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Abstract: Time series forecasting provides a vital basis for the control and management of various
systems. The time series data in the real world are usually strongly nonstationary and nonlinear,
which increases the difficulty of reliable forecasting. To fully utilize the learning capability of machine
learning in time series forecasting, an adaptive broad echo state network (ABESN) is proposed in this
paper. Firstly, the broad learning system (BLS) is used as a framework, and the reservoir pools in the
echo state network (ESN) are introduced to form the broad echo state network (BESN). Secondly, for
the problem of information redundancy in the reservoir structure in BESN, an adaptive optimization
algorithm for the BESN structure based on the pruning algorithm is proposed. Thirdly, an adaptive
optimization algorithm of hyperparameters based on the nonstationary test index is proposed. In
brief, the structure and hyperparameter optimization algorithms are studied to form the ABESN
based on the proposed BESN model in this paper. The ABESN is applied to the data forecasting of air
humidity and electric load. The experiments show that the proposed ABESN has a better learning
ability for nonstationary time series data and can achieve higher forecasting accuracy.

Keywords: time series forecasting; echo state network; broad learning system; adaptive optimization
algorithm

MSC: 68T07

1. Introduction

Nonstationary time series represent a set of data in which the mean values change
with time. They exist widely in the real world [1], such as in the social sciences [2,3],
meteorological industry [4–6], financial markets [7–9], modern agriculture [10–14], and
electric power field [15,16]. It is vital to analyze the regularity of time series data and predict
their trend for system management and control, by collecting and organizing historical
data in social phenomena, identifying and filtering these data, and finding the trend of
the social phenomenon over time by analyzing the time series, thereby obtaining a more
accurate model structure, and using this model to predict the future changes of the social
phenomenon. Time series forecasting plays a crucial part in the advanced perception and
control of various systems.

Statistical methods and neural networks have been widely used in the field of time
series forecasting [17–19]. The classical methods include the autoregression moving average
model [20], radial basis function neural network [21], relevant vector machine [22], long
short-term memory (LSTM) [23], gated recurrent unit (GRU) [24], recurrent neural network
(RNN) [25], echo state network (ESN) [26], broad learning system (BLS) [27], and fuzzy
model [28]. For the methods above, the statistical models cannot fully exploit the internal
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correlation information in complex nonstationary time series, which disables it in real-
world applications. Deep learning networks can achieve a strong learning ability by
stacking layers with gradient optimization algorithms, but the time and space costs in
deep learning are large. The BLS is proposed to improve the training efficiency with
similar accuracy to deep learning networks [27]. Meanwhile, the ESN has attracted wide
attention as a recurrent neural network model, which is a lightweight structure. Many
scholars have studied forecasting models based on BLS and ESN. The BLS achieves the
horizontal expansion of network units rather than the vertical deepening, which is the
biggest structural difference from deep learning networks [29]. In the BLS, the original data
features are extracted by the mapping layer, and the mapping layer’s output is set as the
input of the enhancement layer. The final output weight matrix is solved by the pseudo-
inverse method. If the model performance is poor, incremental learning algorithms can be
applied to optimize the mapping or enhancement layers. The ESN can relatively solve the
problem of slow convergence and local minima in RNN. The ESN uses typical reservoir
computing, which consists of a dynamical reservoir pool with sparsely connected neurons.
It has a certain short-term memory capability because of the echo state property. It only
needs to train the output weight matrix, which is a simple linear regression process. The
existing studies show that BLS and ESN have certain advantages in data feature extraction
and regression. Meanwhile, there are disadvantages in the two networks, in which the
reservoir structure may be redundant and hyperparameters are difficult to determine.
Therefore, how to merge different networks to the extent of the learning performance for
the time series forecasting problem has been an important issue.

To improve the performance of a single machine learning model on nonstationary
time series prediction as described above, the ABESN is proposed by fusing the BLS with
ESN and introducing the optimization algorithms. In the framework of BLS, the reservoir
of ESN is introduced to the enhancement layer. The two models are merged structurally
to form the new BESN model. For the reservoir characteristics, the adaptive optimization
algorithm of the BESN structure based on the pruning algorithm is proposed. It can solve
the redundancy problem of reservoir information and reduce the structural complexity of
the model. For the fitting problem of nonstationary time series for the BESN, the adap-
tive optimization algorithm is proposed for the hyperparameter. It is based on the index
analysis of nonstationary time series with the ADF test. The optimization algorithms of
the structure and hyperparameter can adjust the BESN adaptively. The fused structure
and the optimization algorithms form the ABESN which can be applied in time series
forecasting. Relative to the general optimization algorithm, the optimization algorithm of
the ABESN model contains a structural optimization algorithm and a parametric optimiza-
tion algorithm, aimed at improving the prediction performance of the network model on
nonstationary time series by optimizing from two different perspectives.

This paper is organized as follows: Section 2 introduces the related methods in time
series forecasting; Section 3 presents the proposed adaptive broad echo state network
structure and the concrete optimization algorithms; Section 4 presents the experimental
results and analysis; Section 5 summarizes the method.

2. Related Works
2.1. Time Series Forecasting Methods

This section introduces the classical methods used in the field of time series forecasting.
The early forecasting methods are mainly the statistical methods based on the stochas-

ticity theory, including the autoregressive (AR) model [30], the autoregressive moving
average (ARMA) model [31], and the autoregressive integrated moving average (ARIMA)
model [32]. The AR uses a regression equation which is built by the correlation between
historical and current data. ARMA and ARIMA mainly solve the problem of stochastic
variation terms.

With the rapid development of computer hardware, machine learning begins to play
an important role. The classical machine learning models include the support vector
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machine (SVM) [33], long short-term memory (LSTM) [34], gated recurrent unit (GRU) [35],
ESN, and BLS. The SVM is less affected by the noise in small sample datasets. It can
cover complex decision boundaries, but the process of adjusting parameters is complicated.
Both the LSTM and the GRU are improvements of the RNN. They solve the gradient
disappearance and explosion caused by the accumulation of too much error in the RNN.
The GRU and LSTM introduce the concept of the gate. The LSTM consists of three gates,
namely, the input, output, and forget gates. The GRU consists of reset and update gates.
The structure of the GRU is simpler than that of the LSTM, and the GRU has been the
mainstream in time series forecasting. The most obvious feature of the ESN is the reservoir
computing and the echo state attribute which can quickly train the network. The BLS is
proposed relative to the deep learning network. The neurons in the BLS are expanded
horizontally rather than in the vertical direction.

Statistical methods can analyze stationary and linear time series data. Their forecasting
results are usually worse when the time series are nonstationary and nonlinear. Machine
learning methods mainly rely on the characteristics of the data, the structure of the model,
and computer resources. Scholars have tried to solve these problems by designing new
structures. In this paper, we propose the ABESN to improve the forecasting accuracy by
considering the occupied resources for the training.

2.2. Standard Broad Learning System

The BLS is based on the random vector functional link network [29], which is designed
to promote the network training speed and keep comparable the forecasting accuracy
compared to the deep learning network model [27]. The BLS contains a mapping layer,
an enhancement layer, and an output layer. The mapping layer can extract the features
of the original data. The enhancement layer is designed to reinforce the nonlinear fitting
ability. The incremental learning algorithm can help determine the number of nodes in
the enhancement and mapping layers. Meanwhile, some scholars have optimized the
BLS in terms of the feature extraction ability and the objective function. The classical
improvements include the robust version of BLS with L1 regularization, L2 regularization,
and elastic net regularization. They optimize the objective function on the premise that
both the training error and the weights obey the Laplace distribution. Then they can
reduce the effect of noises and avoid the risk of overfitting [36]. The least p-norm-based
BLS maintains the robustness to different types of noises based on the adaptive filtering
theory [37]. Hierarchical broad learning combines deep learning with BLS with structural
optimization [38]. It adds a hidden layer to the mapping layer of BLS, which improves the
fitting accuracy, but the generalization performance declines. The recurrent BLS and gated
BLS are the networks derived from the recurrent solution of the RNN and the gate idea of
the LSTM. They indirectly eliminate the problem of gradient disappearance in RNN and
LSTM and improve the network training efficiency [39].

The horizontal extension structure and incremental learning algorithm help the BLS
become an efficient network. However, the internal features of the data cannot be well
extracted using only the mapping and enhancement layer when the time series data are
strongly nonstationary and nonlinear. Meanwhile, the hyperparameters of the BLS also
need to be determined using an optimal method.

2.3. Echo State Network

The ESN can avoid the problems of slow convergence and a local minimum in the
RNN training [40]. The property of the echo state promotes the dynamic ability of the
network, which is suitable for nonlinear system modeling and time series forecasting.

Some scholars have tried to improve the ESN by taking its advantages and opti-
mization algorithms. The adaptive elastic ESN [41] was proposed to solve the covariance
problem and the sparse solution of multivariate time series. The multi-reservoir ESN based
on sparse Bayesian [42] is aimed at the random initialization of the connection matrix of
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the reservoir. A fast subspace decomposition ESN was presented to solve the ill-posed
problem of multivariate time series forecasting.

The main feature of the ESN is the sparsely connected reservoir which maps the
raw data to a high-altitude reservoir [43]. The output connection weights are trained in
the high-latitude state space using linear regression, while the other random connection
weights remain constant. It brings in the short-term memory capability for the ESN with
the echo state property and state update method. However, ESN often suffers from ill-
conditioning problems during training, especially when multicollinearity exists in the
network. Moreover, the parameter optimization of ESN usually adopts the batch gradient
descent method which has been the basic algorithm for unconstrained optimization, but
the results are usually not optimal.

It can be found from the literature review above that there is redundant information in
the reservoir of ESN sparse connections. The random initialization of connection weights
may lead to network instability and poor generalization ability. The enhancement layer of
the BLS uses simple nonlinear operations to obtain the output, which cannot fully extract
the features of nonstationary and nonlinear time series data. In response to the problems
above, the main contributions of this paper are as follows:

1. A novel structure of the BESN is built with the integration of the ESN reserve pool
and the BLS enhancement layer;

2. An adaptive structure optimization algorithm based on the pruning algorithm is
applied to the enhancement layer of ABESN to reduce the confidence redundancy of
the reservoir and reduce the complexity of the ABESN network;

3. For the characteristics of nonstationary time series, the ADF test is introduced to
determine the nonstationary indicators, and a hyperparameter-based adaptive opti-
mization algorithm is proposed to improve the prediction ability of the ABESN model
in nonstationary time series.

3. Adaptive Broad Echo State Network
3.1. ABESN Framework

In this paper, the reservoir structure of the ESN is introduced into the enhancement
layer of the BLS framework. Meanwhile, adaptive optimization algorithms are proposed
for the reservoirs in the enhancement layer and network hyperparameters. The proposed
network for time series forecasting is called the adaptive broad echo state network (ABESN).
The framework of the ABESN forecasting method is shown in Figure 1.
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As shown in Figure 1, the ABESN forecasting method consists of four parts: the input
layer, mapping layer, enhancement layer, and output layer. The input layer processes the
outliers of the input data, and the normalized data are imported to the mapping layer.
The mapping layer initializes the neural nodes first with sparse processing. Then, the
connection weights are randomly initialized. A nonlinear activation function is set to obtain
the mapping layer output. For the enhancement layer, the reservoirs are introduced, and
their parameters are initialized. The reservoir correlation coefficient matrix is obtained
using an adaptive structural optimization algorithm, through which the weight coefficients
are set to 0 for the several groups of nodes with the greatest correlation. Meanwhile, the
number of reservoirs is determined by the incremental learning algorithm. The output
of the enhancement layer is obtained by the pseudo-inverse method. For the output
of the model, the outputs of the mapping layer and enhancement layer are combined
and imported. The hyperparameter adaptive optimization algorithm is introduced for
model training.

As seen in the framework, adaptive optimization algorithms are proposed for the
enhancement layer structure and the output hyperparameters, which are presented in
Sections 3.2 and 3.3. The novel ABESN model makes each reservoir light and reduces the
information redundancy in the reservoir neurons. The fitting ability can be improved with
the optimization of the regularization coefficients. In brief, the ABESN model is built in
view of the training scale and the data extracting ability.

The concrete structure of BESN in the ABESN forecasting method is shown in Figure 2.
The BESN is derived from the basic structure of the BLS, in which the enhancement layer
nodes are replaced with ESN reservoirs. Then, the fitting capability of the nonlinear data
can be strengthened. The BESN inherits the rapid training of the BLS and the echo state
property of the ESN.
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In the BESN shown in Figure 2, the enhancement layer consists of ESN cells,
Z = [Z1, Z2, . . . , Zn], and H = [H1, H2, . . . , Hm]. The output of the enhancement layer
is denoted as follows:

Hi(k) = (1− α)Hi(k− 1) + α f (WhiZ(k) + WiHi(k− 1)), (1)

where k = 1, 2, . . . , n is the number of samples, Whi denotes the weight connection matrix
between the reservoir and the mapping layer, and Wi denotes the reservoir weight connec-
tion matrix, f (·) is a nonlinear activation function. The output formulas of ABESN and the
output weight matrix are:

Y = [Z1, Z2, . . . , Zn|H1, H2, . . . , Hm]Wm
out

= [Z|H]Wm
out = AmWm

out , (2)



Mathematics 2022, 10, 3188 6 of 21

Wm
out =

(
λI + Am(Am)T

)−1
(Am)TY. (3)

Wm
out can be solved using the ridge regression algorithm. In the ABESN, the incremental

algorithm is applied to dynamically increase the ESN reservoir. The incremental algorithm
does not need to retrain the network. It can complete the training only by processing the
matrix operation of new nodes. The incremental algorithm of the ABESN proceeds as
described below.

(1) Update the reservoir state matrix Am+1 after adding a new ESN cell,

Am+1 = [Am|Hm+1]. (4)

(2) Calculate the pseudo-inverse matrix
(
Am+1)∗ of

(
Am+1

)∗
=

[
(Am)∗ −DBT

BT

]
. (5)

(3) Calculate the updated output weight matrix Wm+1
out,

Wm+1
out =

[
Wm

out −DBTY
BTY

]
, (6)

where B, C, D are obtained as follows:

D = (Am)∗Hm+1

BT =

{
(C)∗, C 6= 0(

1 + DTD
)−1BT(Am)∗, C = 0

C = Hm+1 −AmD

(7)

The incremental algorithm can largely save the network training time and realize the
dynamic update of the output weight matrix. In practical training, an evaluation index is
chosen as the cutoff condition for the incremental algorithm.

3.2. Adaptive Structure Optimization for Enhancement Layers

The ESN reservoir structure is adopted in the enhancement layer neurons of the pro-
posed ABESN. The ESN reservoir can be regarded as a nonlinear dynamic filter, which
maps the input signals into a space of the bit through the high-dimension mapping. It
greatly increases the extraction capability of the time series. However, the neuron connec-
tions in the reservoirs are highly sparse, leading to the different contributions of neurons to
the enhancement layer. Meanwhile, the sparse connections expand the internal size of the
neurons, increasing the training time and the calculation resources. Then, an optimization
solution is studied in terms of the reservoir scale. An optimization algorithm based on the
pruning algorithm is proposed to adaptively determine the enhancement layer structure.

The training mechanism of the pruning algorithm relies on the correlation degrees
between the neurons in the reservoir. The neural nodes with high correlation are removed.
The remaining neural nodes are recalculated using the regression algorithm to output the
weight matrix. The reservoir can finally be built with a suitable size. In the solution, the
network structure can be adjusted adaptively to achieve a lightweight model.

The determination basis of the pruning algorithm is the correlation between neurons.
The correlation coefficient matrix of neurons in the enhancement layer is calculated as

rnm =

T
∑

i=1
(sni − sn)(smi − sm)√

T
∑

i=1
(sni − sn)

2 T
∑

i=1
(smi − sm)

2
, (8)
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where rnm denotes the correlation coefficient between the n′th and the m′th reservoir nodes.
T is the number of state vectors. sn and sm denote the mean value of the state vector of the
n′th and the m′th reservoir nodes, calculated as follows:

sn =
1
T

T

∑
i=1

sni. (9)

The correlation coefficient matrix R is obtained using Equation (10). The nodes with the
largest correlation coefficient can be determined through the one-dimensional conversion
of R and sorting. The selected nodes are pruned. The relationship matrix R is shown as
follows:

R =


1 r12 · · · r1T

r21 1 · · · r2T
...

...
. . .

...
rT1 rT2 · · · 1

. (10)

On the basis of the calculations above, the adaptive algorithm for the enhancement
layer structure is summarized in Algorithm 1.

Algorithm 1. Adaptive algorithm for the enhancement layer structure

Input: Number of mapping layer windows, initial value of the number of nodes in the
enhancement layer, RMSE threshold, maximum number of pruning, ESN initialization reservoir
size, and pruning step l.
Output: Predicted value, training time, and test time.

Step 1: Initialize the mapping and enhancement layers of ABESN, including random initialization
Wej, Whi, βej, βhi.
Step 2: Record the mapping layer vector Z, and the enhancement layer vector H.
Step 3: Calculate Wm

out and Am according to Equations (2) and (3).
Step 4: The largest group of subscripts in the relationship matrix R, calculated according to
Equation (10), is recorded as Rr = [(rn1, rm1)1, (rn2, rm2)2, . . . , (rnl , rml)l ].
Step 5: Set the connection weight matrix of the reservoir neural nodes corresponding to the
subscript number to 0 to achieve pruning optimization.
Step 6: The current pruned state is recorded, while the parameter optimization of the ABESN
network is updated using the parameter adaptive optimization algorithm shown in Figure 3.
Step 7: If the current forecasting result RMSE is greater than the set RMSE threshold, the number
of ESN reservoirs is dynamically increased using the incremental algorithm, as expressed in
Equations (4)–(7).
Step 8: Repeat Step 2 to Step 7 until the current forecasting result RMSE is less than the set RMSE
threshold, then skip to Step 9.
Step 9: Record forecasting results, including predicted values, time, and other indicators.

The Algorithm 1 shows that the optimization object is the ESN reservoir unit. The
weight of the most relevant nodes in the reservoir is set to 0. This optimization can reduce
the unnecessary connection in the reservoir. The network structure is simplified to speed
up the model training.

3.3. Adaptive Optimization for Hyperparameters

The nonstationary trend is one of the most important features of the time series data,
which mainly affects the forecasting accuracy; the analysis methods for nonstationary time
series include statistical tools such as correlogram is a statistical tool [44,45], statistical tests
for multiple detrended correlation coefficients [46], multifractal detrended cross-correlation
analysis [47], ADF tests [48], and many other mathematical analysis methods based on
statistical foundations. In this paper, we focus on the nonstationary degree of the time
series data and introduce the nonstationary index into the model training process. In the
adaptive parameter optimization algorithm, the ABESN model is based on the difference
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between the degree of nonstationary fluctuation of the predicted data and the degree of
nonstationary fluctuation of the real data as the basis for adjustment, while the evaluation
index also takes into account the point-to-point error between the predicted data and the
real data, with the former globally adjusting the degree of fluctuation between the predicted
data and the real data, and the latter locally adjusting the local error value.
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In existing studies [49,50], ADF is widely used in the detection of nonstationary time
series, especially in difference nonstationary data. In the test, the probability value (p) is
a very important evaluation metric, which can be obtained from the Akaike information
criterion (AIC). The probability value is considered a vital parameter in the optimization.

In this paper, an optimization method is proposed for the regularization coefficient λ
in the BESN. Firstly, the starting condition for hyperparametric optimization is proposed
on the basis of the nonstationary index,

Si
Si+1

> M, (11)

where S is the forecasting performance index proposed in this paper, i denotes the number
of iterations, and M is the change rate threshold. The forecasting performance index S is
calculated as follows:

Si = | p̂− p| · 1
N

√√√√ N

∑
k=1

(ŷ(k)− y(k))2, (12)
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where p̂ and p denote the probability values of predicted and true data in ADF, respectively.
ŷ(k) and y(k) denote the predicted and true values, respectively. N denotes the number
of samples.

If a certain iteration in the model training meets the index in Equation (12), the
regularization factor λ is adjusted and optimized as follows:

λi+1 =

{
α · λi, L ≥ 0
β · λi, L < 0

, (13)

where λi denotes the parameter after the i′th time. α and β are self-defined coefficients. L is
the judgment condition for the direction of iterative adjustment.

L =
N

∑
k=1

ŷ(k)− y(k). (14)

The adaptive optimization algorithm of the ABESN hyperparameter is shown in
Figure 3.

The definition in Equation (12) shows that Si contains the description of the global
error and the local error. A smaller value of Si indicates a better forecasting effect of the
model. When L is set to a different value range, the regularization scaling factor is adjusted
to different degrees. Then, the network can obtain a certain degree of adaptive capability.
The adaptive hyperparameter optimization algorithm and adaptive structure optimization
algorithm form conjointly the adaptive optimization for the ABESN, which will adjust and
optimize both the network structure and the hyperparameters.

The data preprocessing, training process, and testing process of ABESN are shown
in Figure 4, which shows the adaptive structure optimization algorithm and adaptive
parameter optimization steps, as well as the final testing step.
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4. Experiment and Result
4.1. Datasets

In the experiments, the forecasting methods were validated with two datasets from
real-world systems, the Beijing air humidity dataset and the US electric load dataset. The
ADF test method could obtain the data characteristics of the two datasets to verify the
characteristics of the data et itself such as non-stationarity. The ADF test is a more scientific
judgment method based on whether the mean and variance of time series change over
time. Meanwhile, the probability values (p), test statistics (TS), 1% critical value (CV1), 5%
critical value (CV5), and 10% critical value (CV10) are generated in a standard test. The
p-value is the probability, which reflects the likelihood of an event occurring. The p-value
obtained in the ADF test according to the significance test method is generally significant
at p < 0.05 and highly significant at p < 0.01, which means that the probability that the
difference between samples is due to sampling error is less than 0.05 or 0.01; conversely,
p≥ 0.05 means that it is not significant, thus rejecting the original hypothesis. The p-value is
an important basis for testing decisions; hence, it is chosen as the index in the optimization.
To make the data more convincing, it is necessary to determine the numerical relationship
among the statistics, CV1, CV5, and CV10. According to the Akaike information criterion
(AIC), the test time series is nonstationary when p ≥ 0.05, TS > CV1, TS > CV5, TS > CV10,
and the null hypothesis is not denied.

4.1.1. Beijing Air Humidity Dataset

The first dataset was a meteorological dataset. The dataset of the air humidity moni-
toring data in Beijing was selected.

The sampling period of the Beijing humidity dataset is 1 h, with a total of 21,600 records.
The data of 720 days were selected as the training set, while the data of 180 days were
selected as the test set, strictly following the ratio of training to test sets of 4:1. The ADF
test yielded p = 0.1451, TS = −3.3838, CV1 = −4.4059, CV5 = −3.8500, and CV10 = −3.5642.
The original hypothesis could not be rejected, indicating the non-stationarity of the data.
In the experiment, each set of data contained 12 samplings, in which the data of the first
11 h were set as the input and the data of the last 1 h were set as the output. The general
distribution of the Beijing humidity dataset is shown in Figure 5.
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4.1.2. US Electricity Load Dataset

The other dataset used in the experiments was the electric load dataset in the US. The
data were collected from 1 January 2017 to 1 January 2020. The sampling interval is 1 h,
and the total number of records is 26,280. In the experiment, the anomalous data in the
original records were deleted first. Then, the consecutive data of 625 days were selected. A
total of 15,000 sets were used as the experimental dataset. In each set of samples, the data
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of the first 23 h were set as the input and the data of the last 1 h were set as the output. The
training set accounted for 80% and the test set accounted for 20% of the data. The ADF
test yielded p = 0.3550, TS = −2.4469, CV1 = −3.9602, CV5 = −3.4109, and CV10 = −3.1272,
which shows that the data were non-stationary. The total sample distribution of the electric
load dataset is shown in Figure 6.
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4.2. Experimental Environment and Evaluation Metrics
4.2.1. Experimental Environment and Setup

The platform in the experiment was based on a 64 bit Windows 10 system with 16 GB
of RAM, an AMD R7 4800 H (2.9 GHz) processor, a software support framework in Keras
2.4.3, and a programming language of Python 3.7.

To verify the ABESN model proposed in this paper, the relevant forecasting models
were selected as the comparisons, including the GRU, LSTM, ESN, BLS, and BESN. The
ESN, BLS, and BESN were selected because the ABESN is improved in the framework
of BLS and ESN and optimized from the BESN. The broad learning methods are studied
to solve the problems in deep learning; hence, the GRU and LSTM were necessary as
comparison models.

For the two datasets selected in the experiments, the comparison models above were
tuned to reach the relative optimal status. The parameters of the models are recorded
in Tables 1 and 2. The parameters include the number of neural nodes in the mapping
layer, the number of neural nodes in the enhancement layer, the size of the reservoir, the
spectral radius (which is generally set between 0 and 1 to ensure the echo state property),
the leakage rate, and the sparsity.

Table 1. Configuration of each model in Beijing air humidity dataset cited.

Model
Number of

Mapping Layer
Nodes

Number of
Enhancement
Layer Nodes

Reservoir Size Spectral
Radius Rate Leaking Rate Sparseness

BLS 10–30 2–30 NA NA NA NA
ESN NA NA 300–800 0.90 0.10 0.09

BESN 10–30 2–30 300–800 0.90 0.10 0.09
ABESN 10–30 2–30 300–800 0.90 0.10 0.09
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Table 2. Configuration of each model in the US electric load dataset.

Model
Number of

Mapping Layer
Nodes

Number of
Enhancement
Layer Nodes

Reservoir Size Spectral
Radius Rate Leaking Rate Sparseness

BLS 10–40 2–30 NA NA NA NA
ESN NA NA 300–1000 0.90 0.10 0.09

BESN 10–40 2–30 300–1000 0.90 0.10 0.09
ABESN 10–40 2–30 300–1000 0.90 0.10 0.09

4.2.2. Time Series Forecast Error Metrics

The accuracy of forecasting depends on the forecasting error. The use of correct
error forecasting measures is of vital importance. An error not only affects the model’s
optimization but also distorts the choice of the most suitable model. There are many
categories for measuring forecasting errors depending on the nature of the data. According
to Hyndman and Koehler (2006) [51], the common metrics used are described below.

Statistical forecasting measures are dependent on scale. When we refer to scale, this
means that error measures are expressed in the same units. This category consists of the
mean absolute error (MAE) [52], mean squared error (MSE), and root-mean-squared error
(RMSE) [53]. The MAE should not be used if there are outliers (see Hyndman, 2006) [51].
The MSE is suitable when there are big errors. Chai and Drexler (2014) [54] suggested the
RMSE over the MAE for model optimization, as well as for the assessment of different
models where the error distribution is expected to be Gaussian. The above three indices
depend on the measured units of the variables. Thus, they are used as measures for
comparison only when we have the same variable on different models.

Statistical forecasting measures of percentage error are scale-free and are used for the
comparison of forecasting among different time series. However, they are greatly affected
the zero values in a time series. In such cases, they become infinite or undefined, thus being
nonexplanatory (see Hyndman 2006) [51]. This category consists of the mean absolute
percentage error (MAPE) and symmetric mean absolute percentage error (SMAPE) [55].
The MAPE cannot be used if there are zero values on the examined data. The SMAPE
avoids the problem of large errors of the MAPE when data values are close to zero.

Scale-free error metrics (SFEMs) escalate the error on the basis of the mean absolute
error (MAE) within the sample from a naïve forecasting method (random walk). In this
category, we have the mean absolute scaled error (MASE), which is suitable for time series
and zero data.

Lastly, the Theil U statistic is a measure of accuracy that compares the forecasted
results with the results of forecasting with minimal historical data. It also squares the
deviations to give more weight to large errors and to exaggerate errors, which can help
eliminate methods with large errors.

Each category has its pros and cons. Therefore, their use depends on each independent
variable and the data. It is important not to examine an individual error measure during
the assessment of a model. If all time series are on the same scale, the procedures of
preprocessing are accomplished, and the aim was to assess the forecasting, then the MAE
must be chosen because it is easier to be explained (see Shcherbakov et al., 2013) [56]. Chai
and Draxler (2014) [54] suggested the RMSE over the MAE when the error distribution is
expected to be Gaussian. In case the data contain outliers, the application of escalating
measures is recommended, e.g., the mean absolute scale error (MASE). In this case, the time
horizon must be large enough but there must not be repeated values and the normalized
factor must be equal to zero (Shcherbakov et al., 2013) [56].

In summary, the evaluation indicators selected in this paper included the MAE, RMSE,
and SMAPE, and each evaluation indicator is defined as follows:

MAE =
1
N

N

∑
k=1

∣∣yr(k)− yp(k)
∣∣, (15)
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RMSE =

√√√√ 1
N

N

∑
k=1

(yr(k)− yp(k))
2, (16)

SMAPE =
1
N

N

∑
k=1

∣∣yr(k)− yp(k)
∣∣

yr(k) + yp(k)
, (17)

where yr(k) denotes the true value of the k′th ample, yp(k) denotes the predicted value of
the k′th sample, and N denotes the number of samples.

4.3. Results
4.3.1. Experimental Results of Beijing Air Humidity Data

The forecasting results of each model on the air humidity data are shown in Figure 7.
The curves in different colors indicate the forecasting results of different models. The
forecasting results of the first 70 sets of data are shown. In the figure, an enlarged view is
given for a clear and intuitive comparison. The curve in red denotes the real data, and the
curve in blue denotes the forecasting results of the ABESN model. It can be found that the
results of the ABESN were the closest to the real data among all forecasting curves.
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The evaluation metrics of the ABESN model and the comparison models on the test
set of the humidity data and the training time are shown in Table 3. It can be seen that the
deep learning networks of the GRU and LSTM improved the accuracy relative to the BLS
and ESN, but the training time became long. The ABESN had the best performance in each
evaluation metric, and the training speed declined relative to the GRU and LSTM.

Table 3. Evaluation index of each model in the Beijing air humidity dataset.

Model Training Time (s) SMAPE MAE RMSE

ESN 24.4139 0.0429 5.1367 7.4954
BLS 0.0480 0.0407 4.8979 7.5339
GRU 175.5832 0.0355 4.4311 7.3018
LSTM 132.0319 0.0372 4.5892 7.3669
BESN 84.9047 0.0414 5.1941 7.3062

ABESN 105.4334 0.0403 4.3693 6.7875

The forecasting errors of each model are shown in Figure 8. The bars indicate the
difference between the forecasting results and the real data. As seen in Figure 8, the bars
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of the BLS and GRU were taller, showing a larger error. The blue bars of the ABESN were
lower than others, indicating smaller errors.
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The data distribution of the forecasting results of each model is shown in Figure 9.
The boxplots of the models are compared with the real data. The horizontal lines and star
dots in each box indicate the median and mean of the forecasting results. The plot shows
that the distribution of the ABESN results was closest to the real data.
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The adaptive tuning process of the hyperparameter in the ABESN is shown in Figure 10.
The changes in the regularization coefficient and the RMSE in the tuning are plotted, where
the red dotted line means the RMSE is 0. After 23 iterations, the hyperparameter λ reached
a more suitable value, and the corresponding RMSE was minimized.

The scatter distributions of the forecasting results of models are shown in Figure 11.
The plots contain the scatter distribution of the forecasting values, the fitting line of the real
data, and the fitting line of the predicted data. The horizontal axis indicates the true value,
and the vertical axis indicates the predicted value. The dots in blue indicate the scattered
points of the predicted values. The straight lines in black and red are the fitting results of
the real and predicted values, of which the slope is 1 and the intercept is 0. The slopes of
the ABESN, BESN, GRU, LSTM, BLS, and ESN were 0.90, 0.48, 0.49, 0.43, 0.42, and 0.43,
respectively. The intercepts were 5.68, 38.89, 38.77, 38.72, 36.79, and 39.53, respectively. It
can be seen that the forecasting results of ABESN were the closest to the real data with
the smallest errors. The results in Figure 11 are consistent with the evaluation metrics
in Table 3.
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To more strongly verify the predictive power of the model, Figure 12 shows the
prediction difference in values between timesteps. Through the slope and intercept of
different models on time-differenced data, it can be found that the slope of the ABESN
model was closest to 1 and the intercept was closest to 0. Instead, the slope of the ESN
model was farthest from 1 and the intercept of the BLS model is the largest; therefore,
from this prediction using the time-differenced data perspective, we can also get that the
prediction ability of the ABESN model was stronger than that of other comparable models.

4.3.2. Experimental Results of US Electricity Load Data

The forecasting results of the electric load dataset in the US are shown in Figure 13,
which contains a range of 80 sequential points. In the figure and the enlarged view, the
curve in blue was closest to the red one, indicating that the results of the ABESN were
closest to the real value.
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Table 4 shows the evaluation metrics and model training time for each model on the
electric load test dataset, and Figure 14 shows the gap between the predicted and real data
for each model. Table 4 and Figure 14 can show the specific and intuitional performance of
different forecasting models.

Table 4. Results of evaluation metrics for each model on the U.S. electric load dataset.

Model Training Time (s) SMAPE MAE RMSE

ESN 20.0324 0.0073 227.3705 359.3435
BLS 0.0323 0.0117 346.1871 416.3548
GRU 176.5443 0.0083 266.4652 335.5402
LSTM 155.5230 0.0073 231.4214 293.2511
BESN 98.6472 0.0072 224.6844 286.7904

ABESN 115.6756 0.0057 173.3812 233.4863
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The tuning process of the ABESN parameter is shown in Figure 15. The hyperparame-
ter λ changed along with the RMSE, which reached the minimum value after 38 iterations
of the adaptive tuning. The plot shows that λ increased in the first 33 iterations before
converging until the 38th iteraation.
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The scatter distribution of the results on the US electric load dataset is shown in
Figure 16. The slopes of the ABESN, BESN, GRU, LSTM, BLS, and ESN were 0.98, 0.97,
0.93, 0.95, 0.96 and 0.97 with intercepts of 262.05, 377.83, 904.65, 619.51, 776.44, and 384.44,
respectively. It is proven from the values of slope and intercepts that the ABESN obtained
the best fitting.

Predicting the time-differenced data rather than the raw data is a much stronger
indication of the predictive power of the model. Figure 17 shows the prediction difference
in values between timesteps. Although the intercept of the ABESN model on the time-
differenced data was not the smallest, only larger than the intercepts of the BESN model,
GRU model, and LSTM model, the slope of the ABESN model was the closest to 1. Overall,
the predictive ability of the ABESN model was still excellent.
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4.4. Discussion

It can be seen from the results above that the BESN performed better than the single
BLS and ESN models. It is proven that the proposed fusion network benefitted from the
broad learning and the reservoir structure.
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The RMSE, MAE, and SMAPE of the ABESN model were the smallest among the
evaluation metrics in Tables 3 and 4, indicating the best fitting ability. On the air humidity
dataset, the RMSE was decreased by 9.44%, 9.91%, 7.04%, 7.87%, and 7.10% relative to the
ESN, BLS, GRU, LSTM, and BESN, respectively. On the electric load dataset, the RMSE was
decreased by 35.02%, 43.92%, 30.41%, 20.38%, and 18.59% relative to the ESN, BLS, GRU,
LSTM, and BESN, respectively. A similar performance comparison can be found in the error
plots and the result distributions. At the same time, the ABESN model demonstrated its
excellent prediction ability in nonstationary time series by both predicting time-differenced
data and directly predicting numerical values.

This proves that the ABESN surpassed the classical models of the BLS, ESN, GRU, and
LSTM on the two datasets. Moreover, the optimization algorithms were proven to work
because the ABESN had better results than the BESN.

In the experiments of the two datasets, the ABESN performed better than the deep
learning networks of the GRU and LSTM in terms of training speed, benefiting from
the structure of the broad framework and the reservoirs. Due to the combination of the
structure, the training of the ABESN was slower than that of the BLS and ESN. Therefore,
the forecasting accuracy of the ABESN was improved at the expense of the structural
complexity to some extent.

5. Conclusions

In this paper, the ABESN model was proposed for the forecasting of nonstationary
time series. The ABESN is a novel network based on the combination of broad learning
and the echo state structure, as well as the adaptive optimization of the structure and
hyperparameters. The model was verified on two datasets representing natural and social
systems with nonstationary time series. It is proven that the proposed model benefited
from the fusion of the BLS and ESN. Meanwhile, the optimizations were efficient in terms of
both the network structure and the hyperparameters. The training time of the ABESN was
longer than the simple BLS and ESN, but it was decreased compared to the deep learning
networks. The proposed model aims to balance the forecasting accuracy with the model
complexity, and it achieved a certain effect. In future work, the determination of the neuron
amounts should be explored for the mapping layer in ABESN. Meanwhile, the training
speed can be improved by introducing other optimization methods.
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