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Abstract: The rock acoustic emission (AE) technique has often been used to study rock destruction
properties and has also been considered an important measure for simulating earthquake foreshock
sequences. Among them, the AE b value is an essential parameter for the size distribution char-
acteristics and probabilistic hazard analysis of rock fractures. Variations in b values obtained in
rock AE tests and earthquakes are often compared to establish analogies in the damage process
and precursory analysis. Nevertheless, because the amplitudes measured on the sample boundary
by an acoustic sensor (apparent amplitude) are often used to estimate the b value, which cannot
descript the source size distribution, it is necessary to develop a method to obtain the size distribution
characteristics of the real source from the apparent amplitude in doubly truncated distribution. In this
study, we obtain AE apparent amplitudes by applying an attenuation operator to source amplitudes
generated by a computer with an underlying exponential distribution and then use these simulated
apparent amplitudes to perform a comparative analysis of various b value estimation methods that
are used in earthquakes and propose an optimal b value estimation procedure for rock AE tests
through apparent amplitudes. To further verify the reliability of the newly proposed procedure, a
b value characteristics analysis was carried out on a non-explosive expansion agent rock AE test
and transparent refractive index experiment with red sandstone, marble, granite, and limestone.
The results indicate that mineral grains of different sizes and compositions and different types of
discontinuities of rock specimens determine the rock fracture characteristics, as well as the b value.
The dynamic b values decreased linearly during the loading process, which confirms that variations
in the b value also depend on the stress. These results indicate that the newly proposed procedure for
estimating the b value in rock AE tests based on apparent amplitudes has high reliability.

Keywords: rock acoustic emission; apparent amplitude distribution; b value; completeness ampli-
tude; bootstrap

MSC: 74-05; 86-05

1. Introduction

The power law size distribution relationship of source energy E or seismic moment M0
is an intrinsic characteristic of the frequency-size distribution in statistical seismology; it
can well record the spatial and temporal distribution of rock fractures from a large number
of small-scale ruptures to fewer large-scale ruptures, and it has been widely used in seismic
research. Since there is a logarithmic relationship between the local magnitude M and
the source energy E or seismic moment M0, we can conclude that the local magnitude-
frequency distribution obeys the exponential Gutenberg–Richter (G–R) law [1], which has

Mathematics 2022, 10, 3202. https://doi.org/10.3390/math10173202 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10173202
https://doi.org/10.3390/math10173202
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8757-1783
https://doi.org/10.3390/math10173202
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10173202?type=check_update&version=1


Mathematics 2022, 10, 3202 2 of 17

also been widely used for probabilistic seismic hazard analysis [2–7]. The G–R law is
expressed on a logarithmic scale given by

log10(N) = a− bM (1)

where a and b are constants and N is the number of earthquakes that occur in a specific time
window with magnitude ≥M. More importantly, parameter a reflects the size of the time
window of observation; slope b is an essential tool in seismotectonic studies and seismic-
risk analysis within the same time window in a certain area [5,8], which is often referred
to as the b value. More recently, the b value in the G–R law has also been interpreted as
an indicator of the applied shear stress and material heterogeneity [9–14]. Thus, its correct
computation represents an important challenge in seismology and rock mechanics [15–18].

The selected discontinuities and missing earthquake events in the magnitude-frequency
distribution are the main effects on stable b value estimation, which is why the two ends
of the magnitude-frequency distribution deviate from the G–R law. For some authors, the
right and left end points deviating from the G–R law correspond to the magnitude of com-
pleteness Mc (which is defined as the lowest magnitude at which 100% of the events in a
space–time volume are detected [8,19] and the auxiliary magnitude M0, respectively. Many
different procedures for correctly estimating Mc and M0 have been proposed [8,19–25].
Figure 1 shows that with the value of the assumed Mc starting from the minimum magni-
tude in the catalog and increasing gradually, the corresponding b value and goodness-of-fit
change significantly as Mc ≤ 2 and tend to be stable as Mc ≥ 2. In view of this phenomenon,
some researchers hope to select a sufficiently large Mc to estimate the b value, but for the
statistical value of Mc and b, which will reduce a large number of low-magnitude events
and further lead to a decrease in the space–time resolution of variations in Mc and reliability
and robustness of the b value estimation [26,27]. Therefore, accurately determining Mc has
become the key to stably estimating the b values.
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Figure 1. The effects of variations of assumed Mc on b value estimation [26]. The FMD and LSR are
abbreviations of frequency-magnitude distribution and least-squares regression, respectively.

In rock mechanics, the acoustic emission (AE) technique is often used to study the
destruction properties of rocks by recording elastic wave information radiated by crack
initiation, propagation, and penetration during rock deformation [28–31]. Additionally, the
AE test method is also an important means to simulate earthquake foreshock sequences
and study focal mechanisms [14,32–42]. Therefore, the space–time variation characteristics
of the b value obtained in rock AE deformation tests have been used to simulate earthquake
precursor characteristics [43–47]. However, unlike the magnitude used in Equation (1)
for b value estimation in seismology, AE equipment records the high-frequency elastic
wave signal of the small-scale rupture, and the AE amplitude is the apparent amplitude
measured by sensors at the sample boundary after attenuation from the seismic source [25].
The corresponding apparent amplitude-frequency distribution does not represent the
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source size distribution. Thus, the frequency-size distribution law of the source signals
collected by the sensors in the rock AE test will be changed owing to the elastic wave
attenuation, and the same deviation will appear at both ends of the amplitude-frequency
as the magnitude-frequency distribution [33,37], which would affect the size of the real
b value. (Here, the analogy with the earthquake is used to define the left and right deviation
points of the amplitude-frequency distribution of the rock AE test as the completeness
amplitude point Ac and auxiliary discontinuous amplitude point A0, respectively.) Al-
though some researchers have long been concerned about the influence of attenuation
on the amplitude-frequency distribution in rock AE tests and have also proposed some
corresponding compensation methods to obtain the equivalent AE magnitude with the
same significance as the magnitude of the earthquake to analyze rock b value character-
istics [44,48], the equivalent amplitude distribution still cannot fully represent the real
frequency-size distribution of rock cracks. To solve this problem, Liu [25] used a statistical
method to prove that the apparent amplitude-frequency distribution retains the source
frequency-size distribution characteristics, wherein the key to estimating the real b value is
to properly truncate the apparent amplitude-frequency distribution. A new b value estima-
tion method called the Fisher optimal split and global search algorithm (FGS) was proposed
to identify the log-linear segment from the apparent amplitude-frequency distribution of
the rock AE test for b value estimation. In addition, because AE acquisition equipment is
very sensitive to the interference of test conditions, such as environmental noise and current
signals, a high threshold value of the signal acquisition is generally set for laboratory rock
AE tests. Thus, the completeness amplitude Ac is usually ignored. Therefore, the complete-
ness of the amplitude data should also be considered when considering how to obtain the
source size distribution characteristic parameters using the apparent amplitude-frequency
distribution in the estimation of the rock AE b value.

Based on the discussion above, firstly, we carried out a synthetic AE simulation test to
compare and analyze the applicability of the completeness magnitude estimation methods
commonly used in earthquakes for the estimation of rock AE completeness amplitude and
proposed an optimal procedure for rock AE b value estimation by combining Bootstrap [8]
and the FGS method which is used for estimating the characteristic parameters of the source
size distribution from the apparent amplitude-frequency distribution. Then, we designed a
static dilation rock rupturing AE test to further verify the reliability of the newly proposed
optimal procedure of b value estimation based on the relationship between the b value
and rock microscopic composition and stress to provide a reliable and accurate b value
estimation procedure for laboratory rock AE tests. As a result, this research can provide
new insights and methods in the analysis of the precursory characteristics in laboratory
rock AE tests and rock mass engineering.

2. Optimal b Value Estimation Procedure Based on Apparent
Amplitude-Frequency Distribution

In rock AE tests, a high threshold is generally set to remove noise interference, and
AE equipment will also define the upper limit amplitude, which will result in a doubly
truncated distribution of apparent amplitude frequency, so the completeness amplitude
Ac in the b value estimation is usually ignored. In this section, generate AE synthetic data
with apparent amplitude and select the estimation method of completeness magnitude
Mc commonly used in seismic research to obtain an optimal algorithm for determining
completeness magnitude Ac, which is a key step for b value estimation. Then, combined
with the nonparametric statistical Bootstrap method, we compared the obtained optimal
algorithm of Ac with the FGS method and determined an optimal procedure of the b value
estimated for the apparent amplitude data.

2.1. Synthetic Catalogues of Rock AE Apparent Amplitude

Because the true underlying completeness amplitude Ac and b values are not known in
a laboratory rock AE test, we designed a specific simulation scheme to randomly generate
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synthetic AE data that can be used to clearly compare five Ac estimation methods [8,23–25].
According to the previous statistical proof and synthetic data generation method [25,49],
we designed to generate data arrays with the same length of source amplitude and amount
of attenuation, which are all in decibels with a round-off interval of 1 dB. The apparent
amplitude after attenuation can be obtained by the subtraction of two randomly arranged
arrays of source amplitude and the amount of attenuation. The specific simulation schemes
are as follows: firstly, as the b value of most papers is equal to about 1 [50], we generated
a source synthetic catalog of i = 1, 2, . . . , N events with amplitudes Ai in decibels by ran-
domly sampling an underlying Gutenberg–Richter distribution with b = 1.0666 and std = 8
(standard deviation) which varies between limits Ai

min ≤ Ai ≤ Ai
max and has a probability

density function p(Ai). Then, we generated an attenuation amount catalog δAi also in
decibels with the same length of Ai, which varies between limits δAi

min ≤ δAi ≤ δAi
max and

has a probability density function p(δAi) that obeys the Poisson distribution (or other forms
including normal, exponential, Gamma, and random uniform distributions). Finally, the
catalog obtained by the subtraction of randomly arranged Ai and δAi was used to model the
amplitude observed at the sample boundary Ai

obs = Ai − δAi. In other words, the interval of
the apparent amplitude that still follows the exponential distribution was [Ai

min − δAi
min,

Ai
max − δAi

max]. In this paper, we set Ai
min = 50 dB, Ai

max = 109 dB, δAi
min = 1 dB, and

Ai
max = 10 dB to make the apparent amplitude range of synthetic data close to that in normal

rock AE experiment. As a matter of fact, the selection of the ranges for source amplitude
and attenuation generation has no effect on the results [49]. In addition, to minimize the
effect of data volume on deviation discussion, a data volume of 100,000 was generated.
Figure 2A shows the apparent amplitude-frequency distribution of generated data.

2.2. Determination of Optimal Estimation Method for Ac and A0

In studies on the earthquake sequence, determining the completeness magnitude Mc
is the priority of the seismic sequence analysis. In fact, the core of various seismic b value
estimation methods is the algorithm for searching for Mc. As some theories in seismic
research are often used in rock AE tests, these Mc estimation methods can also be applied
to estimate the completeness amplitude Ac of the rock AE apparent amplitude-frequency
distribution. Common Mc estimation methods are as follows:

(1) Maximum curvature method (MAXC) [23]
(2) Goodness-of-fit test (GFT) [23]
(3) Mc by b value stability (MBS) [24]
(4) Median-based analysis of segment slope (MBASS) [8]
(5) Fisher optimal split and Global Search algorithm (FGS) [25]
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These methods have different algorithms for determining the completeness magnitude
Mc. As shown in Figure 2A, the MAXC approach identifies the magnitude corresponding
to the maximum curvature of the cumulative magnitude-frequency distribution as Mc.
In fact, this point is also the magnitude corresponding to the maximum frequency of the
incremental magnitude-frequency distribution. The GFT method in Figure 2B determines
Mc by comparing the goodness-of-fit R of the fitted frequency-magnitude distribution
with that of the actual magnitude-frequency distribution, and the Mc corresponding to
R ≥ 95% confidence is taken as the completeness magnitude (R ≥ 90% confidence can also
be accepted as a completeness magnitude in the actual complex earthquake catalog). The
MBS method selects the starting point of magnitude where the change in the b value tends
to be stable as Mc (Figure 2C), that is:

∆b = |bave − b| ≤ δb (2)

where bave is the average estimated b value from each magnitude within the magnitude
interval [Mco, Mco + dM] and δb is the uncertainty of the b value proposed by Shi [51]. bave
and δb can be obtained from Equations (3) and (4):

bave = ∑Mco+dM
Mco

b(Mco)•
∆M
dM

(3)
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δb = 2.3b2

√
∑N

i=1 (Mi − 〈M〉)2

N(N − 1)
(4)

where b is the b value of the current magnitude Mco, N is the number of events, Mi is
the magnitude corresponding to event Ni, ∆M is the bin width, and <M> is the average
magnitude of all events greater than Mco. The FGS method integrates the Fisher optimal
split and global search algorithms to determine the log-linear segment of the incremental
amplitude-frequency distribution. As shown in Figure 2E, the FGS fully considers the
influence of data volume and goodness-of-fit on the estimation results.

Because the b value is a statistical parameter, the b value estimation will be more
stable and accurate with the increase in data volume, and this conclusion has already
been discussed by many researchers [8,50,52]. Here, we compared the accuracy of b value
estimation using synthetic AE amplitude data generated in Section 2.1 to explore the
differences in the above five completeness amplitude estimation methods under different
data volumes. We randomly generated a source amplitude that obeyed an exponential
distribution with a theoretical b value of 1.0666 and a data volume of 100,000 as [50, 109]
dB and assumed that the attenuation obeyed the Poisson distribution with the interval
of [1, 10] dB. According to the theoretical proof of Liu [25], the amplitude interval that
still obeys the exponential distribution after attenuation is [49, 99] dB. Therefore, the
theoretical completeness amplitude Ac of the synthetic apparent amplitude data is 2.45.
Then, Bootstrap was used to extract 1000 samples from apparent amplitude data with
data volumes of 100, 200, 300, 500, 800, 1000, 2000, 3000, 5000, 8000, 10,000, 30,000, 50,000,
and 100,000. Figure 3 shows the variation in average Ac and average b value of 1000
Bootstrap samples with different data volumes; the error bar in the figure is the Bootstrap
95% confidence limit.

As shown in Figure 3, the accuracy of Ac estimated by the five methods was positively
correlated with the accuracy of the b value, which indicates that selecting an appropriate
Ac is very important for the correct b value estimation. This also proves the availability
of generated synthetic data to simulate real AE data to a certain degree. It can be seen
from the stability of the estimation results that the goodness-of-fit of all methods exceeded
0.9 when the data volume was 3000. Because GFT-90% uses the cumulative amplitude-
frequency distribution to estimate Ac, the goodness-of-fit can reach 0.9 just for a data
volume of 100. An interesting phenomenon is that the accuracy of the Ac and b values
decreased with an increase in the data volume, and only when the data volume was greater
than 300, the results of 1000 Bootstrap samples could be successfully searched. MBASS
is more dependent on the amount of data and requires at least 5000 data volumes to
successfully search the results of 1000 Bootstrap samples. Therefore, these two methods
are not suitable for estimating the Ac and b values. The confidence limits and uncertainty
of MAXC and MBS were consistent when the data volume was less than 3000. However,
when the data volume was greater than 3000, the confidence limits of the MAXC and FGS
methods began to gradually decrease to 0, while the mean Ac and b value estimation of
MBS exceeded the theoretical value, and the uncertainty of Ac was evident. In addition,
because both Ac and b are statistical values, the stability of the statistical results largely
depends on the amount of data. To better search the log-linear segment, the doubly
truncated amplitude-frequency distribution was accepted by FGS, which fully considers
the amplitude distribution characteristics. Therefore, the uncertainty of the Bootstrap
confidence limit was higher than that of other methods when the data volume was small.
However, it can also be seen that the mean Ac and b values of the Bootstrap samples
obtained by FGS were still accurate.
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The column distribution of Ac obtained by 1000 Bootstrap samples of various com-
pleteness amplitude estimation methods is shown in Figure 4. This shows that MAXC
was the most stable and reliable, followed by the FGS method. Although the estimation
result of the GFT method also seemed very stable, it clearly underestimated the theoret-
ical Ac, which is inconsistent with the actual situation. Similarly, MBASS not only had
unstable results but also overestimated Ac by more than 15% of the samples. The MBS also
overestimated Ac and reached more than 10% of the samples when the data volume was
10,000 and 50,000. From the above analysis, it can be seen that the estimation methods of
completeness magnitude in seismology are also applicable for completeness amplitude Ac
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in small-scale rock AE tests, despite some differences in searching ability, accuracy, and
stability of estimation results among different methods.
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As can be seen from the amplitude-frequency distribution in Figure 2, the rock AE
data had an auxiliary discontinuous amplitude point A0 at the end of the high amplitude
segment, which was similar to M0 in the earthquake sequence. Therefore, when estimating
the b value based on the G–R law, the high amplitude data greater than A0 would inevitably
affect the accuracy of the b value estimation. As shown in Figure 2D,E, both the MBASS and
FGS can estimate the auxiliary discontinuous point of the magnitude-frequency distribution;
therefore, which one is more suitable for estimating the auxiliary discontinuous point is
worth further discussing. Figure 5 clearly shows that A0 estimated by MBASS was smaller
than Ac. Therefore, we continued to estimate the third discontinuous point. However, only
a few of the third discontinuous points met the requirements at the amplitude of 90 dB. By
contrast, the FGS method was able to successfully find both end discontinuities, and the
estimation A0 was very close to the theoretical A0 at the amplitude of 99 dB. Compared
with Figure 5a,b, the log-linear segment of the apparent amplitude-frequency distribution
between Ac and A0 identified by the FGS method was much more stable and reasonable
than that of the MBASS method. Therefore, the FGS was more suitable for estimating the
auxiliary discontinuous point A0 at the right end of the apparent amplitude-frequency
distribution in the rock AE.
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(b) MBASS; we also counted the number of third discontinuities of 1000 Bootstrap samples.

2.3. The Optimal b Value Estimation Procedure through Apparent Amplitude-Frequency
Distribution for Rock AE Tests

Because the Bootstrap approach can obtain a reliable estimation and avoid outliers,
here, combined with the Bootstrap, we proposed to use MAXC to estimate the completeness
amplitude Ac and FGS to estimate the auxiliary discontinuous point A0, respectively. How-
ever, after determining Ac and A0, another issue worth discussing was which regression
method we needed to use to estimate the b value of the apparent amplitude-frequency
distribution between Ac and A0.

Most papers still use least-squares regression (LSR), which assumes that the frequency
data errors are Gaussian, to estimate the b value. However, frequencies based on count
data have Poisson sampling uncertainties, which cause bias when using LSR for b value
estimation. Thus, a generalized linear model (GLM) subject to Poisson error can provide
a more accurate fit of count data [45,49,53]. Here, we also used the data generation in
Section 2.1 to compare LSR assuming a Gaussian error and GLM assuming a Poisson
error with apparent amplitude data between Ac and A0 at a 95% confidence limit. As
shown in Figure 6, the confidence intervals of LSR and GLM indicate significantly different
changing trends. The confidence intervals of GLM gradually narrow as the amplitude
decreases, and the whole amplitude show a “trumpet” shape. However, the confidence
interval of LSR remains parallel from small to large amplitudes, which evidently does
not conform to the characteristics of the amplitude-frequency distribution. Maximum
likelihood estimation (MLE) is currently one of the most popular methods for estimating
the b value [54], and it can be seen from Table 1 that the standard deviation and bias of
the b value obtained by this method are also very small. Therefore, once the apparent
amplitude-frequency distribution between Ac and A0 is determined, the MLE is also a
good choice for regression [49]. However, it is worth noting that the MLE does not have
an accurate confidence interval of the doubly truncated amplitude-frequency distribution
and cannot further analyze the uncertainty of the estimation results. Thus, we chose GLM
regression to fit log-linear amplitude of apparent amplitude-frequency between the left end
point Ac identified by MAXC and the right end point A0 identified by FGS, and here we
named this b value estimation procedure as MFBG (MAXC-FGS-Bootstrap-GLM).
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Figure 6. Ninety-five percent confidence limits of log-linear segment identified by MFBG from
synthetic data with 100,000 data volumes. (a) GLM regression assuming Poisson error. (b) LSR
regression assuming Gaussian error.

Table 1. Estimated b values by MFBG when using GLM, LSR, and MLE regression.

Theoretical b Value Estimating Method Estimated b Value Standard Deviation Bias

1.0666
GLM 1.0705 0.0471 0.0039
LSR 1.0714 0.0039 0.0048
MLE 1.0711 0.0233 0.0045

3. Application of MFBG in b Value Estimation of Rock AE Test

To evaluate the performance of the new b value estimation procedure MFBG, a non-
explosive fracturing agent expansion was designed to conduct an AE test on red sandstone,
marble, granite, and limestone. The rock broke and formed a specific failure surface because
the non-explosive fracturing agent was injected into the three pre-drilled holes in the middle
of the specimen (the mass ratio of expansion agent to water is 5:1.7). This experimental
design ensured that the AE signals collected by the sensor were all generated by rock
expansion fractures and did not rely on location technology to identify valid rupturing
data, and a PCI-2 AE system used in this test with six sensors that were tightly attached to
the two sides of rock specimen which parallel to the failure surface to collect the AE signals
radiated during rock failure, and the parameter settings of AE equipment are shown in
Table 2. The specific experimental process, rock sample size, and sensor distribution are
shown in Figure 7.

Six sensors were used in the test: to completely remove the signals of non-rock
fractures and ensure sufficient data volume, we set the AE signals arriving at the same
time every four channels as the rock fracture signal. In this way, we obtained 15 channel
combinations, each of which had 10 b values, and used MFBG to estimate the mean value
of the b values for each channel. Table 3 shows the mean b values of 1000 Bootstrap samples
from the six sensors for red sandstone, marble, granite, and limestone. We can see that the
b values of the four types of rocks decrease successively because the four types of rocks
have different scales of mineral particles, mineral composition, and discontinuity, which
lead to different failure scales under the expansion force.

Table 2. Parameter settings of AE device.

Sampling Rate/MSPS Resonant Frequency of Sensor/KHz Threshold/dB PDT/µs HLT/µs HDT/µs

10 140 40 50 300 200
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Figure 7. Schematic of non-explosive fracturing agent expansion rock AE test. Non-explosive fracture
agent was injected into three boreholes of the specimen, and the fracture surface was formed in the
center of the three boreholes. The label of specimen surface a’ is parallel to a, and b’ is parallel to
b [25].

Table 3. b values of 6 channels of red sandstone, marble, granite, and limestone.

Channels
Mean b Value

Red Sandstone Marble Granite Limestone

1 1.1009 0.8202 0.71992 0.40395
2 1.14325 1.0878 0.74096 0.55178
3 1.1957 1.10356 0.80763 0.59163
4 1.29028 1.15292 0.98828 0.63416
5 1.46777 1.2006 0.99417 0.75007
6 1.8879 1.2024 1.00422 0.82052

Generally, red sandstone with smaller mineral particles binding tightly is beneficial to
the stress increase and the final large-scale fracture formed, but it also limits the initiation
and propagation of rock cracks, resulting in a larger b value, as the number of large-scale
fractures is far less than that of small-scale fractures. In contrast, marble and granite
with larger mineral particles and more defects will have more complex heterogeneity
and internal structure characteristics, which is unbeneficial to the stress increase and
the final large-scale fracture formation, but this also provides the opportunity for crack
propagation and penetration, resulting in the generation of more large-scale fractures with
smaller b values during the rock failure. In particular, the mineral particles composition of
limestone is also small and binds tightly, but unlike red sandstone, there is usually a large
range of joints in limestone, which largely control the scale of rock failure, resulting in the
smallest b value than other rocks. Altogether, the estimated b values of various types of
rock samples are clearly different, which shows that the b value depends on the material
heterogeneity [55–57], which is also the basic idea for verifying the effectiveness of MFBG.

To explore in more detail the reasons why the b values of different types of rocks
showed an interval distribution, we use cross polar light technology to carry out a transpar-
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ent refractive index experiment on rock slices with a thickness of 0.03 mm and the size of
1.7 mm × 1.3 mm to observe rock microstructure and further analyze the relationships be-
tween AE b value characteristics and rock microscopic composition. As shown in Figure 8,
red sandstone is mainly composed of fine-grained quartz, which is tighter than marble
and composed of larger dolomite and calcite. Therefore, the b value of red sandstone was
slightly larger than that of marble. Granite has various mineral particles and defects or
voids, which make it prone to large-scale fractures. Limestone is mainly composed of
calcite and is even tighter than red sandstone. However, owing to the numerous joints
created during deposition, more large-scale fractures are generated. Therefore, the b value
of red sandstone was the largest, followed by marble and granite, and the b value of lime-
stone was the smallest. The results of the four types of rock specimens with b values from
microstructural characteristics are the same as the estimated b value using MFBG, which
indicates that this method is accurate and stable for the estimation of the rock AE b value.
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Figure 8. Microstructure of rocks obtained from transparent refractive index experiment. (a–d) Red
sandstone, marble, granite, and limestone, respectively. Qt—quartz; Dol—dolomite; Cal—calcite;
Kfs—potash feldspar; Bt—biotite; Pl—plagioclase [58].

The temporal variation characteristics of the b value are often used for seismic hazard
analysis, crack scale failure description, and damage accumulation assessment in rock;
normally, the b value is negatively correlated with the stress. As shown in Figure 9,
we used the new b value estimation procedure recommended in Section 2.3 to estimate
the AE b value with temporal variation and combined energy, amplitude, and strain to
further verify the effectiveness of the MFBG through the internal relationship between
the b value and crack scale development during rock failure. Because the b value is a
statistical value, the accuracy of its estimation results is greatly affected by the data volume.
Therefore, in order to improve the representativeness and the readability of the analysis
results, here we only conduct a special analysis on the granite with the largest data volume
collected. Figure 9c shows that the rock failure under expansion stress was manifested as
a continuous increase in deformation macroscopically, which has experienced the entire
process of compaction of existing defects and microcracks, initiation, propagation, and
interpenetration of new cracks, and finally, the formation of the main fracture [59,60]. In
this process, the appearance of energy and amplitude signals was usually triggered by
a rupturing scale, which in turn led to a decrease or increase in the b value under the
constraints of statistical laws. Furthermore, Figure 9 shows that the temporal variation
characteristics of b values decreased continuously, and especially for the time before 16,550 s
and after 16,600 s that b value almost linearly decreased. This is consistent with Scholz’s
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laboratory experiments [14], which also show that the b value in the size distribution of AE
events decreases linearly with differential stress. Therefore, the MFBG method estimated
the b value in the AE tests can accurately describe the size distribution characteristic of
rock failure.
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Figure 9. Temporal variation of AE b value, energy, amplitude, and strain of (a) red sandstone,
(b) marble, (c) granite, and (d) limestone. Since the development of non-explosive expansion agent
was very slow and few signals were generated in the early stage of the tests, the starting time of the
experimental analysis selected here was different.

4. Conclusions

To research the accurate b value estimation procedure based on apparent amplitude
distribution of rock AE, this paper performs a comparative analysis of various b value
estimation methods that are used in earthquakes by simulated apparent amplitudes. A new
b value estimation procedure was proposed, and its reliability is also further verified on
rock AE testing and a transparent refractive index experiment. The following conclusions
are drawn from this study:

Attenuation causes the two ends of the apparent amplitude-frequency distribution to
deviate from the log-linear relationship. Of course, there also retains a finite amplitude in-
terval that still obeys the G–R law, with the b value being the same as the source. Therefore,
we must search for the log-linear segment in the apparent amplitude-frequency distribution,
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which can represent the source size distribution characteristics. Furthermore, we gener-
ally set the acquisition threshold and maximum output amplitude of the AE equipment,
resulting in a doubly truncated exponential distribution for the rock AE frequency-size
distribution. We also define the left and right end amplitude points deviating from the G–R
law as the completeness amplitude Ac and auxiliary discontinuous amplitude A0, which
correspond to the completeness magnitude Mc and auxiliary discontinuous magnitude
M0 in the earthquake catalog. Additionally, more attention must be paid to the complete-
ness amplitude Ac and auxiliary discontinuous amplitude A0 to obtain the source size
distribution through the b value of the apparent amplitude frequency.

The estimation method of completeness magnitude commonly used in earthquakes
was also suitable for identifying the completeness amplitude in rock AE. Especially, the
MAXC can better estimate Ac, and the FGS can better estimate A0. Moreover, we combined
the Bootstrap approach to propose a new b value estimation procedure named MFBG, which
can better fit the apparent amplitude distribution without any attenuation compensation,
and the effectiveness of the new method was verified by the relationships between rock
crack size distribution and mineral grains and internal structure characteristics under
laboratory rock AE tests and transparent refractive index experiments. This study can
provide new insights and methods for studying the precursory characteristics of laboratory
rock tests and rock mass engineering through the variation of rock AE b value.
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