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Abstract: This paper studies wave propagation in a new structure composed of three layers. The
upper and lower layers are made of a piezoelectromagnetic material reinforced with graphene
platelets (GPLs) that may be uniformly disseminated or continuously varied throughout the thickness
of the layers. To produce a lighter plate, the core layer is assumed to comprise honeycomb structures.
The smart nanocomposite plate is exposed to external electric and magnetic potentials. The effective
elastic modulus of the face layers of the sandwich plate is evaluated based on Halpin-Tsai model.
Whereas, the mixture rule is utilized to calculate mass density, Poisson’s ratio and electric and
magnetic properties of both upper and lower layers of the sandwich plate. The governing motion
equations of the lightweight sandwich plate are obtained by refined higher-order shear deformation
plate theory and Hamilton’s principle. These equations are solved analytically to obtain wave
dispersion relations. Impacts of the geometry of plates, GPLs weight fraction, GPLs distribution
patterns, piezoelectric properties, external electric voltage and external magnetic potential on the
wave frequency and phase velocity of the GPLs lightweight plates are discussed in detail.

Keywords: piezoelectromagnetic materials; wave propagation; honeycomb core; functionally graded
graphene platelets

MSC: 74J05

1. Introduction

Graphene possesses extraordinary electrical, mechanical and thermal properties; in ad-
dition, it has low mass density [1–3]. As is well known, graphene is one-atom-thick and has
two-dimensional layers of carbon. Graphene represents a good reinforcement for polymer-,
metal- and ceramic-matrix composite structures for improving their piezoelectric properties,
mechanical properties and stiffness. Experimental investigations reveal that remarkable
improvements in the physical and mechanical features of polymer [4–6] and aluminum [7,8]
have been developed. As a result, numerous theoretical investigations about the properties
and behavior of nanocomposite structures reinforced with graphene have been introduced
in the literature. Static deflection and buckling analyses of nanocomposite GPLs/polymer
simply-supported plates have been illustrated by Song et al. [9] employing the first-order
shear deformation theory. In this study, governing equations are solved analytically based
on Navier solution technique. On the other hand, Song et al. [10] investigated the free and
forced vibrational responses of functionally graded (FG) GPLs/polymer plates based on the
first-order shear deformation plate theory and used Navier-type solutions to solve the equa-
tions of motion. Critical buckling analysis of FG multilayer GPLs-reinforced nanoshells has
been examined by Sahmani and Aghdam [11] employing a refined hyperbolic shear defor-
mation shell theory and the nonlocal strain gradient elasticity theory. Sobhy [12] presented
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the mechanical buckling and free vibration of FG graphene/aluminum sandwich curved
nanobeams with homogeneous ceramic core resting on an elastic substrate and subjected to
an axial magnetic field and axial compressive external loads. Based on quasi-3D shear defor-
mation theory and the modified couple stress theory, the natural frequency and mechanical
buckling of FG multilayer GPLs-reinforced microplates were analyzed by Thai et al. [13].
Al Mukahal and Sobhy [14] introduced a new shear and normal deformations theory to
study the wave dispersion and natural frequency of FG GPLs/aluminum-sandwich curved
beams with auxetic honeycomb structures resting on a viscoelastic foundation and exposed
to thermal and moisture environments. Wang and Zhang [15] considered the temperature-
dependent material properties for GPLs-reinforced porous beams for the first time. They
studied the thermal buckling and postbuckling behaviors of metal foam-beams reinforced
with GPLs based on a high-order shear deformation theory. Additional recent studies in
the literature illustrated the bending, buckling, wave propagation and free vibration of
GPLs-reinforced nanocomposite structures, such as Sobhy [16,17], Allam et al. [18], Sobhy
and Al Mukahal [19], Sobhy et al. [20], Ghandourah et al. [21], Liu et al. [22], etc.

Structures made of piezoelectromagnetic materials have been increasingly employed
in various engineering devices, particularly in intelligent or smart systems as smart sensors,
damage detectors, etc. [23]. Recently, harvesting biomechanical energy has increasingly
attracted interest for achieving autonomy in health monitoring applications. Biomechanical
energy can be converted into electrical energy by piezoelectric and piezoelectromagnetic
materials [24]. The hybrid piezoelectromagnetic materials have performed much better
than standalone harvesting units, and they generate about 30% more voltage than the
individual piezoelectric material [25]. The experimental studies reveal that graphene has
piezoelectro-magnetic effects. Xu et al. [26] experimentally observed a positive piezocon-
ductive effect in suspended graphene with a varying numbers of layers by applying in
situ stress with a scanning probe, and they found that this influences largely depended on
layer numbers. Abolhasani et al. [27] experimentally prepared piezoelectric (PVDF) com-
posite nanofibers reinforced with graphene and studied the polymorphism, crystallinity,
electrical outputs and morphology of these composites. They found that by adding a
few amount of graphene (0.1%wt) to PVDF, the open-circuit voltage and F(β) signifi-
cantly increased. Several experimental investigations have developed smart piezoelectric
composites reinforced with graphene and revealed that these structures are useful for
sensing technology and flexible electronics [28] and obviously reinforced the piezoelectric
mechanical, pyroelectricity and dielectric properties of the PVDF [29–31]. On the other
hand, the properties of the magnetic graphene have been studied by many authors [32–34].
Levy et al. [35] found that the graphene nanobubbles exhibit pseudo-magnetic fields greater
than 300 Tesla. The linear and nonlinear vibrations of functionally gradient piezoelectric
composite microplates reinforced with GPLs resting on Winkler elastic foundation have
been illustrated by Mao et al. [36] utilizing the first-order shear deformation plate theory
and the differential quadrature method. Kundalwal et al. [37] investigated the electric
potential and deflection of cylindrical graphene reinforced nanocomposite cantilevered
nanowire using exact solutions and finite element models. Wang et al. [38] employed
the differential quadrature method to analyze the buckling and postbuckling of dielectric
composite beams reinforced with GPLs. In addition, Wang et al. [39] demonstrated the
nonlinear static bending of dielectric nanocomposite plates strengthened with FG GPLs
by employing the first-order shear deformation plate theory and differential quadrature
method. There are other investigations in the literature about the behavior of piezoelectric-
reinforced structures [40–42]. However, no attempt has been introduced in the literature
about piezoelectromagnetic-reinforced GPLs.

Cellular solids such as honeycomb structures exceedingly appear in nature and are
commonly used in considerably scaled engineering fields. Honeycomb cells are commonly
arranged in a hexagonal form as a bee’s honeycomb [43]. They can also be rhombic, square
or triangular. Honeycombs may be formed from metal, polymer and ceramic cells, and
every pattern posses specific applications. Four main application fields for honeycomb



Mathematics 2022, 10, 3207 3 of 22

structures are developed [43]: thermal insulation, energy absorption, marine buoyancy
and structural applications. Furthermore, metal and polymer honeycomb structures are
used in advanced aerospace devices. On the other hand, ceramic honeycombs are used
for high-temperature conditions as catalyst carriers and heat exchangers [43]. Based on
the classical, first-order and third-order plate theories, the dynamic response of sandwich
panels with honeycomb core was investigated by Yu and Cleghorn [44]. Cong et al. [45]
studied the nonlinear dynamic analysis of sandwich doubly-curved shells with honeycomb
core exposed to mechanical and damping loads as well as blast. Li et al. [46] demonstrated
the nonlinear forced vibration of sandwich honeycomb plates with clamped boundary con-
ditions using the homotopy analysis method. Based on the third-order shear deformation
plate theory, Li and Zhu [47] analyzed the geometrically nonlinear vibration of a simply-
supported symmetric honeycomb sandwich panel subjected to the effect of water on a one
surface by employing the homotopy method. Vibration of simply supported honeycomb
sandwich doubly curved shallow shells was examined by Zhang and Li [48]. Sobhy [49]
elucidated the mechanical buckling response of honeycomb sandwich functionally graded
piezoelectric plates under various boundary conditions based on a new four-unknown
theory. Sobhy and Abazid [50] studied the mechanical and thermal buckling of honeycomb
sandwich plates with GPLs-reinforced face layers. In addition to the above studies, several
investigations about the honeycomb sandwich structures can also be found in the open
literature (see, e.g., [51–56]).

So far, no previous study has been conducted on the behavior of the piezoelectromag-
netic plate reinforced with GPLs, which has important applications on smart devices and
bionic machines. Thus, the current paper studies the wave propagation in the honeycomb
sandwich piezoelectromagnetic plate reinforced with GPLs subjected to external electric
and magnetic potentials. A refined shear deformation plate theory is presented to formu-
late the displacement field. The graphene is uniformly distributed or functionally graded
through the thickness of the upper and lower sandwich layers. The Hamilton’s principle is
used to establish the the governing motion equations of the smart nanocomposite sandwich
plate. The wave frequency and phase velocity are obtained by solving the motion equations
analytically. Effects of several parameters on the wave frequency and phase velocity of the
GPLs lightweight smart plates are comprehensively discussed.

2. Mathematical Formulation

Consider a three-layered rectangular sandwich plate with nanocomposite GPLs-reinforced
piezoelectromagnetic face layers and a honeycomb core possessing length a, width b and total
thickness h, as depicted in Figure 1. The face layers of the sandwich plate are formed of N
sheets, and each sheet is made of a piezoelectromagnetic matrix reinforced with GPLs that are
uniformly distributed throughout the thickness of each sheet. To describe the displacement
field, a refined four-unknown shear deformation plate theory [57,58] is presented here based
on Shimpi’s assumptions [57]. Therefore, the displacement field is given as follows:

U1

U2

U3

 =


u1(x1, x2, t)

u2(x1, x2, t)

ub
3(x1, x2, t) + us

3(x1, x2, t)

− x3


ub

3,1

ub
3,2

0

− f (x3)


us

3,1

us
3,2

0

 (1)

where U1, U2 and U3 are the displacement components along x1-, x2- and x3-axes, respec-
tively; u1(x1, x2, t) and u2(x1, x2, t) are the displacements of the mid-plane in the direction
of x1- and x2-axes, respectively; ub

3(x1, x2) and us
3(x1, x2) are the bending and shear dis-

placements [57]. Note that the infinitesimal deformations of the plates are described
according to the Cartesian coordinates system (x1, x2, x3). Furthermore, Y,i = ∂Y/∂xi and
f (x3) = x3 − g(x3). The configuration of the shear stress through the thickness of the plate
significantly depends on shape function g(x3) that can be declared in the present analysis
as follows [14,49,59]:

g(x3) =
x3

1 + (x3/h)2 −
5
8

x3
3

h2 . (2)
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Figure 1. The scheme of three-layered rectangular sandwich plate with nanocomposite FG GPLs-
reinforced piezoelectromagnetic with a honeycomb core.

According to the shape function (2), the transverse shear stress takes a parabolic form
through the thickness of the plate. Therefore, no shear correction factors are needed because
a correct representation of the transverse shear strain is provided. Moreover, it satisfies
the traction-free boundary conditions at the plate faces. In addition, the above shape
function (2) predicts accurate results as investigated in [14,49,59].

Based on the displacement field (1), the non-zero components of the strains can be
derived as follows:


ε1
ε2
ε6

 =


γ
(0)
1

γ
(0)
2

γ
(0)
6

+ x3


γ
(1)
1

γ
(1)
2

γ
(1)
6

+ f (z)


γ
(2)
1

γ
(2)
2

γ
(2)
6

,

ε4

ε5

 = g′

γ
(2)
4

γ
(2)
5

, g′ =
dg
dx3

,

(3)

where 
γ
(0)
1

γ
(0)
2

γ
(0)
6

 =


u1,1

u2,2

u1,2 + u2,1

,


γ
(1)
1

γ
(1)
2

γ
(1)
6

 = −


ub

3,11

ub
3,22

2ub
3,12

,


γ
(2)
1

γ
(2)
2

γ
(2)
6

 = −


us

3,11

us
3,22

2us
3,12

,

γ
(2)
4

γ
(2)
5

 =

us
3,2

us
3,1

.

(4)

The electric Φ̂ and magnetic Ψ̂ potentials are presumed as a combination of linear and
cosine variations as follows [60,61]:
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Φ̂(j)(x1, x2, x3, t) = −Φ(x1, x2, t) cos
(

βZ(j)
)
+

2Z(j)Φ̄0

h f
,

Ψ̂(j)(x1, x2, x3, t) = −Ψ(x1, x2, t) cos
(

βZ(j)
)
+

2Z(j)Ψ̄0

h f
, j = 1, 3,

(5)

where j indicates the layer number; β = π/h f , Φ(x1, x2) and Ψ(x1, x2) represent the spatial
variation of the electric and magnetic potentials; Φ̄0 and Ψ̄0 stand for the external electric
and magnetic potentials, respectively, and

Z(1) = x3 +
hc

2
+

h f

2
, Z(3) = x3 −

hc

2
−

h f

2
, (6)

where h f and hc are the thickness of the face layers and core, respectively. The electric E
and magneticH fields can be defined as [60,61]:

E (j) = −∇Φ̂(j), H(j) = −∇Ψ̂(j). (7)

Substituting Equation (5) into Equation (7) gives the electric and magnetic fields
as follows: 

E (j)
1

E (j)
2

E (j)
3

 =


Φ,1 cos

(
βZ(j)

)
Φ,2 cos

(
βZ(j)

)
−βΦ sin

(
βZ(j)

)
− 2Φ̄0

h f

,


H(j)

1

H(j)
2

H(j)
3

 =


Ψ,1 cos

(
βZ(j)

)
Ψ,2 cos

(
βZ(j)

)
−βΨ sin

(
βZ(j)

)
− 2Ψ̄0

h f

.

(8)

The constitutive relations for magnetoelectroelastic of the upper and lower layers are
given as follows [60,61]:

σ1

σ2

σ4

σ5

σ6



(ji)

=



q11 q12 0 0 0

q12 q22 0 0 0

0 0 q44 0 0

0 0 0 q55 0

0 0 0 0 q66



(i)


ε1

ε2

ε4

ε5

ε6


−



0 0 c31

0 0 c32

0 c24 0

c15 0 0

0 0 0



(i)
E1

E2

E3


(j)

−



0 0 e31

0 0 e32

0 e24 0

e15 0 0

0 0 0



(i)
H1

H2

H3


(j)

, j = 1, 3, i = 1, 2 . . . N,

(9)

D(ji)
1 = c(i)15 ε5 + f (i)11 E

(j)
1 + g(i)11H

(j)
1 ,

D(ji)
2 = c(i)24 ε4 + f (i)22 E

(j)
2 + g(i)22H

(j)
2 ,

D(ji)
3 = c(i)31 ε1 + c(i)32 ε2 + f (i)33 E

(j)
3 + g(i)33H

(j)
3 , j = 1, 3, i = 1, 2 . . . N,

(10)
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B(ji)
1 = e(i)15 ε5 + g(i)11 E

(j)
1 + r(i)11H

(j)
1 ,

B(ji)
2 = e(i)24 ε4 + g(i)22 E

(j)
2 + r(i)22H

(j)
2 ,

B(ji)
3 = e(i)31 ε1 + e(i)32 ε2 + g(i)33 E

(j)
3 + r(i)33H

(j)
3 , j = 1, 3, i = 1, 2 . . . N,

(11)

where σk, Dk and Bk are the stress, electric displacement and magnetic induction compo-
nents, respectively; qkl , ckl , ekl , fkk, gkk and rkk are the elastic, piezoelectric, piezomagnetic,
dielectric, magnetoelectric and magnetic constants of the FG GPLs nanocomposite layers.
The elastic constants are given as follows:

q(i)11 = q(i)22 =
E(i)

1−
(
ν(i)
)2 , q(i)12 =

ν(i)E(i)

1−
(
ν(i)
)2 , q(i)44 = q(i)55 = q(i)66 =

E(i)

2
(
1 + ν(i)

) , (12)

where ν(i) is Poisson’s ratio of the ith sheet, and the effective Young’s modulus E(i) of the
ith sheet of the nanocomposite layers is defined according to the modified Halpin–Tsai
model as follows [9,62]:

E(i) =
3
8

E1 +
5
8

E2,

E` =
1 + ξG

` η`V
(i)
G

1− η`V
(i)
G

Epz,

η` =
EG − Epz

EG + ξG
` Epz

, ` = 1, 2,

ξG
1 = 2

LG

hG , ξG
2 = 2

WG

hG ,

(13)

where EG and Epz are Young’s moduli of the graphene and piezoelectromagnetic matrix,

respectively; V(i)
G stands for the volume fraction of GPLs for the ith sheet; LG, WG and hG

are the length, width and thickness of the graphene platelets, respectively. Poisson’s ratio
ν(i), mass density ρ(i) and other electromagnetic properties are calculated using the mixture
rule as follows:

ν(i) = V(i)
G νG + V(i)

pz νpz,

ρ(i) = V(i)
G ρG + V(i)

pz ρpz,

c(i)kl = V(i)
G cG

kl + V(i)
pz cpz

kl

e(i)kl = V(i)
G eG

kl + V(i)
pz epz

kl ,

f (i)jj = V(i)
G f G

jj + V(i)
pz f pz

jj

g(i)jj = V(i)
G gG

jj + V(i)
pz gpz

jj ,

r(i)jj = V(i)
G rG

jj + V(i)
pz rpz

jj ,

V(i)
pz =

(
1−V(i)

G

)
, k, l = 1, 2, . . . , 5, j = 1, 2, 3,

(14)

where νG(νpz), ρG(ρpz), cG
kl(c

pz
kl ), eG

kl(e
pz
kl ), f G

jj ( f pz
jj ), gG

jj (gpz
jj ) and rG

jj (r
pz
jj ) are Poisson’s ratio,

the mass density, piezoelectric, piezomagnetic, dielectric, magnetoelectric and magnetic
constants of the GPLs (piezoelectromagnetic), respectively. In the face layers, the volume
fraction of the graphene is graded from a sheet to another sheet according to a modified
piece-wise rule. Accordingly, four different patterns are considered in the current analysis
(see Figure 2). They are provided as follows:



Mathematics 2022, 10, 3207 7 of 22

VG(z) =



V∗, UD;

V∗
(
|2i−N−1|−1

N−2

)p
, X-FG;

V∗
(

i−1
N−1

)p
, V-FG;

V∗
(
|2i−N−1|+1−N

2−N

)p
, O-FG,

(15)

where p is the power law index and

V∗ =
ρpzWG

ρpzWG + ρG(1−WG)
, (16)

in which WG denotes the GPLs weight fraction.
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Figure 2. Four patterns of GPLs distribution of naocomposite FG GPLs-reinforced piezoelectromag-
netic plates.

The constitutive equations of the honeycomb core are given as follows:

σ1

σ2

σ4

σ5

σ6



(2)

=



q11 q12 0 0 0

q12 q22 0 0 0

0 0 q44 0 0

0 0 0 q55 0

0 0 0 0 q66



(2)


ε1

ε2

ε4

ε5

ε6


, (17)

where

q(2)11 =
E(2)

1

1− ν
(2)
12 ν

(2)
21

, q(2)22 =
E(2)

2

1− ν
(2)
12 ν

(2)
21

,

q(2)12 =
ν
(2)
12 E(2)

2

1− ν
(2)
12 ν

(2)
21

, q(2)44 = q(2)55 = q(2)66 = G(2)
12 ,

(18)
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in which Young’s moduli E(2)
k , Poisson’s ratios ν

(2)
kl , shear modulus G(2)

12 and mass density
ρ(2) for the hexagonal honeycomb core are provided based on the Gibson model (Gibson
and Ashby [43]) as follows:

E(2)
1 =

Ehζ3 cos ξ

(α + sin ξ) sin2 ξ

[
1− ζ2 cot2 ξ

]
,

E(2)
2 =

Ehζ3(α + sin ξ)

cos3 ξ

[
1− ζ2

(
α sec2 ξ + tan2 ξ

)]
,

ν
(2)
12 =

cos2 ξ

(α + sin ξ) sin ξ

[
1− ζ2 csc2 ξ

]
,

ν
(2)
21 =

(α + sin ξ) sin ξ

cos2 ξ

[
1− ζ2(1 + α) sec2 ξ

]
,

G(2)
12 =

Ehζ3(α + sin ξ)

α2(1 + 2α) cos ξ
,

ρ(2) =
ρhζ(α + 2)

2 cos ξ(α + sin ξ)
, ζ =

th
ah

, α =
bh
ah

,

(19)

where Eh and ρh stand for Young’s modulus and Poisson’s ratio of the honeycomb material,
respectively; ah and bh are, respectively, the length of inclined cell rib and vertical cell rib;
th is thickness of the cell rib; ξ is the inclined angle (see Figure 3).

 

 

 

 

 

 

Figure 3. Geometry and dimensions of the cell of the honeycomb core.

3. Governing Equations

The governing equations of motion are deduced from Hamilton’s principle that
given as follows: ∫ t

0

(
δΠS + δΠK − δΠEM

)
dt = 0, (20)

where δΠS, δΠK and δΠEM are, respectively, the variation of the strain energy, the variation
of the kinetic energy and the variation of the work performed by the in-plane piezoelectro-
magnetic load. They read as follows:

δΠS =
N

∑
i=1

∫
V

(
σ
(1i)
k δεk −D

(1i)
m δE (1)m −B(1i)

m δH(1)
m

)
dV +

∫
V

σ
(2)
k δεkdV

+
N

∑
i=1

∫
V

(
σ
(3i)
k δεk −D

(3i)
m δE (3)m −B(3i)

m δH(3)
m

)
dV,

δΠK =
N

∑
i=1

∫
V

ρ(1i)ÜmδUmdV +
∫

V
ρ(2)ÜmδUmdV +

N

∑
i=1

∫
V

ρ(3i)ÜmδUmdV,

δΠEM =
∫

A

(
FE + FM

)(
U3,11 + U3,22

)
δU3 dA, k = 1, 2, 4, 5, 6, m = 1, 2, 3,

(21)
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where FE and FM are the in-plane electric and magnetic forces, which will be defined later.
The governing equations of motion can be obtained by substituting Equation (21) into
Equation (20) subject to Equations (1), (3) and (8) as follows:

N̂1,1 + N̂6,2 = J11ü1 −J12üb
3,1 −J13üs

3,1,

N̂6,1 + N̂2,2 = J11ü2 −J12üb
3,2 −J13üs

3,2,

M̂1,11 + 2M̂6,12 + M̂2,22 + (FE + FM)∇2U3 = J11(üb
3 + üs

3)

+ J12(ü1,1 + ü2,2)−∇2(J22üb
3 + J23üs

3),

S1,11 + 2S6,12 + S2,22 + Q5,1 + Q4,2 + (FE + FM)∇2U3 = J11(üb
3 + üs

3)

+ J13(ü1,1 + ü2,2)−∇2(J23üb
3 + J33üs

3),

R1,1 + R2,2 + R3 = 0,

T1,1 + T2,2 + T3 = 0,

(22)

where

{N̂m, M̂m, Sm} =
N

∑
i=1

∫ h̆i+1

h̆i

σ
(1i)
m {1, x3, f (x3)}dx3 +

∫ h3

h2

σ
(2)
m {1, x3, f (x3)}dx3

+
N

∑
i=1

∫ ĥi+1

ĥi

σ
(3i)
m {1, x3, f (x3)}dx3, m = 1, 2, 6,

Qm =
N

∑
i=1

∫ h̆i+1

h̆i

g′σ(1i)
m +

∫ h3

h2

g′σ(2)
m dx3 +

N

∑
i=1

∫ ĥi+1

ĥi

g′σ(3i)
m dx3, m = 4, 5,

(23)

Rm =
N

∑
i=1

∫ h̆i+1

h̆i

D(1i)
m cos

(
βZ(1)

)
dx3 +

N

∑
i=1

∫ ĥi+1

ĥi

D(3i)
m cos

(
βZ(3)

)
dx3,

R3 =
N

∑
i=1

∫ h̆i+1

h̆i

D(1i)
3 β sin

(
βZ(1)

)
dx3 +

N

∑
i=1

∫ ĥi+1

ĥi

D(3i)
3 β sin

(
βZ(3)

)
dx3,

Tm =
N

∑
i=1

∫ h̆i+1

h̆i

B(1i)
m cos

(
βZ(1)

)
dx3 +

N

∑
i=1

∫ ĥi+1

ĥi

B(3i)
m cos

(
βZ(3)

)
dx3,

T3 =
N

∑
i=1

∫ h̆i+1

h̆i

B(1i)
3 β sin

(
βZ(1)

)
dx3 +

N

∑
i=1

∫ ĥi+1

ĥi

B(3i)
3 β sin

(
βZ(3)

)
dx3,

m =1, 2,

(24)

{J11,J12,J13,J22,J23,J33} =
N

∑
i=1

∫ h̆i+1

h̆i

ρ(1i){1, x3, f (x3), x2
3, x3 f (x3), f 2(x3)}dx3

+
∫ h3

h2

ρ(2){1, x3, f (x3), x2
3, x3 f (x3), f 2(x3)}dx3

+
N

∑
i=1

∫ ĥi+1

ĥi

ρ(3i){1, x3, f (x3), x2
3, x3 f (x3), f 2(x3)}dx3,

(25)

where
h̆i = h1 +

i− 1
N

(h2 − h1),

ĥi = h3 +
i− 1

N
(h4 − h3), j = 1, 2, . . . , N + 1,

h1 = −hc

2
− h f , h2 = −hc

2
, h3 =

hc

2
, h4 =

hc

2
+ h f .

(26)

By substituting Equations (9)–(11) and (17) into Equations (23) and (24), one obtains
the following:
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N̂1

N̂2

M̂1

M̂2

S1

S2

R3

T3



=



A11 A12 A13 B11 B12 B13

B11 B12 B13 B21 B22 B23

A12 A32 A33 B12 B32 B33

B12 B32 B33 B22 B42 B43

A13 A33 A53 B13 B33 B53

B13 B33 B53 B23 B43 B63

D11 D31 D51 D21 D41 D61

D12 D32 D52 D22 D42 D62





γ
(0)
1

γ
(1)
1

γ
(2)
1

γ
(0)
2

γ
(1)
2

γ
(2)
2


+



D11

D21

D31

D41

D51

D61

D̄11

D̄12



Φ +



D12

D22

D32

D42

D52

D62

D̄12

D̄22



Ψ +



FE + FM

FE + FM

M̂E
1 + M̂M

1

M̂E
1 + M̂M

1

SE
1 + SM

1

SE
1 + SM

1

RE
3 + RM

3

TE
3 + TM

3



(27)


N̂6

M̂6

S6

 =


Ā31 Ā32 Ā33

Ā32 Ā42 Ā43

Ā33 Ā43 Ā53




γ
(0)
6

γ
(1)
6

γ
(2)
6

 (28)


Q5

R1

T1

 =


Â11 −ÂE

12 −ÂM
13

ÂE
12 ÂE

13 ÂE
14

ÂM
13 ÂE

14 ÂM
33




γ
(2)
5

Φ,1

Ψ,1




Q4

R2

T2

 =


Â21 −ÂE

22 −ÂM
23

ÂE
22 ÂE

23 ÂE
24

ÂM
23 ÂE

24 ÂM
43




γ
(2)
4

Φ,2

Ψ,2


(29)

where 

A11, B11, B21, Ā31
A12, B12, B22, Ā32
A13, B13, B23, Ā33
A32, B32, B42, Ā42
A33, B33, B43, Ā43
A53, B53, B63, Ā53


=

N

∑
i=1

∫ h̆i+1

h̆i

{q(1i)
11 , q(1i)

12 , q(1i)
22 , q(1i)

66 }



1
x3

f (x3)
x2

3
x3 f (x3)
f 2(x3)


dx3

+
∫ h3

h2

{q(2)11 , q(2)12 , q(2)22 , q(2)66 }



1
x3

f (x3)
x2

3
x3 f (x3)
f 2(x3)


dx3

+
N

∑
i=1

∫ ĥi+1

ĥi

{q(3i)
11 , q(3i)

12 , q(3i)
22 , q(3i)

66 }



1
x3

f (x3)
x2

3
x3 f (x3)
f 2(x3)


dx3,

(30)



Mathematics 2022, 10, 3207 11 of 22


D11, D12
D31, D32
D51, D52

 =


D21, D22
D41, D42
D61, D62

 =
N

∑
i=1

∫ h̆i+1

h̆i

β sin
(

βZ(1)
)

1
x3

f (x3)

{c(i)31 , e(i)31 }dx3

+
N

∑
i=1

∫ ĥi+1

ĥi

β sin
(

βZ(3)
)

1
x3

f (x3)

{c(i)31 , e(i)31 }dx3,

{D̄11, D̄12, D̄22} =−
N

∑
i=1

∫ h̆i+1

h̆i

β2 sin2
(

βZ(1)
)
{ f (i)33 , g(i)33 , r(i)33 }dx3

−
N

∑
i=1

∫ ĥi+1

ĥi

β2 sin2
(

βZ(3)
)
{ f (i)33 , g(i)33 , r(i)33 }dx3,

(31)


FE

M̂E
1

SE
1

 =
N

∑
i=1

∫ h̆i+1

h̆i

(
2Φ̄0

h f

)
1
x3

f (x3)

c(i)31 dx3

+
N

∑
i=1

∫ ĥi+1

ĥi

(
2Φ̄0

h f

)
1
x3

f (x3)

c(i)31 dx3,


FM

M̂M
1

SM
1

 =
N

∑
i=1

∫ h̆i+1

h̆i

(
2Ψ̄0

h f

)
1
x3

f (x3)

e(i)31 dx3

+
N

∑
i=1

∫ ĥi+1

ĥi

(
2Ψ̄0

h f

)
1
x3

f (x3)

e(i)31 dx3,

(32)

{RE
3 , TE

3 } =−
N

∑
i=1

∫ h̆i+1

h̆i

{ f (i)33 , g(i)33 }
(

2Φ̄0

h f

)
β sin

(
βZ(1)

)
dx3

−
N

∑
i=1

∫ ĥi+1

ĥi

{ f (i)33 , g(i)33 }
(

2Φ̄0

h f

)
β sin

(
βZ(3)

)
dx3,

{RM
3 , TM

3 } =−
N

∑
i=1

∫ h̆i+1

h̆i

{g(i)33 , r(i)33 }
(

2Ψ̄0

h f

)
β sin

(
βZ(1)

)
dx3

−
N

∑
i=1

∫ ĥi+1

ĥi

{g(i)33 , r(i)33 }
(

2Ψ̄0

h f

)
β sin

(
βZ(3)

)
dx3,

(33)

{Â11, Â21} =
N

∑
i=1

∫ h̆i+1

h̆i

{q(1i)
55 , q(1i)

44 }g
′2dx3

+
∫ h3

h2

{q(2)55 , q(2)44 }g
′2dx3

+
N

∑
i=1

∫ ĥi+1

ĥi

{q(3i)
55 , q(3i)

44 }g
′2dx3,

(34)
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{
ÂE

12
ÂM

13

}
=

{
ÂE

22
ÂM

23

}
=

N

∑
i=1

∫ h̆i+1

h̆i

g′ cos
(

βZ(1)
){c(i)15

e(i)15

}
dx3

+
N

∑
i=1

∫ ĥi+1

ĥi

g′ cos
(

βZ(3)
){c(i)15

e(i)15

}
dx3,


ÂE

13
ÂE

14
ÂM

33

 =


ÂE

23
ÂE

24
ÂM

43

 =
N

∑
i=1

∫ h̆i+1

h̆i

cos2
(

βZ(1)
)

f (i)11

g(i)11

r(i)11

dx3

+
N

∑
i=1

∫ ĥi+1

ĥi

cos2
(

βZ(3)
)

f (i)11

g(i)11

r(i)11

dx3.

(35)

4. Solution Procedure

An analytical solution of the motion equation is presented in this section to deduce
the wave frequency and phase velocity of the wave propagation of the FG GPLs-reinforced
sandwich lightweight plates. The displacement components of the waves propagated along
the x1x2-plane can be presumed as follows:

u1(x1, x2, t)

u2(x1, x2, t)

ub
3(x1, x2, t)

us
3(x1, x2, t)

Φ(x1, x2, t)

Ψ(x1, x2, t)


=



Ū1

Ū2

Ū3

Ū4

Ū5

Ū6


eI(k1x1+k2x2−ωt), (36)

in which Ūj(j = 1, . . . , 6), ω, k1 and k2, respectively, denote the amplitudes of the wave
motion, the wave frequency, the wave numbers of the wave propagation along x1 and

x2 directions, I =
√
−1, and the magnitude of the wave number k =

√
k2

1 + k2
2. By

incorporating Equation (36) into Equation (22) subject to Equations (27)–(29), one can
obtain the following: 

l11 l12 l13 l14 l15 l16

l21 l22 l23 l24 l25 l26

l31 l32 l33 l34 l35 l36

l41 l42 l43 l44 l45 l46

l51 l52 l53 l54 l55 l56

l61 l62 l63 l64 l65 l66





Ū1

Ū2

Ū3

Ū4

Ū5

Ū6


= 0, (37)

where the components of matrix [l] appearing in Equation (37) are provided as follows:



Mathematics 2022, 10, 3207 13 of 22

l11 = −A11k2
1 − Ā31k2

2 + J11ω2, l12 = l21 = −k1k2(Ā31 + B11),

l13 = −l31 = A12k3
1 I + 2Ā32k1k2

2 I + B12k1k2
2 I −J12k1ω2 I,

l14 = −l41 = A13k3
1 I + 2Ā33k1k2

2 I + B13k1k2
2 I −J13k1ω2 I,

l15 = l51 = D11k1 I, l16 = l61 = D12k1 I, l22 = −Ā31k2
1 − B21k2

2 + J11ω2

l23 = −l32 = B22k3
2 I + 2Ā32k2

1k2 I + B12k2
1k2 I −J12k2ω2 I,

l24 = −l42 = B23k3
2 I + 2Ā33k2

1k2 I + B13k2
1k2 I −J13k2ω2 I,

l25 = l52 = D21k2 I, l26 = l62 = D22k2 I,

l33 = J11ω2 − B42k4
2 − FEk2

1 − FEk2
2 − FMk2

1 − FMk2
2 − A32k4

1

− 4Ā42k2
1k2

2 − 2B32k2
1k2

2 + J22k2
1ω2 + J22k2

2ω2

l34 = l43 = J11ω2 − B43k4
2 − FEk2

1 − FEk2
2 − FMk2

1 − FMk2
2 − A33k4

1

− 4Ā43k2
1k2

2 − 2B33k2
1k2

2 + J23k2
1ω2 + J23k2

2ω2,

l35 = −l53 = −D31k2
1 − D31k2

2, l36 = −l63 = −D32k2
1 − D32k2

2,

l44 = J11ω2 − B63k4
2 − FEk2

1 − FEk2
2 − FMk2

1 − FMk2
2 − A53k4

1 − Â11k2
1 − Â21k2

2

− 4Ā53k2
1k2

2 − 2B53k2
1k2

2 + J33k2
1ω2 + J33k2

2ω2,

l45 = −l54 = ÂE
12k2

1 − D51k2
2 − D51k2

1 + ÂE
22k2

2,

l46 = −l64 = ÂM
13k2

1 − D52k2
2 − D52k2

1 + ÂM
23k2

2 l55 = −ÂE
13k2

1 − ÂE
23k2

2 − D̄11,

l56 = l65 = −ÂE
14k2

1 − ÂE
24k2

2 − D̄12, l66 = −ÂM
33k2

1 − ÂM
43k2

2 − D̄22,

(38)

where the dispersion relations can be determined by solving the equation |l| = 0 to obtain
the wave frequency ω. In addition, the phase velocity can be defined as Cw = ω/k.

5. Numerical Results

In the present section, the numerical results of the above formulations are presented
to investigate the influences of different parameters on the wave propagation in the honey-
comb sandwich piezoelectromagnet plate reinforced with GPLs. The mechanical material
properties of the piezoelectromagnetic material are taken as follows [60]:

Epz = 141 GPa, νpz = 0.35, ρpz = 5.55 g/cm3, cpz
31 = cpz

32 = −2.2 Cm−2,

cpz
24 = cpz

15 = 5.8 Cm−2, epz
31 = epz

32 = 290.1 NA−1m−1, epz
24 = epz

15 = 275 NA−1m−1,

f pz
11 = f pz

22 = 5.64× 10−9 CV−1m−1, f pz
33 = 6.35× 10−9 CV−1m−1,

gpz
11 = gpz

22 = 5.367× 10−12 NsV−1C−1, gpz
33 = 2737.5× 10−12 NsV−1C−1,

rpz
11 = rpz

22 = −297× 10−6 Ns2C−2, rpz
33 = 83.5× 10−6 Ns2C−2.

(39)

On the other hand, the mechanical properties of GPLs are provided as follows [61]:

EG = 1010 GPa, ρG = 1.06 g/cm3, νG = 0.186. (40)

Furthermore, the electromagnetic properties of the GPLs are assumed to be propor-
tional to that of the piezoelectromagnetic material as follows:

cG
ij = $ cpz

ij , eG
ij = $ epz

ij , f GP
ij = $ f pz

ij , gGP
ij = $ gpz

ij , rGP
ij = $ rpz

ij , (41)

where $ denotes the piezoelectromagnetic multiple, and it is taken as $ = 100.
In addition, the thickness of each face layer is assumed as follows: h f = 2× 10−3

m. The following fixed data are defined in this analysis (except otherwise stated): N = 6,
LG = 15 nm, WG = 9 nm, hG = 0.188 nm, WG = 0.1, p = 1, φ0 = 1, ψ0 = 0.1, ξ = 45,
ζ = 0.0138571 and α = 2.
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The following nondimensional parameters are employed:

ω̄ =
ω

2π
, φ0 =

Φ̄0h
Dpz

, ψ0 =
Ψ̄0h
Dpz

, Dpz =
Epzh3

12[1− (νpz)2]
, hr =

hc

h f
. (42)

To verify the accuracy of the current analysis, the wave frequency ω̄ of a homogeneous
plate is compared with that available in [63,64], as presented in Table 1. For all values of
wave number k, a good agreement was observed between the obtained wave frequencies
and those presented by [63,64]. It is noted that a noticeable reduction in the wave frequency
ω̄ was achieved with increasing wave number k.

Table 1. Comparison of nondimensional wave frequency ω̄ (THz) of a homogeneous plate for various
values of wave number k (E = 1.06 TPa, ν = 0.25, ρ = 2250 kg/m3, h = 0.34× 10−9).

k (108/m) Ref. [64] Ref. [63] Present

1 0.00700 0.00700 0.00700
2 0.02801 0.02798 0.02797
3 0.06303 0.06283 0.06280
4 0.11206 0.11140 0.11134
5 0.17509 0.17346 0.17335
6 0.25213 0.24874 0.24855
7 0.34317 0.33693 0.33661
8 0.44822 0.43766 0.43716
9 0.56728 0.55050 0.54977
10 0.70035 0.67505 0.67400

An additional comparison example is performed in Table 2. As shown in this table,
the obtained natural frequencies ω̂ of FG GPLs-reinforced plates considering various GPLs
distribution patterns (UD, O-FG, X-FG and A-FG) are compared with those obtained by
Song et al. [10]. The dimensions of the nanocomposite plate are taken as a = b = 0.45 m and
h = 0.045 m, while the GPL’s dimensions are fixed as follows: LG = 2.5 µm, WG = 1.5 µm
and hG = 1.5 nm. Moreover, the volume fraction of graphene is given as follows:

VG(z) =



V∗, UD;

4V∗
(

N+1
2 −

∣∣∣i− N+1
2

∣∣∣)/(N + 2), O-FG,

4V∗
(

1
2 +

∣∣∣i− N+1
2

∣∣∣)/(N + 2), X-FG;

2V∗
(

i
N+1

)
, A-FG;

(43)

Once again, a good agreement was observed between the obtained natural frequencies
and those introduced by Song et al. [10].

Table 2. Comparison of nondimensional natural frequencies ω̂ = ωh
√

ρm/Em of FG GPLs-reinforced
plates for various GPLs distribution patterns (Em = 3 GPa, νm = 0.34, ρm = 1200 kg/m3, WG = 0.01,
N = 10).

Mode
Ref. [10] Present

UD O-FG X-FG A-FG UD O-FG X-FG A-FG

1,1 0.1216 0.1020 0.1378 0.1118 0.1216 0.1023 0.1367 0.1118
2,1 0.2895 0.2456 0.3249 0.2673 0.2895 0.2470 0.3189 0.2674
2,2 0.4436 0.3796 0.4939 0.4110 0.4437 0.3828 0.4810 0.4111
3,1 0.5400 0.4645 0.5984 0.5013 0.5402 0.4691 0.5804 0.5015
3,2 0.6767 0.5860 0.7454 0.6299 0.6770 0.5930 0.7191 0.6302
3,3 0.8869 0.7755 0.9690 0.8287 0.8877 0.7870 0.9285 0.8295
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6. Wave Propagation Results

In the current section, the impacts of the geometry of plates, the geometry of hon-
eycomb cells, GPLs weight fraction, GPLs distribution patterns, piezoelectric properties,
external electric voltage and external magnetic potential on the wave frequency and phase
velocity of the GPLs lightweight plates are discussed in Table 3 and Figures 4–10.

Table 3. Effects of various values of the honeycomb’s cell dimensions ζ, α and ξ on the wave
frequency ω̄ (THz) of GPLs-reinforced sandwich piezoelectromagnetic plate.

ζ α ξ = 15 ξ = 30 ξ = 45 ξ = 60 ξ = 75

0.01 0.5 10.352035 10.385073 10.382403 10.334410 10.133687
1 10.426462 10.434922 10.424684 10.377185 10.192643

1.5 10.459630 10.461278 10.448964 10.402478 10.228196
2 10.478611 10.477877 10.464836 10.419204 10.251962

2.5 10.491028 10.489426 10.476068 10.431090 10.268962

0.03 0.5 9.832129 9.914681 9.907991 9.788000 9.313311
1 10.024447 10.046062 10.019679 9.897807 9.448441

1.5 10.112976 10.117162 10.084973 9.963780 9.531392
2 10.164474 10.162522 10.128078 10.007773 9.587228

2.5 10.198507 10.194347 10.158766 10.039188 9.627225

0.05 0.5 9.386956 9.503936 9.494634 9.325281 8.677541
1 9.666875 9.698094 9.659937 9.483572 8.853776

1.5 9.799364 9.805387 9.758168 9.580050 8.963167
2 9.877550 9.874634 9.823560 9.644763 9.036560

2.5 9.929689 9.923573 9.870339 9.691083 9.088596

0.07 0.5 8.999679 9.141795 9.131031 8.927596 8.162958
1 9.346052 9.384669 9.337875 9.120575 8.357451

1.5 9.514017 9.521486 9.462719 9.239859 8.479006
2 9.614409 9.610710 9.546417 9.320167 8.559291

2.5 9.681896 9.674174 9.606513 9.377648 8.614660

0.09 0.5 8.658131 8.820014 8.808799 8.581922 7.732909
1 9.055987 9.100810 9.047641 8.798732 7.928415

1.5 9.253083 9.261868 9.194028 8.934750 8.050886
2 9.372227 9.367889 9.292763 9.026487 8.128829

2.5 9.452896 9.443728 9.363839 9.091978 8.179216

2 4 6 8 10
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2 4 6 8 10
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14
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(a) (b)

Figure 4. Influences of the wave number k and the graphene weight fraction WG on (a) the wave
frequency ω̄ (THz) and (b) phase velocity Cw (km/s) of the FG GPLs-reinforced sandwich nanocom-
posite piezoelectromagnetic plates with honeycomb core.
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Figure 5. (a) Wave frequency ω̄ (THz) and (b) phase velocity Cw (km/s) of the FG GPLs-reinforced
sandwich nanocomposite piezoelectromagnetic plate with a honeycomb core versus the graphene
weight fraction WG for various values of the power law index p (GPLs pattern B).
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Figure 6. Wave frequency ω̄ (THz) of the FG GPLs-reinforced sandwich nanocomposite piezoelectro-
magnetic plate with a honeycomb core versus the graphene weight fraction WG for various values of
the power law index p and for various GPLs patterns: (a) pattern C and (b) pattern D.
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Figure 7. Influences of the graphene weight fraction WG and core-to-face thickness ratio hr on the
wave frequency ω̄ (THz) of the FG GPLs-reinforced sandwich nanocomposite piezoelectromagnetic
plate with a honeycomb core for various patterns of GPLs distribution: (a) pattern A, (b) pattern B,
(c) pattern C and (d) pattern D.
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Figure 8. Influences of the graphene weight fraction WG and core-to-face thickness ratio hr on the
phase velocity Cw (km/s) of the FG GPLs-reinforced sandwich nanocomposite piezoelectromagnetic
plate with a honeycomb core for various patterns of GPLs distribution: (a) pattern A, (b) pattern B,
(c) pattern C and (d) pattern D.
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Figure 9. Wave frequency ω̄ (THz) of the FG GPLs-reinforced sandwich nanocomposite piezoelectro-
magnetic plate with a honeycomb core versus the graphene weight fraction WG for various values of
external applied (a) electric potential φ0 and (b) magnetic potential ψ0 (GPLs pattern A).
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Figure 10. Influences of the thickness-to-length of the cell rib ratio ζ on the wave frequency ω̄ (THz)
of the FG GPLs-reinforced sandwich nanocomposite piezoelectromagnetic plate with a honeycomb
core versus the wave number k (GPLs pattern A).

Table 3 displays the effects of different values of the thickness-to-length of the cell
rib ratio ζ, the vertical-to-inclined cell rib length ratio α and the inclined angle ξ on the
wave frequency ω̄ of GPLs-reinforced sandwich piezoelectromagnetic plates. It can be
observed that the wave frequency ω̄ gradually decreases with increasing the thickness-to-
length of the cell rib ratio ζ and inclined angle ξ. On the other hand, it increases as the
vertical-to-inclined cell rib length ratio α increases.

Influences of the wave number k and graphene weight fraction WG on wave frequency
ω̄ and phase velocity Cw of the FG GPLs-reinforced sandwich piezoelectromagnetic plates
with honeycomb core are plotted in Figure 4. It can be indicated that the wave frequency
and phase velocity increase in a monotonic manner with increasing the graphene weight
fractions because the composite plate strength increases with increasing the graphene
components. Furthermore, the phase velocity Cw seems to be independent of changing the
values of wave number k. Moreover, the impacts of graphene weight fraction WG on ω̄ are
more considerable for large values of wave number k.

Figure 5 illustrates the influences of the power law index p on either wave frequency
ω̄ or phase velocity Cw of the FG GPLs-reinforced sandwich nanocomposite piezoelec-
tromagnetic plate with a honeycomb core versus the graphene weight fraction WG for
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GPLs pattern B. Both the wave frequency and phase velocity reduce rapidly with the index
p increases.

Figure 6 shows the variation of wave frequency ω̄ of various patterns of the FG
GPLs-reinforced sandwich nanocomposite piezoelectromagnetic plate with a honeycomb
core versus the graphene weight fraction WG for various values of the power law index
p. Furthermore, in patterns C and D, the effect of the power law index p on the wave
frequency ω̄ occurs obviously for larger values of the graphene weight fraction WG. This
means that the increase in WG enhances the stiffness of the plate.

For various pattern of GPLs sandwich plates, the influences of the core-to-face thick-
ness ratio hr on the wave frequency ω̄ and the phase velocity Cw through the graphene
weight fraction WG of the FG GPLs-reinforced sandwich nanocomposite piezoelectromag-
netic plate with a honeycomb core are plotted in Figures 7 and 8, respectively. Irrespective
of the core-to-face thickness ratio hr, the wave frequency ω̄ and the phase velocity Cw
directly increase with increasing graphene weight fraction WG. Moreover, for patterns A
and C, the wave frequency ω̄ and phase velocity Cw directly reduce with increasing the
core-to-face thickness ratio hr. On the other hand, for pattern D, it is clear that increasing
the core-to-face thickness ratio hr leads to increments of the wave frequency ω̄ and the
phase velocity Cw. In addition, for pattern B, ω̄ and Cw no longer increase as the ratio
hr increases.

The wave frequency ω̄ of the FG GPLs-reinforced sandwich nanocomposite piezo-
electromagnetic plate with a honeycomb core versus the graphene weight fraction WG
for various values of the external applied electric and magnetic potentials φ0 and ψ0 are
presented in Figure 9a,b, respectively. Obviously, the electric and magnetic potentials φ0
and ψ0 lose their influences on the wave frequency.

Finally, Figure 10 displays the effect of various values of the thickness-to-length of the
cell rib ratio ζ on the wave frequency ω̄ of a GPLs-reinforced sandwich piezoelectromag-
netic plate versus the wave number k for the first GPLs distribution. It can be observed
that with the increase in ζ, wave frequency ω̄ decreases. It can be also remarked that with
increasing ζ, the stiffness of the plate decreases.

7. Conclusions

This paper is concerned with the influences of the wave dispersion in the honeycomb
sandwich piezoelectromagnetic plate reinforced with GPLs subjected to external electric and
magnetic potentials. The refined shear deformation plate theory is employed to formulate a
displacement field. The graphene is uniformly distributed or functionally graded through
the thickness of the upper and lower sandwich layers. The governing motion equations of
the smart nanocomposite sandwich plate are inferred from Hamilton’s principle including
the electric displacements and the magnetic induction and then analytically solved to
obtain the wave frequency. The present formulations are examined by introducing some
comparison examples. Some noteworthy points derived from numerical results can be
listed as follows:

• Increasing the graphene weight fraction, core-to-face thickness ratio and wave number
enhance the sandwich nanocomposite piezoelectromagnetic plate. Accordingly, the
wave frequencies and phase velocity will increase.

• The sensitivity performance of wave frequencies of GPLs-reinforced sandwich piezo-
electromagnetic plates reduces under the increase in the external electric and mag-
netic potentials.

• The wave frequency linearly increases with an increasing wave number, whereas the
phase velocity weakly depends on it.

• The wave frequencies clearly depend on the dimensions of the honeycomb cells. They
decrease as the thickness-to-length of the cell rib ratio and the inclined angle increase.
On the other hand, this sense is reversed with increasing the vertical-to-inclined cell
rib length ratio.
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