM losses are sufficient
for training PRN and PReNet. The illustration of PReNet is shown in Figure 9. As shown
in this paper, the PReNet is one of representative SOTA methods due to its simplicity,
efficiency and effectiveness.

Figure 9. Illustration of PReNet [25]. Input O is the rain image, output BT is the clean background
image of the T stage output.

4.2.2. Comparison of Synthetic Rain Images

We used the training subset of the Rain 100L and Rain Vehicle Color-24 datasets to
train the PReNet network, and then we obtained the deraining network models PReNet1
and PReNet2. Finally, we tested the rain-removal performance of the two models on the
Rain100L test set. The results are given in Figure 10 and Table 1.
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(a) The rain image (b) Clean background (c) PReNet1 (d) PReNet2

(e) The rain image (f) Clean background (g) PReNet1 (h) PReNet2

Figure 10. Test results of PReNet1 and PReNet2 on two synthetic rain images from the Rain100L.
PReNet1 and PReNet2 represent the different models that are trained on Rain100L and Rain Vehicle
Color-24 training subsets, respectively.

We tested the images sampled from the synthetic Rain100L test subset with PReNet1
trained on Rain100L and PReNet2 trained on the Rain Vehicle Color-24. The test results
are shown in Figure 10. As can be seen from Figure 10, the PReNet1 model has a better
visual effect than the PReNet2 model with further supporting results given in Table 1.
The PReNet1 outperforms PReNet2 on the PSNR and the SSIM have been increased by
margins 0.23 and 0.02, respectively. The reason why PReNet1 performs better is because
the test and training images used by PReNet1 are identically distributed, with the two
coming from the same dataset Rain100L. On the other hand, the rain-removal effect of
PReNet2 trained with the Rain Vehicle color-24 is slightly worse than the former, since the
test images derained by PReNet2 are not identically distributed with the training images.
Most of the rain streaks have been removed and the background image can be restored.
This means that when there is no domain gap, the test effect is better; furthermore, the
latter faces the gap between the test and training data and still maintains the performance
effect. In other words, the experiments show the better quality of Rain Vehicle Color-24.

Figure 11 shows the visual effects of the test images from Rain Vehicle color-24 and
the testing models PReNet1 and PReNet2. Figure 11 shows that they are competitive
enough with PReNet1, since the distributions of the training and test sets are the same, and
Rain Vehicle Color-24 has more varying rain patterns. The results are given in Table 1.

(a) Synthetic image (b) Clean background (c) PReNet1 (d) PReNet2

(e) Synthetic image (f) Clean background (g) PReNet1 (h) PReNet2

Figure 11. Test results on synthetic rain images from Rain Vehicle Color-24. PReNet1 and PReNet2
represent the different models, which are trained on the training subsets of Rain100L and Rain Vehicle
Color-24, respectively.
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Table 1. Comparing PSNR , SSIM of the PReNet1 and the PReNet2 on Rain100L, Rain Vehicle Color-
24, respectively.

Datasets

Metrics Models
PReNet1 PReNet2

Rain100L
PSNR SSIM PSNR SSIM
32.67 0.965 32.44 0.945

Rain Vehicle Color-24
PSNR SSIM PSNR SSIM
31.62 0.955 33.51 0.973

4.2.3. Comparison of Real Rain Images

To compare the generalization of the rain-removal methods, the PReNet models, which
are trained on Rain Vehicle Color-24 and Rain100L, are tested on the real-rain images from
the real-world rain image dataset. Figures 12 and 13 show the two rain-removal models do
not work; however, PReNet2 is still better than PReNet1.

(a) Real-rain image (b) PReNet1 (c) PReNet2

Figure 12. Test result on real-rain image from Real Data. PReNet1 and PReNet2 represent the
different models trained on the Rain100L and the Rain Vehicle Color-24 training subsets, respectively.

(a) Real-rain image (b) PReNet1 (c) PReNet2

(d) Real-rain image (e) PReNet1 (f) PReNet2

Figure 13. Test results on two real-rain images containing vehicles from RIS. PReNet1 and PReNet2
represent the different models trained on Rain100L and Rain Vehicle Color-24, respectively.

4.2.4. Comparison of Recognition Effects of Low- and High-Level Joint Tasks

In this section, we divided Vehicle Color-24 into training, verification, and test sets at
a ratio of 8:1:1. We fixed the confidence threshold at 0.5. We calculated the results using the
relevant confidence code under Python.

To investigate the detection results of the vehicle-color fine recognization of Faster RCNN,
PReNet1+Faster R CNN, and PReNet2+Faster R CNN [38], we first used Faster RCNN for
target detection without deraining preprocessing; then, we used Faster R CNN for target
detection after deraining by PReNet1 or PReNet2. Figure 14 shows that Faster R CNN rec-
ognizes the vehicle color on rain images with lower confidence; meanwhile, Faster R CNN
recognizes the vehicle color on derained rain images with higher confidence. Furthermore,
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PReNet2+F R CNN performs better than PReNet1+F R CNN, since the former is trained
on Rain Vehicle Color-24 with more various rain streaks and a much bigger data size.

From Figure 14, Faster R CNN, PReNet1+Faster R CNN, and PReNet2+Faster R CNN
achieve around 70%, 70%, and 90% accuracy, respectively, for white-color-vehicle target
detection. Therefore, the Rain Vehicle Color-24 dataset we proposed in this paper provides
a better guarantee for visual tasks, such as vehicle-color target detection.

(a) F R CNN (0.72) (b) PReNet1+F R CNN (0.85) (c) PReNet2+F R CNN (0.89)

(d) F R CNN (0.74) (e) PReNet1+F RCNN (0.86) (f) PReNet2+F R CNN (0.90)

Figure 14. Objective detection test results of Faster R CNN, PReNet1/2+Faster R CNN on two syn-
thetic rain images with vehicles from the Rain Vehicle Color-24 dataset. Each subtitle is corresponding
object detection method and the corresponding confidence value in the parentheses.

4.3. LDVS Model Tested on Rain100L and Rain Vehicle Color-24
4.3.1. LDVS Network

The network framework of LDVS [26] is shown in Figure 15, which is mainly com-
posed of dilated convolution and lightweight attention modules. In the main network,
there is an encoder with five feature extraction modules and a convolution operation and a
decoder, where each feature extraction module concatenates a dilated convolution with
a lightweight attention module CBAM. The rain image O is inputted into the network to
extract the feature maps, and the output is the rain pattern R and the clean background
image B. The clean image is equal to the input rain image O minus the feature map R. The
loss function L is defined as:

Ł = SSIM(B̂, B) + α||B̂− B||2. (6)

Figure 15. Illustration of LDVS [26].

4.3.2. Comparison on Synthetic Rain Image

Without loss of generality, we trained the LDVS1 and LDVS2 models obtained
through the LDVS method on Rain100L and Rain Vehicle Color-24, respectively.
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Figures 16 and 17 show the tested synthetic rain images and the comparison of rain-
removal results between the LDVS1 and LDVS2 models.

Figure 17 shows that LDVS performs better in rain-removal when the test images
are taken from the Rain Vehicle Color-24 dataset. There is almost no obvious residual rain
streaks on images c or f , and the background is relatively clear. Table 2 gives the testing
results performed on Rain100L, showing that the performance of LDVS2 is similar to
LDVS1. When testing on the Rain Vehicle Color-24 dataset, the performance of LDVS2 is
better than LDVS1.

(a) Rain image (b) Clean background (c) After detaining (LDVS1)

(d) Rain image (e) Clean background (f) After detaining (LDVS1)

Figure 16. Test results of LDVS1 on synthetic rain images from Rain100L.

(a) Original, simple (b) GT, simple (c) Derained, simple

(d) Original, medium (e) GT, medium (f) Derained, medium

(g) Original, complex (h) GT, complex (i) Derained, complex

Figure 17. Test results of LDVS2 on rain image from Rain Vehicle Color-24 test subset. The first
column is the original rainy vehicle image, the second is the clean background image (GT), and the
third is the one after LDVS2. The image in the first row is in a simple scene, the one in the second
row is in a medium complexity scene, and the one in the last row is in a complex scene.
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Table 2. Comparing PSNR and SSIM of test effect on Rain Vehicle Color-24 from the LDVS1 and
the LDVS2.

Datasets

Metrics Models
LDVS1 LDVS2

Rain100L
PSNR SSIM PSNR SSIM
33.56 0.959 33.12 0.960

Rain Vehicle Color-24
PSNR SSIM PSNR SSIM
31.23 0.951 34.34 0.960

4.3.3. Comparison of Real Rain Images

To further test the generalization of LDVS, the LDVS1 model pre-trained on the Rain
100L dataset and the LDVS2 model pre-trained on the Rain Vehicle Color-24 dataset were
used to test rain removal on real-data images, and the results are shown in Figure 18. The
qualitative results show that the LDVS2 trained on Rain Vehicle Color-24 generalization
performs better than the LDVS1 trained on Rain100L.

(a) Rain image (b) After LDVS1 (c) After LDVS2

Figure 18. Test results of LDVS on real images from Real Data. The first column is the original real
rainy image, the second is after LDVS1, and the third is after LDVS2.

Figure 18 shows that LDVS1 or LDVS2 works well for the rain removal effect of the
synthetic rain images. On the other hand, when working in the real world, the effect is less
ideal, and there are a large number of rain streak residues.

4.4. Object Detection Models Trained by Vehicle Color-24 and Rain Vehicle Color-24

Four models, SSD1, Faster R CNN1, SSD2, and Faster R CNN2 are trained on Vehicle
Color-24 and Rain Vehicle Color-24, and all models are then tested on the Vehicle Color-
24 and Rain Vehicle Color-24 test sets. The test results are shown in Figure 19. SSD1
and Faster R CNN1 hardly recognize the color of vehicles on rainy days, while SSD2
and Faster R CNN2 can recognize any vehicle color in the rain images. For example, in
Figure 19e, white vehicle detection achieves 94% accuracy after SSD2, and in Figure 19f,
white vehicle detection achieves 100% accuracy after Faster R CNN2. Testing on the
Vehicle Color-24 test subset, the results of the models are almost identical.

Table 3 shows the average accuracy of each category of the object detection algorithms
when they test on the Rain Vehicle Color-24 dataset and are trained on Vehicle Color-24.
Table 4 shows the average accuracy of each category of object detection algorithms when
they test on the Rain Vehicle Color-24 test set and are trained on Rain Vehicle Color-24. It
is noted that almost all color is classified more accurately by the model trained on the
Rain Vehicle Color-24.
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(a) Rain Image (b) SSD1(0) (c) Faster R CNN1(0)

(d) Rain image (e) SSD2(W0.94) (f) Faster R CNN2(w1.0)

Figure 19. Object detection test results on rain images from Rain Vehicle Color-24. (a,d) Rain
image; (b,c) object detection test result with SSD1 and Faster R CNN1, which are trained on
Vehicle Color-24; (e,f) object detection test result with SSD2 and Faster R CNN2, which are trained
on the Rain Vehicle Color-24.

Table 3. Comparison of the average accuracy of each category of object detection algorithms on
Vehicle Color-24 and Rain Vehicle Color-24 test sets. All object detection algorithms are trained on
Vehicle Color-24.

Category SMNN-MSFF1 Faster R CNN1 SSD1

VC-24 RVC-24 VC-24 RVC-24 VC-24 RVC-24

White 0.98 0.64 0.84 0.80 0.96 0.74
Black 0.97 0.52 0.82 0.31 0.95 0.38

Orange 0.98 0.85 0.81 0.71 0.96 0.81
Silver gray 0.96 0.30 0.77 0.44 0.91 0.86

Grass
green 0.98 0.82 0.70 0.61 0.96 0.96

Dark gray 0.94 0.30 0.66 0.17 0.84 0.29
Dark red 0.98 0.63 0.78 0.24 0.93 0.44

Gray 0.89 0.06 0.18 0.13 0.54 0.13
Red 0.96 0.65 0.60 0.20 0.88 0.41

Cyan 0.97 0.82 0.75 0.33 0.92 0.46
Champagne 0.97 0.17 0.63 0.29 0.81 0.25
Dark blue 0.96 0.39 0.66 0.12 0.86 0.36

Blue 0.97 0.59 0.73 0.10 0.87 0.69
Dark

brown 0.97 0.09 0.45 0.02 0.71 0.11
Brown 0.88 0.36 0.30 0.13 0.58 0.27
Yellow 0.97 0.66 0.51 0.13 0.79 0.18
Lemon
yellow 0.99 0.88 0.87 0.84 0.93 0.70
Dark

orange 0.96 0.67 0.65 0.18 0.78 0.13

Dark green 0.94 0.28 0.38 0.08 0.58 0.00
Red

orange 0.99 0.33 0.24 0.00 0.61 0.00

Earthy
yellow 0.97 0.50 0.62 0.50 0.74 0.10

Green 0.93 0.13 0.61 0.33 0.74 0.00
Pink 0.94 0.66 0.50 0.33 0.71 0.17

Purple 0.80 0.00 0.00 0.00 0.19 0.00
mAP 94.96% 47.22% 58.59% 29.19% 78.13% 30.23%
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Table 4. Comparison of the average accuracy of each category of object detection algorithms on the
Vehicle Color-24 and Rain Vehicle Color-24 test sets. All object detection algorithms are trained on
Rain Vehicle Color-24.

Category SMNN-MSFF2 Faster R CNN2 SSD2

VC-24 RVC-24 VC-24 RVC-24 VC-24 RVC-24

White 0.62 0.60 0.94 0.96 0.94 0.95
Black 0.61 0.69 0.82 0.69 0.92 0.93

Orange 0.69 0.77 0.92 0.90 0.95 0.95
Silver gray 0.48 0.31 0.44 0.81 0.85 0.86

Grass
green 0.60 0.82 0.88 0.93 0.94 0.96

Dark gray 0.47 0.43 0.57 0.69 0.71 0.67
Dark red 0.36 0.48 0.73 0.79 0.83 0.88

Gray 0.18 0.31 0.12 0.41 0.35 0.31
Red 0.37 0.44 0.62 0.56 0.79 0.76

Cyan 0.42 0.62 0.71 0.82 0.87 0.87
Champagne 0.33 0.28 0.46 0.74 0.65 0.73
Dark blue 0.60 0.52 0.66 0.79 0.78 0.75

Blue 0.29 0.56 0.44 0.69 0.87 0.69
Dark

brown 0.38 0.35 0.45 0.18 0.60 0.47
Brown 0.47 0.35 0.34 0.10 0.33 0.34
Yellow 0.51 0.35 0.94 0.83 0.72 0.92
Lemon
yellow 0.32 0.57 0.95 0.99 1.00 0.75
Dark

orange 0.41 0.32 0.52 0.28 0.11 0.47

Dark green 0.62 0.59 0.10 0.18 0.36 0.34
Red

orange 0.52 0.38 0.66 0.07 0.29 0.52

Earthy
yellow 1.00 0.68 0.23 0.45 0.78 0.28

Green 0.59 0.18 0.47 0.85 0.55 0.97
Pink 0.03 0.84 0.02 0.54 1.00 0.52

Purple 0.99 0.22 0.07 0.03 0.00 0.06
mAP 49.14% 48.58% 55.13% 60.65% 70.84% 66.33%

5. Conclusions

In this paper, the Rain Vehicle Color-24 dataset is constructed by rendering rain images
based on PS technology and the SyRaGAN algorithm. The dataset has a total of 40,300 rain
images, including 125 rain patterns. The aim of constructing Rain Vehicle Color-24 is to
train data-driven deep learning neural networks for specific vehicle color recognition
tasks. Specifically, Rain Vehicle Color-24 consists of two subsets: one is 300 rain images
rendered by Photoshop from the Rain Vehicle Color-24 database, and the other is 40,000 rain
vehicle images rendered by the SyRaGAN network from another 8000 vehicle images in
Vehicle Color-24. Extensive experiments show that, when PReNet and LDVS are trained
on the new dataset, Rain Vehicle Color-24, both deraining task and subsequent target
recognition algorithms after deraining are improved. More specifically, when the model
is designed for the task of fine recognition of vehicle color, the corresponding recognition
accuracy is improved for good or rainy weather conditions, after the model is fine-tuned
on Rain Vehicle Color-24,

For future work, we will study low- and high-level joint tasks, based on the above work.
We will focus on vehicle object detection and recognition in various adverse conditions
such as bad weather. We will also consider fusing fuzzy sets, rough sets, overlap functions
(see [39–42]) to expand the method of this paper. These studies will be critically beneficial
in fields such as criminal investigation or traffic management law enforcement.
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