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Abstract: The existing phase field model of polymer crystallization contains many parameters that
lack actual physical meaning. Although the value of these parameters can be adjusted to obtain
results consistent with the experiment, it cannot correspond to the experimental conditions. In this
paper, a new phase field model is established. By adjusting the latent heat, various forms of isotactic
polystyrene crystals, such as dendrites, spherulites, lamellas, etc., can be simulated. Latent heat
refers to the heat absorbed or released by a substance from one phase to another and has important
physical meaning during the solidification process. The finite difference method was used to solve
the model, and then the data were used to visualize. The simulation results were consistent with
the experiment. Numerical simulation results under pure diffusion conditions show that the newly
established phase field model can qualitatively predict the polymer growth process and provide a
theoretical basis for the preparation and optimization of high-performance polymers. In order to
make the simulation result closer to the actual growth of the crystal, the flow velocity is added in the
simulation to make the melt convection. Under forced convection, the simulated polymer crystal
image is no longer symmetrical.

Keywords: phase field model; latent heat; polymer; numerical simulation; finite difference method;
convection

MSC: 76-10

1. Introduction

With the development of materials science, polymers have become indispensable ma-
terials in our lives. The microstructure formed during the solidification process determines
the properties of the polymer. In the early days, experimental methods were often used to
study microstructures. Due to the influence of experimental conditions, costs, and the rapid
development of computer science, numerical simulation methods were often used in the
later stages to study microstructures [1]. Crystallization is a phase transformation of matter
from an amorphous to a crystalline state. In general, crystallization involves two steps:
nucleation and growth [2]. Since the phase field method avoids the tracking interface, on
the basis of generating punctate nuclei or directional nuclei, this paper uses the phase field
method to numerically simulate the growth process of isotactic polystyrene. Caginalp [3]
verified the phase field model, confirmed the correctness of the model, and introduced
anisotropy into the model. R. Kobayashi [4] used an anisotropic phase field model to
perform two-dimensional numerical simulation of dendrites, and later he extended the
dimension to three-dimensional. However, the early phase field model does not conform
to the principle of the local entropy increase in thermodynamics. Gránásy et al. [5,6] used
artificially specified parameters in the phase field model and did not obtain the parameters
from the real material, which is not conducive to linking the simulation results with the
experiment. Xu et al. [7] established a phase field model with polymer characteristics
and extracted model parameters from actual material parameters so that the phase field
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variables had practical significance. Based on the local free energy function proposed by
Harrowell and Oxtoby [8] , Wang et al. [9] improved the phase field governing equation of
Xu et al. Zhang et al. [1] found that when Tc ≥ 230 ◦C , the value of ξ constructed by Wang
et al. fluctuates greatly and even appeared negative. Therefore, the free energy density
function is reconstructed, and the phase field governing equation is established. In this
paper, the phase field equation improved by Zhang et al. is coupled with the temperature
field equation improved by Bahloul A et al. [10] to establish a phase field model. By
changing the latent heat, various forms of isotactic polystyrene crystals, such as dendrites,
spherulites, lamellas, etc., can be simulated. The crystal evolution is controlled by two
equations; one is the phase field equation that controls the crystal evolution, and the other
is the heat equation that controls the temperature [10].

2. Phase Field Model
2.1. Phase Field Equation

The phase field equation introduces the variable Φ(x, t) to represent the physical state
of the system in space x and time t. Φ(x, t) is a dimensionless variable, Φ = 1 means
solid phase, and Φ = 0 means liquid or amorphous phase. On the solid–liquid interface,
Φ changes continuously between 0 and 1. The equation of Φ(x, t) evolving with time is:

∂Φ(x, t)
∂t

= −Γ
δF(Φ, T)
δΦ(x, t)

(1)

Among them , Φ(x, t) is a non-conservative phase field variable, Γ is the interface mobility,
F(Φ, T) is the total free energy of the system, and the expression is:

F(Φ, T) =
∫

fcryst(Φ, T)dV =
∫
[ fcryst(Φ, T) + fgrad(Φ)]dV (2)

flocal(Φ, T) represents the local free energy density function, and fgrad(Φ) represents the
gradient free energy function. Wang et al. improved the phase field governing equation of
Xu et al. based on the local free energy function proposed by Harrowell and Oxtoby. The
expression is as follows:

∂Φ(x, t)
∂t

= −Γ[WΦ(Φ− ξ)− k2
0∇ · (β(θ)2) + k2

0
∂

∂x
(β(θ)β′(θ)

∂Φ
∂y

) + k2
0

∂

∂y
(β(θ)β′(θ)

∂Φ
∂x

)] (3)

Zhang et al. found that when Tc ≥ 230 ◦C , the value of ξ constructed by Wang et al.
fluctuates greatly and even appears negative. This is obviously unreasonable. Since the
values of ξ and Φ will have a great impact on the free energy density function, in order to
simulate the crystal growth phenomenon more reasonably, when Tc ≥ Tm and Tc < Tm,
Zhang et al. modified Φ and ξ . The free energy density function is reconstructed, and the
phase field governing equation is established. The expression is as follows:
when Tc < Tm:

ξ =
1
2

ξ0 −
3ξ2

0 − 6ξ0Φ̂ + 3Φ̂2

6ξ0 − 4Φ̂
, Φ̂ =

T0
m − Tm

T0
m − T

(4)

when Tc ≥ Tm:

ξ =
1
2

ξ0 +
3ξ2

0 − 6ξ0Φ̂ + 3Φ̂2

6ξ0 − 4Φ̂
, Φ̂ =

T0
m − Tm

T0
m − 2(Tm − T)

(5)
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2.2. Temperature Field Equation
2.2.1. Traditional Temperature Field Equation

During the crystallization process, the crystallization rate and morphology of polymer
crystals are affected by many factors, such as latent heat, flow velocity, etc. The equation
for the evolution of the temperature field T(x, t) with time is :

∂T
∂t

= α∇2T + K
∂Φ
∂t

(6)

Among them, the thermal diffusivity is α = k
ρCp

, K = ∆H
Cp

, ρ means density, ∆H means
latent heat, and Cp means specific heat capacity at constant pressure.

2.2.2. The Improved Temperature Field Equation of Bahloul A et al.

Since the phase field variable ∂Φ
∂t is proportional to the propagation velocity vn of

the interface, the evolution of ∂Φ
∂t and the front growth rate Gr are similar [10]. Based

on this idea, Bahloul A et al. combined the phase field equation of the growth equation
proposed by Lauritsen and Hoffmann [11,12] and set the dimensionless diffusion coefficient
τ = α

ε2Γ between Tcmax and T0
m to: τ∗ = 1

H(Tc)
, and the dimensionless latent heat K between

Tg and Tcmax is modified to: K∗ = K̂0
H(Tc)

. At other temperatures τ∗ = 1, K∗ = K̂0. The
model parameters are all calibrated under Tcmax, and the temperature dependence is only
represented by H(Tc). The expression of H(Tc) is as follows:

H(Tc) = h0 exp(− h1

Tc − 60
) exp(− h2

242− Tc
) (7)

Among them, Tc represents the experimental temperature, Tg represents the glass transition
temperature, Tcmax represents the maximum growth temperature, K̂0 represents the initial
dimensionless latent heat, h1 and h2 are parameters, and only the following conditions are
required:

H(Tc = Tcmax) = 1,
dH(Tc)

dTc
(Tc = 180 ◦C) = 0, h0 = exp(

h1 + h2 + 2
√

h1h2

62
) (8)

In this paper, for the convenience of calculation, h0 = 1.0378, h1 = 3.75, and h2 = 1,
respectively. The improved temperature field equation is:

∂T
∂t

= α∇T2 + K∗
∂Φ
∂t

(9)

Based on the improved phase field equations of Zhang et al., this paper couples the
improved temperature field equations of Bahloul A et al. to establish a new phase field
model. The governing equations are as follows:

∂Φ
∂t

= −Γ[WΦ(Φ− ξ0

2
+ ξ̂)− k2

0∇ · (β2(θ))∇Φ + k2
0

∂

∂x
(β(θ)β′(θ)

∂Φ
∂y

)− k2
0

∂

∂y
(β(θ)β′(θ)

∂Φ
∂t

)] (10)

∂T
∂t

= α∇T2 + K∗
∂Φ
∂t

2.3. Numerical Solution of Phase Field Model

In the process of numerical solution, the area to be solved is meshed first, and then the
phase field equations and temperature field equations are discretized at nodes so that the
equations are only established at discrete nodes [13]. Finally, the discretization method is
used on the nodes, the numerical solution is used as the approximate value of the exact
solution, and the difference format is obtained.
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The finite difference method is used to numerically solve the phase field model. In
order to facilitate the calculation, the variables are dimensionless. The first-order partial
derivatives of Φ(x, t) and T(x, t) with respect to time both use forward differences and the
partial derivatives of Φ(x, t) with respect to space use second-order central differences. The
nine-point difference format is used for Laplacian ∇2Φ, ∇2T.

∂Φ
∂t
|ni,j ≈

Φn+1
i,j −Φn

i,j

∆t
(11)

∂T
∂t
|ni,j ≈

Tn+1
i,j − Tn

i,j

∆t
(12)

∂2Φ
∂x2 |

n
i,j ≈

Φn
i+1,j − 2Φn

i,j −Φn
i−1,j

∆x2 (13)

∂2Φ
∂y2 |

n
i,j ≈

Φn
i,j+1 − 2Φn

i,j −Φn
i,j−1

∆y2 (14)

∇2Φ = (
∂2Φ
∂x2 +

∂2Φ
∂y2 ) ≈

2Φn
i+1,j + 2Φn

i−1,j + 2Φn
i,j−1 + 2Φn

i,j+1 − 12Φn
i,j

4∆x2 (15)

+
Φn

i+1,j−1 + Φn
i−1,j−1 + Φn

i+1,j+1 + Φn
i−1,j+1

4∆x2

∇2T =
∂2T
∂x2 +

∂2T
∂y2 ≈

2Tn
i+1,j + 2Tn

i−1,j + 2Tn
i,j−1 + 2Tn

i,j+1 − 12Tn
i,j

4∆x2 (16)

+
Tn

i+1,j−1 + Tn
i−1,j−1 + Tn

i+1,j+1 + Tn
i−1,j+1

4∆x2

Since the phase field model only gives the evolution of the liquid–solid interface,
initial conditions are required: the radius of the crystal nucleus is r0, the internal phase field
parameter of the nucleation φ = ξ0, the external phase field parameter of the nucleation
φ = 0, and the initial temperature is T = 0.

when x2 + y2 ≤ r2
0 , Φ = ξ0, T = 0

when x2 + y2 > r2
0 , Φ = 0, T = 0

Boundary conditions: At the boundary of the calculation grid, both the phase field
and the temperature field use cyclic boundary conditions.

3. Result

Under pure diffusion conditions, the improved phase field model is used to numeri-
cally simulate the growth process of isotactic polystyrene (ips), and the numerical results
are compared with experimental results to verify the feasibility of the newly established
phase field model. The common forms of isotactic polystyrene crystals are: dendrites,
spherulites, lamellas, and so on. A numerical simulation is performed on a cell grid with
Nx = Ny = 500. The spatial steps in the x and y directions are ∆x = ∆y = 3, and the time
step is ∆t = 0.1. The parameters used in the simulation are shown in Table 1.
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Table 1. The parameter values required for simulation are shown in the following table.

Parameter Value

maximum growth temperature Tcmax 180 ◦C
class transition temperature Tg 90 ◦C
experiment temperature Tc 180 ◦C
melting temperature Tm 224.7 ◦C
equilibrium melting temperature T0

m 242 ◦C
Initial offset angle θ0 0
Phase field parameters inside nucleation ξ0 0.929
Anisotropy modulus j 6
Model parameters W 5.76

Numerical Simulation Results

(1) Dendrite

In the simulation, the initial latent heat is K0 = 0.95, the anisotropy strength is ε = 0.06,
and the morphology of the dendrite is obtained by the simulation. The result is shown in
Figure 1a–c. Their time iteration steps are 1000, 2000, and 3000, respectively. By comparing
the results with the experimental result (d), it is found that the numerical simulation results
are very consistent with the experimental results.

Figure 1. When K0 = 0.95 , the morphology of dendrites is obtained by numerical simulation.
((a–c) are the numerical simulation results with time iteration steps of 1000, 2000, and 3000, respec-
tively. (d) is the experimental result).

In the simulation,the initial latent heat is K0 = 1.1, and the anisotropy strength is
ε = 0.06. The simulation results are shown in Figure 2a–c. Their time iteration steps are
1000, 2000, and 3000, respectively. The simulation obtains a hexagonal snowflake shape.
By comparing the results with the experimental result (d), it is found that the numerical
simulation result is very close to the experimental result.

Figure 2. When K0 = 1.1, and the morphology of dendrites is obtained by numerical simulation.
((a–c) are the numerical simulation results with time iteration steps of 1000, 2000 and 3000, respectively.
(d) is the experimental result).

In the simulation, the initial latent heat is K0 = 1.25, the anisotropy strength is ε = 0.06,
and the morphology of the dendrite is obtained by the simulation. The time iteration steps
in Figure 3 are 1000, 2000, and 3000, respectively. (a–c) are the numerical results, and (d) is
the experimental result. Comparing the numerical simulation results with the experimental
results, it is found that they are very close.
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Figure 3. When K0 = 1.25, the morphology of dendrites is obtained by numerical simulation.
((a–c) are the numerical simulation results with time iteration steps of 1000, 2000 and 3000, respectively.
(d) is the experimental result).

In the simulation, the initial latent heat is K0 = 1.5, and the anisotropy strength is
ε = 0.06. The time iteration steps in Figure 4 are 1000, 3000, and 5000, respectively. (a–c) are
the numerical results, and (d) is the experimental result. By comparing the results with the
experimental result (d), it is found that the numerical results are almost in good agreement
with the experimental results.

Figure 4. When K0 = 1.5, and the morphology of dendrites is obtained by numerical simulation.
((a–c) are the numerical simulation results with time iteration steps of 1000, 3000 and 5000, respectively.
(d) is the experimental result).

(2) Spherulites

In the simulation, the initial latent heat is K0 = 1.4, the anisotropy strength is ε = 0,
and the spherulite morphology is obtained by the simulation. The time iterations in
Figure 5 are 1000, 3000, and 5000, respectively. (a–c) are the numerical results, and (d) is the
experimental result. Through comparison, it is found that the numerical results are very
consistent with the experimental results.

Figure 5. When K0 = 1.4, the morphology of spherulite is obtained by numerical simulation. ((a–c) are
the numerical simulation results with time iteration steps of 1000, 3000 and 5000, respectively. (d) is
the experimental result).

(3) Lamellar

In the simulation, the initial latent heat is K0 = 0.8, and the anisotropy strength is
ε = 0.06. The time iteration steps in Figure 6 are 1000, 3000, and 5000. (a–c) are the
numerical results, and (d) is the experimental result. By comparing with the experimental
result (d), the numerical result is highly consistent with the experimental result.
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Figure 6. When K0 = 0.8, the morphology of lamellar is obtained by numerical simulation. ((a–c) are
the numerical simulation results with time iteration steps of 1000, 3000 and 5000, respectively. (d) is
the experimental result).

By analyzing and comparing the simulation results and experimental results of the
above figures, it can be concluded that the phase field model established in this paper
can qualitatively predict polymer crystallization and provide a theoretical basis for the
preparation and optimization of high-performance polymers. The phase field model can
simulate various forms of isotactic polystyrene crystals, such as dendrites, spherulites,
lamellas, etc., by adjusting the latent heat. Latent heat refers to the heat absorbed or released
by a substance from one phase change to another under isothermal and isostatic conditions.
Compared with the previous phase field model, latent heat has practical physical meaning.

4. Discussion
4.1. Dynamic Phase Field Model of Polymer Crystallization

In the process of polymer transition from liquid phase to solid phase, the relative
flow caused by the temperature difference of various internal parts, that is, convection.
Convection is divided into natural convection and forced convection. Natural convection
is usually convection generated spontaneously due to density changes caused by concen-
tration differences or temperature differences. Forced convection is usually convection
generated by external forces, such as increasing the flow velocity of liquids and gases.
Convection mainly affects the distribution of temperature, which in turn affects the shape
of the solid–liquid interface. Therefore, convection is crucial to the microstructure formed
during the solidification process. In order to make the simulation result closer to the
actual polymer growth, speed is added in the simulation to make the melt produce forced
convection. The temperature field equation of the coupled flow field:

∂φ

∂t
= −Γ[Wφ(φ− ξ0

2
+ ξ̂)− k2

0∇ · (β2(θ))∇φ + k2
0

∂

∂x
(β(θ)β′(θ)

∂φ

∂y
)− k2

0
∂

∂y
(β(θ)β′(θ)

∂φ

∂t
)] (17)

∂T
∂t

+ (1− φ)V · ∇T = α∗∇2T + k∗
∂φ

∂t

4.2. String Crystals

The polymer melt first forms a crystal nucleus during the cooling process. The shape
of the crystal nucleus initially affects the crystalline morphology of the polymer crystal,
and then it affects the mechanical properties of the polymer product. The common crystal
nuclei of polymers are divided into point-like nuclei and directional nuclei. The point-
like nuclei gradually form spherulites during the growth process. Oriented nuclei form
oriented structures during the growth process, such as skeletals that are strongly dependent
on orientation during crystallization. String-like crystals firstly form columnar nuclei
with the shape of straight chains, and lateral flakes with the shape of folded chains are
grown at intervals on the centerline of the columnar nuclei [14]. Due to the characteristics
of the dual structure, string crystals have high strength and strong corrosion resistance.
Compared with oriented nuclei, it is found that oriented nuclei are more advantageous in
the mechanical properties of polymer products and play an important role in the growth of
string-like crystals. In the course of experimental studies, directed nucleation of polymers
is often generated by flow induction or by the use of nucleating agents. The oriented nuclei



Mathematics 2022, 10, 3181 8 of 12

produced by nucleating agents are different from those produced under flow induction.
The oriented nuclei produced by nucleating agents do not need to be matched with the
polymer lattice and are mainly affected by the density of nucleation sites and the surface
properties of the nucleating agent. Influenced by this, orientation-induced string crystals
usually form a hybrid structure [15].

Due to the complexity of the hybrid structure, this paper only studies the oriented
core of the polymer formed under flow induction and uses the dynamic growth model of
polymer crystallization to carry out numerical simulation research on isotactic polystyrene.
According to the distribution principle of the polymer lattice, the initial crystal nucleus is
defined as a columnar crystal nucleus composed of 300 monomers [16]. In the simulation,
the initial latent heat is K0 = 1.6, the anisotropy strength is ε = 0.06, the anisotropy mod-
ulus is j = 4, and the numerical simulation obtains the skeletal morphology of isotactic
polystyrene. The time iteration steps in Figure 7 are 1000, 3000, and 5000, respectively.
(a–c) is the numerical result, and (d) is the microstructure of isotactic polystyrene observed
under the high-power electron microscope. The simulation results are compared and
analyzed with the experimental results observed under the high-power electron micro-
scope, and we found that the numerical results were almost in good agreement with the
experimental observations and verified the feasibility of the dynamic growth model of
polymer crystallization.

Figure 7. When K0 = 1.6, the string crystals shape of is obtained by numerical simulation. ((a–c) are
the numerical simulation results with time iteration steps of 1000, 3000 and 5000, respectively. (d) is
the experimental result).

4.3. The Effect of Flow Rate on Polymer Crystallization

In order to verify the effect of convection on polymer crystallization, the numerical
simulation results of pure diffusion and forced convection were analyzed and compared.
This paper uses the dynamic growth model to numerically simulate the growth of isotac-
tic polystyrene.

In the simulation, the initial latent heat is K0 = 1.25, the anisotropy strength is ε = 0.06,
and the time iteration steps are 1000, 2000, 3000, and 4000, respectively. Under pure diffu-
sion conditions, the crystalline morphology (a–d) of the polymer and the corresponding
temperature field (e–h) distribution are shown in Figure 8. Under the condition of pure
diffusion, the flow velocity V is added to simulate the effect of convection on the growth of
the polymer. Take vx = 0, vy = 1.5 (vx, vy are the components of the velocity V), and the
flow direction is vertical downward. The distribution of the crystalline morphology (a–d)
and the corresponding temperature field (e–f) of the object is shown in Figure 9 as follows:
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Figure 8. When K0 = 1.25 under pure diffusion conditions, the simulated morphology of dendrites
and the corresponding temperature field distribution. (Under pure diffusion conditions, (a–d) is the
crystalline morphology of the polymer, and (e–h) is the corresponding temperature field).

Figure 9. When K0 = 1.25, vx = 0, and vy = 1.5, the simulated morphology of dendrites and the
corresponding temperature field distribution affected by the flow velocity. ((a–d) is the crystalline
morphology of the polymer after adding the flow rate and (e–h) is its corresponding tempera-
ture field).

In the simulation, the initial latent heat is K0 = 1.4, the anisotropy strength is ε = 0,
and the time iteration steps are 1000, 2000, 3000, and 4000, respectively. Under pure diffu-
sion conditions, the crystalline morphology (a–d) of the polymer and the corresponding
temperature field (e–h) distribution are shown in Figure 10. Under the condition of pure dif-
fusion, add flow velocity V to simulate the effect of flow velocity on polymer crystallization,
take vx = 0, vy = 1.5 (vx, vy are the components of velocity V), and the flow direction is
vertical downward. The crystalline morphology (a–d) of the polymer and the distribution
of the corresponding temperature field (e–f) are shown in Figure 11 as follows:
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Figure 10. When K0 = 1.4, under pure diffusion conditions, the morphology of the simulated
spherulites and the corresponding temperature field distribution. (Under pure diffusion conditions,
(a–d) is the crystalline morphology of the polymer, and (e–h) is the corresponding temperature field).

Figure 11. When K0 = 1.4, vx = 0,vy = 1.5, the simulated spherulite morphology and the correspond-
ing temperature field distribution affected by the flow velocity. ((a–d) is the crystalline morphology
of the polymer after adding the flow rate and (e–h) is its corresponding temperature field).

In the simulation, the initial latent heat K0 is taken as 0.8, and the anisotropy intensity
is ε = 0.06, and the time iteration steps are 1000, 2000, 3000, and 4000, respectively.
Under pure diffusion conditions, the crystalline morphology (a–d) of the polymer and
the corresponding temperature field (e–h) distribution are shown in Figure 12. Under the
condition of pure diffusion, add flow velocity to simulate the effect of flow velocity on
polymer crystallization, take vx = 0, vy = 1.5 (vx, vy are the components of velocity V), the
flow direction is vertical downward, and polymerization. The distribution of the crystalline
morphology (a–d) and the corresponding temperature field (e–h) of the object is shown in
Figure 13, as follows:
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Figure 12. When K0 = 0.8, under pure diffusion conditions, the simulated shape of spherulites and
the corresponding temperature field distribution. (Under pure diffusion conditions, (a–d) is the
crystalline morphology of the polymer, and (e–h) is the corresponding temperature field).

Figure 13. When K0 = 0.8, vx = 0, vy = 1.5, the simulated shape of spherulites and the corresponding
temperature field distribution affected by the flow velocity. ((a–d) is the crystalline morphology of
the polymer after adding the flow rate and (e–h) is its corresponding temperature field).

5. Conclusions

Through the analysis and comparison of Figures 8–13, it is concluded that the temper-
ature diffusion layer distribution around the polymer under pure diffusion conditions is
uniform, and the morphology of the crystal shows a symmetrical trend. As time evolves,
the main crystal arms gradually become thinner, and the side branches gradually become
thicker and more numerous. After the flow rate V is added, the melt produces convection,
and the temperature diffusion layer around the crystal is no longer uniform. The flow of
the melt reduces the thickness of the temperature diffusion layer on the left, increases the
actual undercooling of the polymer on the left, and promotes the growth of the polymer on
the left. Forced convection causes the heat on the left and the release of solidification. The
heat reduces the actual degree of supercooling of the polymer on the right side and inhibits
the growth of the polymer on the right side.
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