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Abstract: Model predictive control (MPC) is one of the most effective methods of dealing with
constrained control problems. Nevertheless, the uncertainty of the control system poses many
problems in its performance optimization. For high-precision servo systems, friction is typically
the main factor in uncertainty affecting the accuracy of the system. Our work focuses on stochastic
systems with unknown parameters and proposes a model predictive control strategy with machine
learning characteristics that utilizes pre-estimated information to reduce uncertainty. Within this
model, the parameters are obtained using the estimator. The uncertainty caused by the parameter
estimation error in the system is parameterized, serving as a learning control component to reduce
future uncertainty. Then, the estimated parameters and the current state of the system are used
to predict the future p-step state. The control sequence is calculated under the MPC’s rolling
optimization mechanism. After the system output is obtained, the new parameter value at the
next moment is re-estimated. Finally, MPC is carried out to realize the dual rolling optimization
mechanism. In general, the proposed strategy optimizes the control objective while reducing the
system uncertainty of the future parameter and achieving better system performance. Simulation
results demonstrate the effectiveness of the algorithm.

Keywords: Kalman filtering; model predictive control; stochastic system; uncertainty
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1. Introduction

The world is full of uncertainty. For example, friction, the major factor affecting the
accuracy of high-precision servo systems, is typically uncertain. It is affected by mechanical
structure, load, speed, lubrication, etc. Additionally, and more importantly, it varies with
time and location [1].

Model Predictive Control (MPC) has been widely used in both industry and academia.
The most significant advantage of MPC lies in its ability to handle constraints explicitly.
Specifically, it first predicts the system’s future dynamics via the object model and then
applies the constraint requirements to the future control input and state variables. This
approach enables explicit expression of actual requirements in quadratic or non-linear
programming problems with online solutions [2,3].

The accuracy of future dynamic predictions depends on the system model quality.
The presence of uncertainties in the model may result in insensitive or unstable system
control. Thus, the model quality plays a vital role in MPC performance [4]. Actual control
problems are characterized by various types and sizes of uncertainties in the system model.
These uncertainties may arise from system component failures, parameter fluctuations,
and external interference [5]. For example, a high-speed train may run across various
areas during its entire traveling process. The mathematical relationship between the train’s
speed (v) and the resistance ( f ) is expressed as f = c1v2 + c2v + c3, where c1 , c2, and
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c3 are unknowns and may not display consistent cross-regional behaviors. Furthermore,
in certain systems, harsh working environments may cause large parameter fluctuations
during the model approximation process. In such scenarios, the equivalent parameters
cannot correspond to the actual model parameters [6]. The listed factors above may
aggravate the uncertainty in the control process of any model-based MPC. Therefore, when
designing a controller for a system with parameter uncertainty, it is vital to derive the
appropriate mathematical description of the uncertainty and reduce the influence of the
future parameter uncertainty on the control performance of the system.

While MPC has certain robustness thanks to its rolling optimization mechanism, when
the parameter uncertainty in an MPC system is large such robustness may not be sufficient
to meet the actual requirements. In 1987, Campo and Morari proposed min-max ro-
bust model predictive control (RMPC), which was later improved further by Allwright [7].
Min-max RMPC is based on the maximum bound of uncertainty at the initial stage of con-
troller design. In other words, the controller is assumed to operate in the “worst” situation,
thus ensuring that it is able to run smoothly even in the case of large disturbances. Despite
this, the controller design in min-max RMPC is too conservative, and can lead to unsolvable
control problems [8].

Another approach to tackling the uncertainty problem is using self-adaptation to
update the system parameters while taking the uncertainty into account. The adaptive
learning law is constructed under the Lyapunov framework, and the unknown parameters
are actively corrected for. Satisfactory results can be obtained even when the model is
inaccurate or unknown, ensuring learning convergence and system stability [9]. In [10],
an adaptive MPC algorithm was developed by combining an iterative set membership
identification algorithm with a shrunken uncertain parameter set. The algorithm can
efficiently reduce the size of the uncertain parameter set in the min–max MPC setting,
thereby improving control performance. In [11], an output feedback robust MPC algorithm
was proposed for a linear parameter varying system, where the model parametric matrices
are only known to be bounded within a polytope. When the uncertainty of the system
is significant, the MPC performance can deteriorate and the optimization problem can
become unfeasible. Based on this idea, in [12] the authors considered the weight variable
as a decision variable of the optimization problem and a terminal invariant set for all the
systems within the uncertainty polytope. This result was further extended to discrete-
time linear systems [13]. To improve the algorithm’s robustness, a novel double-worst-
case formulation was developed in [14]. The idea of using the nonincreasing parameter
estimation error to update the parameter uncertainty set was introduced in [15]. Based
on this idea, an adaptive MPC framework was designed for non-linear systems with
both constant parameter uncertainty and additive exogenous disturbances [16], although
certain restrictive assumptions about disturbances were added. However, the above work
has two characteristics. One is that uncertain parameters are generally constrained to
a fixed interval; the other is that while uncertain parameters are unknown, their values
are constant. These two characteristics restrict the application of the developed MPC in
the case of systems with gradually changing parameters, and additionally reduce the
system’s control accuracy. In the control process, active learning and description of system
uncertainty are essential for maintaining MPC performance [17].

Several methods aim to balance the identification and control problems. For example,
Qian et al. introduced the dual control idea for the Linear Quadratic Gaussian control
problem. In this approach, the filter and controller are no longer separated. Furthermore,
this method enables active learning about the unknown parameters in the control pro-
cess [18,19]. Introducing the dual control idea for MPC has only been studied in recent
years. After the parameterized expression of the error describing the future parameters or
state estimation is derived, the weighted form is added to the objective function to enable
active learning in the system. Several relevant research results have already been reported
in the literature [20–23].
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Although the aforementioned method reduces the system’s future uncertainty, the
system performance indicators in the objective function are coupled with the learning
terms. Even if the weighting coefficient is adjusted, minimization of the objective function
remains unable to reflect the independent optimization level of the system performance
index and the learning effect. If the system operation performance index requirements
are relatively strict in the actual system, this method fails to meet the requirements. One
proposed a solution [24] is to parameterize the uncertainty in the system and then add the
boundary requirement as an additional constraint in the MPC control process. Nevertheless,
while this method solves the problem of strict requirements on performance indicators, the
resulting dual MPC problem is a nonlinear programming problem involving complicated
calculations.

This work deals with the MPC control problem of a stochastic system with unknown
and time-varying parameters. First, based on the initial parameter estimation, the optimal
control sequence is obtained under the MPC rolling optimization mechanism. The future
uncertainty is then parameterized and the control component that minimizes the future
parameter estimation variance is added to the MPC control law. The system output is
utilized in new parameter estimation, based on which the next round of MPC control is
continued in order to achieve double rolling optimization. The controller designed in
this way drives the system in the desired direction in strict accordance with the operating
performance indicators during the control process and minimizes the variance in the future
estimation of parameters. Consequently, the learned parameters become increasingly
accurate, improving the performance of the controlled system with uncertainty. The main
contributions of this paper can be summarized as follows:

1. A self-learning model is established for estimating the system parameters in an
uncertain system with drifting parameters, improving the robustness of the control
system.

2. The continuous tracking and learning of uncertain parameters can more accurately
reflect the structure of the MPC system under uncertainty and reduce the influence of
parameter changes.

3. Compared with the traditional adaptive MPC algorithm, the control laws in the
proposed MPC method with parameter self-learning ability is closer to the optimal
control rate based on known parameters.

The rest of this paper is organized as follows. First, we describe the optimization
problems to be solved in Section 2. Then, the parameters are estimated by Kalman filter and
a controller law which can reduce the uncertainty of parameter estimation is obtained in
Section 3. Then, the presented methods are demonstrated and we discuss the effectiveness
of the proposed solution method in Section 4. Finally, Section 5 concludes the paper and
points out potential future research directions.

2. Problem Description

Here, the following discrete random state-space model is considered:

x(k + 1) = α(k)x(k) + β(k)u(k) + v(k)

k = 0, 1, . . . , N − 1
(1)

where x(k) is the system state, u(k) is the system input, and α(k) and β(k) are unknown
system parameters that change over time. Suppose that the parameter variations follow
a Gaussian distribution with a mean of 0 and variances of Rα and Rβ. Similarly, let v(k)
denote the Gaussian white noise with mean 0 and variance R2. Thus, mathematically,
∆α(k) : (0, Rα), ∆β(k) : (0, Rβ), and v(k) : (0, R2).

The real system is characterized by various constraints between state and input, e.g.,
control input constraints caused by actuator saturation. In industrial production, several
variables, such as pressure and humidity, have threshold requirements related to safety
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or environmental requirements. These kinds of constraints are called state or output
constraints, and can be expressed in the following mathematical form:

umin ≤ u(k) ≤ umax(k), ∀k ≥ 0

xmin ≤ x(k) ≤ xmax(k), ∀k ≥ 0
(2)

According to the basic MPC principle, the optimization problem of a constrained MPC
is formalized as follows:

min
u(k)

J(x(k), u(k)),

satisfying the following system dynamics (i = 0, 1, . . . , p):

x(k + i + 1|k) = α(k)x(k + i|k) + β(k)u(k + i) + v(k + i)

x(k|k) = x(k),

and the following horizon constraint:

umin(k + i) ≤ u(k + i) ≤ umax(k + i), i = 0, 1, . . . , m− 1

xmin(k + i) ≤ x(k + i) ≤ xmax(k + i), i = 0, 1, . . . , p

where

J = min
u

k+p−1

∑
i=k

(xT(t + 1|k)Qx(t + 1|k) + uT(t)Gu(t)) (3)

In the above control problem, p denotes the prediction horizon, Q is a positive semi-
definite matrix with appropriate dimensions, and G is a positive definite matrix with
appropriate dimensions. According to the predictive control principle, it is necessary to
solve the optimization problem at every sampling moment.

There are two kinds of uncertainties in (1). The first is the system noise uncertainty,
which is determined by the environment and cannot be controlled. Numerous methods
can be utilized to deal with such uncertainty. For example, an estimator can be used to
estimate the state and filter out the noise. The second kind of uncertainty is the uncertainty
caused by unknown or time-varying parameters. This kind of uncertainty requires the
system to learn the parameters from historical information and then use the learned system
parameters in the design of the controller. Simultaneously, the learning error serves to
reduce the future estimation error, thus fully reflecting its dual characteristics.

3. MPC Control Strategy with Learning Characteristics

Due to the existence of time-varying unknown parameters in the system, parameter
learning is needed in the controller design. Therefore, the simple MPC is unsuitable for
designing the optimal controller.

The structure block diagram of an MPC with learning characteristics is shown in
Figure 1.

The dual control learning idea is introduced into the MPC, balancing between control
and parameter identification. At the same time, the uncertain information in the system is
utilized to obtain the control input that helps to reduce the uncertainty in the future.
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Figure 1. Block diagram of MPC with learning characteristics.

3.1. Parameter Estimation and Uncertainty

The Kalman filter method is used to estimate the unknown parameters. Similar to the
CARMA model [25], at time k, the regression vector ϕ(k), Kalman filter state variable θ(k),
and parameter variation distribution ω(k) are redefined:

θ(k) = [α(k), β(k)]T (4)

ϕ(k) = [x(k), u(k)]T (5)

ω(k) = [ω1(k), ω2(k)]
T (6)

The dynamic behavior of the unknown parameters in (1), the variation of which obeys
Gaussian distribution, can be described as follows:

θ(k + 1) = θ(k) + ω(k) (7)

where ω(k) is a Gaussian white noise vector with a mean of 0 and variance of R1 , i.e.,
ω(k) : N(0, R1) and R1 = [Rα, Rβ]

T ; ω1(k)and ω2(k) represent the white Gaussian noise of
Rα and Rβ, respectively.

Now, (1) can be expressed as{
x(k + 1) = ϕT(k)θ(k) + v(k)
θ(k + 1) = θ(k) + ω(k)

(8)

The Kalman filter is utilized to estimate unknown parameters. Let θ̂(k) denote the esti-
mated value of unknown parameters in the system at time k based on the state information

θ̂(k + 1) = θ̂(k) + L(k)r(k) (9)

where
L(k) = [P(k) + R1]ϕ(k)

[
ϕT(k)[P(k) + R1]ϕ(k) + R2

]−1
(10)

P(k + 1) =
[

I − L(k)ϕT(k)
]
[P(k) + R1] (11)

r(k) = x(k)− ϕT(k)θ̂(k) (12)

The initial conditions θ̂(0) and P(0) are assumed to be given, while E{·} represents
the value of statistics meaning.

Define ∼
θ (k) = θ(k)− θ̂(k) (13)
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P(k) = E
{∼

θ
T
(k)
∼
θ (k)

}
(14)

Then, the error variance matrix P(k) of the parameters estimated via the Kalman filter
can be expressed as follows:

P(k) = E
{[

θ(k)− θ̂(k)
][

θ(k)− θ̂(k)
]T
}

= E
{[

α(k)− α̂(k) β(k)− β̂(k)
]T×

[
α(k)− α̂(k) β(k)− β̂(k)

]}
= E

{[
(α(k)− α̂(k))2 (α(k)− α̂(k))

(
β(k)− β̂(k)

)(
β(k)− β̂(k)

)
(α(k)− α̂(k))

(
β(k)− β̂(k)

)2

]}

= E


∼
α

2
(k)

∼
α(k)

∼
β(k)

∼
β(k)

∼
α(k)

∼
β

2
(k)


(15)

Define

Pαα(k) = E
[
∼
α

2
(k)
]

(16)

Pαβ(k) = E
[
∼
α(k)

∼
β(k)

]
(17)

Pββ(k) = E
[∼

β
2
(k)
]

(18)

Then, P(k) can be expressed in blocks:

P(k) =
[

Pαα(k) Pαβ(k)
Pαβ(k) Pββ(k)

]
(19)

After the system model parameters have been estimated via the Kalman filter, the
system is as follows:

x(k + 1) = ϕT(k)θ̂(k) (20)

Equations (8) and (20) show that θ̂(k) already contains the description of random
interference in the system. In other words, the difference between the estimated value θ̂(k)
and the actual value θ(k) reflects the amount of uncertainty in the system. Therefore, the
amount of uncertainty can be determined by the parameter estimation variance, σ(k):

σ(k + 1) = E
{
[x(k + 1)− x̂(k + 1)]× [x(k + 1)− x̂(k + 1)]T

}
= E

{[
ϕT(k)θ(k)− ϕT(k)θ̂(k) + v(k)

]
×
[

ϕT(k)θ(k)− ϕT(k)θ̂(k) + v(k)
]T
}

= ϕ(k)P(k)ϕT(k) + R2

(21)

The block error P(k) from (19) is substituted into (21) to evaluate the parameter
estimation:

σ(k + 1) = Pββ(k)u2(k) + 2Pαβ(k)x(k)u(k) + Pαα(k)x2(k) + R2 (22)

The optimal identification control is obtained using ∂σ(k+1)
∂u(k) = 0 :

ub(k) = −
Pαβ(k)
Pββ(k)

x(k) (23)

It can be seen from (22) that the quality of the next-step system parameter estimation
(σ(k + 1)) is directly related to the current control, u(k), thus indicating that control and
learning are intertwined. Furthermore, the best identification control, ub(k), can minimize
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the variance of the next-step parameter estimation, allowing the learning controller to be
obtained. However, due to the problem of control constraints in the system, the control con-
straints should be applied to the learning control as well. After the learning control exceeds
the constraint range, the constraint boundary value is taken. Although such treatment may
lead to a suboptimal learning effect, it is inevitable due to the MPC’s characteristics.

3.2. MPC Optimization Problem

After the system model parameters have been estimated using the Kalman filter, the
system model is used as described in (20). The estimated system parameters are used to
predict the system’s future steps according to the predictive control principle:

x(k + 1|k) = α̂(k)x(k) + β̂(k)u(k)

x(k + 2|k) = α̂(k)x(k + 1|k) + β̂(k)u(k + 1) = α̂2(k)x(k) + α̂(k)β̂(k)u(k) + β̂(k)u(k + 1)

...

x(k + p|k) = α̂(k)x(k + p− 1|k) + β̂(k)u(k + p− 1)

= α̂p(k)x(k) + α̂p−1(k)β̂(k)u(k) + α̂p−2(k)β̂(k)u(k + 1) + · · ·+ β̂(k)u(k + p− 1)

where α̂(k) and β̂(k) represent the estimated values of the original unknown system param-
eters α(k) and β(k) at time k. After the control input acts on the system, the new state vector
x(k + 1) is obtained, and the new system parameters α̂(k + 1) and β̂(k + 1) are estimated
using the Kalman filter. The listed formulae can be simplified as follows:

X = Ax(k) + BU (24)

where

X =


x(k + 1|k)
x(k + 2|k)

...
x(k + p|k)

, A =


α̂(k)
α̂2(k)

...
α̂p(k)

, U =


u(k)

u(k + 1)
...

u(k + p− 1)

,

B =


β̂(k) 0 · · · 0

α̂(k)β̂(k) β̂(k) · · · 0
...

...
. . .

...
α̂p−1(k)β̂(k) α̂p−2(k)β̂(k) · · · β̂(k)


The system performance index is

J = min
u

k+p-1

∑
t=k

(
xT(t + 1|k)Qx(t + 1|k) + uT(t)Gu(t)

)
(25)

Incorporating (24) into the performance index (25), we obtain

J = min
U

XTQX + UTGU (26)

Due to the existence of the constraint condition (2), the analytic solution of the objective
Equation (26) cannot be obtained. The optimization problem of the constrained MPC is a
quadratic programming (QP) problem. Therefore, the objective Equation (26) needs to be
transformed into zT Hz + gTz, where z = U is an independent variable in the optimization
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problem. If the prediction equation (24) is substituted into the objective Equation (26), the
objective function is expressed as

J = min
U

XTQX + UTGU = UT
(

BTQB + G
)

U + 2x(k)ATQBU + xT(k)ATQAx(k) (27)

where U is the optimization objective. The third term in the above equation is independent
of the optimization objective [19]. Therefore,

H = BTQB + R (28)

g = 2x(k)ATQBU (29)

Similarly, by transforming the constraint (2) into Mz ≤ b, the following form is
obtained: [

B
−B

]
U ≤

[
Xmax − Ax(k)
−Xmin + Ax(k)

]
(30)[

−I
I

]
U ≤

[
Umax
−Umin

]
(31)

where

Xmax =


xmax(k + 1|k)
xmax(k + 2|k)

...
xmax(k + p|k)

, Xmin =


xmin(k + 1|k)
xmin(k + 2|k)

...
xmin(k + p|k)

,

Umax =


umax(k + 1|k)
umax(k + 2|k)

...
umax(k + p− 1)

, Umin =


umin(k)

umin(k + 1)
...

umin(k + p− 1)

.

Using (27)–(31), the MPC optimization problem (23) can be transformed into the
following QP problem:

min
U

UT HU − gTU,

s.t. MU ≤ b.
(32)

where H and g are provided by (28) and (29), and are expressed as follows:

M =
[
B −B I −I

]T
4p×1 (33)

b =


Xmax − Ax(k)
−Xmin + Ax(k)

Umax
−Umin


4p×1

(34)

In a traditional MPC, a control sequence {u(t)}k+p−1
t=k is obtained by solving the intro-

duced QP problem. Then, the first value of the open-loop control sequence is applied to the
system to obtain the system new output, thereby realizing rolling optimization. However,
when there are unknown parameters in the system, utilizing the system information is
critical in order to better combine the control and identification. Thus, when the system
estimates the parameters, the estimation error is applied to the future control input to
achieve the rolling optimization with a satisfactory control effect.

The control sequence U obtained by solving the QP problem (32) is denoted by uc.
To obtain a control input which can have a learning effect and satisfy the requirements
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of the system operation performance index, the control action obtained via the following
equation is applied to the system:

u∗(k) = λub(k) + (1− λ)uc(k) (35)

Here, λ ∈ (0, 1) is the weighting coefficient, and the size of λ represents the trade-off
between learning and control activities of the control input u∗(k). The higher the value of λ,
the higher the learning requirement and the better the learning effect. In contrast, smaller λ
values mean that a higher system performance index is required. Thus, λ can be adjusted
to meet different needs. Control performance can be improved by learning parameters.
However, if λ is too large and learning parameters become the main optimization objective,
the result is that the loss from learning parameters is greater than the gain. Therefore, λ
should not be too small or too large.

4. Simulation Test and Result Analysis

The rolling optimization workflow of an MPC with learning ability is as follows. At
the initial time t = 0, assign the known initial values of the parameters α̂(0) and β̂(0) to the
model’s unknown parameters, α(k) and β(k). The initial state x(0) is regarded as known.
The MPC performs prediction and rolling optimization to obtain the optimal control
sequence u∗(0), u∗(1), · · · , u∗(N − 1). After that, the first element in the control sequence
is applied to the system to retrieve the system’s current state, x(1). This information is
used to perform Kalman filtering to obtain new parameters, α̂(1) and β̂(1). New parameter
values are assigned to the unknown parameters in the model, α(k) and β(k). The described
process is repeated to realize an MPC with dual finite horizon optimization control.

4.1. Numerical Algorithm Steps

The algorithm is shown in the flowchart presented in Figure 2, detailed as follows:

Figure 2. Flow diagram of the algorithm.

1. Initialize at time k = 0 given the predictive horizon (p) and the stopping time N;
2. Use the Kalman filter (i.e., (9)–(12)) to estimate the unknown parameter θ;
3. Measure the system state x(k), and use (23) to calculate the learning control ub(k);
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4. The estimated state obtained via (20) predicts the state of the future p steps of the
system;

5. Solve the QP problem using (32) and obtain the control sequence uc(k);
6. Apply the first element of u∗(k) = λub(k) + (1− λ)uc(k) to the actual system;
7. Set k← k + 1 and go to Step 1.

4.2. Simulation and Result Analysis

Consider the following stochastic systems:

x(k + 1) = α(k)x(k) + β(k)u(k) + v(k) (36)

where −1 ≤ u(k) ≤ 1.
Based on (4)–(6), this random system corresponds to{

x(k + 1) = ϕT(k)θ(k) + v(k)
θ(k + 1) = θ(k) + ω(k),

(37)

where v(k) ∼ N(0, 0.04) and ω(k) = [ω1(k) ω2(k)]
T . The initial conditions are as follows:

θ(0) = [1.1, 0.8]T , θ̂(0) = [0.1, 0.1]T , and P(0) = diag[2, 2], x(0) = 0.5.
The system performance index is given as:

J = min
u

k+p−1

∑
t=k

(
xT(t + 1|k)Qx(t + 1|k) + uT(t)Gu(t)

)
where the number of prediction steps is p = 10, the number of system operation steps is
N = 100, and Q = G = 1.

MATLAB was employed to simulate and verify the algorithm following the steps
outlined in the previous section. This method can use the pre-estimated information to
reduce the identification error for time-varying parameters as well as to effectively identify
the unknown constant parameters.

The parameters in the model fluctuate randomly due to the influence of internal noise.
As described, the learning effect is not evident. When the assumed model parameters’
variation equals zero R1 = 0, the model parameters α and β are constants. Here, α = 1.1,
β = 0.8.

Figure 3 shows the Kalman parameter estimation process during the control period.
The solid line and dotted line in the figure are the estimated value and actual value of the
parameter, respectively. It can be seen that the estimated and true value are close up to
twenty steps, reflecting the speed and accuracy of the proposed learning algorithm.

Here, the optimal control sequence obtained with known parameters and no control
constraints is compared with the MPC control sequence with learning characteristics. As
shown in Figure 4, the MPC control sequence with learning characteristics is consistently
better than the optimal control with known parameters before the system is identified.
This result is due to the controller pursuing the control goal while learning the unknown
parameters in the control process. After identifying the system’s real parameters, the MPC
with learning characteristics closely tracks the optimal control with known parameters.

The optimal control sequence obtained with known parameters and no control con-
straints was compared with the MPC control sequence with learning characteristics as well.
As shown in Figure 4, the MPC control sequence with learning characteristics is consistently
better than the optimal control with known parameters before the system is identified.
This result is due to the controller pursuing the control goal while learning the unknown
parameters in the control process. After identifying the system’s real parameters, the MPC
with learning characteristics closely tracks the optimal control with known parameters.
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Figure 3. Estimated and true values when parameters α(k) and β(k) are constant.

Figure 4. Comparison of optimal MPC and learning MPC control signals when parameters are
constant.

Generally speaking, it is difficult for the controller to learn the unknown parameters
accurately, as small errors are inevitable, preventing MPC with learning characteristics
from completely coinciding with the optimal control. In the simulation example, when
the control time exceeds thirty time units, the MPC with learning characteristics almost
coincides with the optimal control. Especially at steady state, the system can be considered
to be running optimally.

Although the learning effect is evident when the system parameters are constant, it
does not illustrate the algorithm’s capability to reduce the uncertainty in the future. When
the model parameter variance changes, that is, R1 6= 0, the model parameters α and β take
different values at every step, meaning that ω1(k) ∼ N(0, 0.01) and ω2(k) ∼ N(0, 0.001).
Recall that λ ∈ (0, 1) in (34) is the learning factor. When λ = 0, the control input in the
system does not have any learning effect. In other words, in such a non-learning MPC, the
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uncertainty information is not utilized to reduce the system’s future uncertainty. The values
λ = 0 and λ = 0.5 were used in the simulation, then the parameter estimation processes
under these two learning factors were compared.

Figures 5 and 6 show the estimation of parameters α and β during the control period,
which includes the true α and β values, the non-learning MPC estimation process at λ = 0,
and the learning MPC estimation process at λ = 0.5. It can be seen that the parameters
obtained via the proposed MPC estimation with learning ability are closer to the ground
truth when compared to the non-learning MPC’s parameter estimation process. Because
the actual parameters in the model vary in time, even though the effect is obvious without
learning constant parameters it can be seen that the error between the estimated value and
the true value is decreasing. Therefore, the learned parameters become progressively more
accurate, demonstrating that the algorithm effectively reduces the future uncertainty of
the system.

Figure 5. Estimated and true α(k) values when the parameter varies with time.

Figure 6. Estimated and true β(k) values when the parameter varies with time.

Comparing the errors in the estimation process of the learning and non-learning MPCs,
shown in Figure 7, it can be seen that the estimation error value of the learning MPC is near
0 and almost coincides with 0, while the error value of the non-learning MPC is always
greater than that of the learning MPC.

To illustrate the improvement in system performance, we compare the control laws
with a traditional adaptive MPC. Figures 8 and 9 show the comparison between the optimal
control law (obtained when all model parameters are known and there is no control
constraint), the learning control law (obtained when the parameters are unknown and the
control constraint is within the [−1, 1] range), the MPC1 control law (obtained with the
algorithm in [10]) and the MPC2 control law (obtained with the algorithm in [16]). Because
the system’s unknown parameters vary in time, the system needs to learn the unknown
parameters at each time, and the control law does not reach a stable state. Furthermore,
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in addition to the control objectives, the dual controller needs to learn the unknown
parameters. Consequently, the learning MPC control law is always greater than the optimal
control law. However, when the parameter error gradually decreases in the later stage, the
dual control law becomes closer to the optimal control law. Thus, when the system has
uncertainty and the control algorithm with learning ability is used, the system runs in an
approximately optimal manner. It can be seen from the figure that the method proposed in
this paper is closer to the ideal control laws when the parameters are known, reflecting the
superiority of the method as compared with the MPC1 and MPC2 control laws.

Figure 7. Estimated error of parameters α(k) and β(k).

Figure 8. Comparison of various MPC control laws.
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Figure 9. Partial comparison of various MPC control laws.

Table 1 shows the calculation time required for each MPC algorithm:

Table 1. Calculation time required for each MPC algorithm.

Control Model Calculation Time

Optimal control law 1
Learning MPC 1.65

MPC1 1.41
MPC2 1.73

Considering the high computation and performance requirements of dual MPCs,
in order to test the real-time performance of the method proposed in this paper, the
computation time of the above four control methods was compared at the same time. The
optimal control law is set to a unit time, and the value is set to 1. By comparison, it can be
seen that the method proposed in the paper consumes 65% more computing time than the
optimal control laws, slightly more than MPC1 and slightly less than MPC2. Considering
the development of embedded computers, the model prediction method studied in this
paper has good prospects for application.

5. Discussion

This paper studied the MPC algorithm problem of a class of random linear discrete
systems with unknown parameters, leading to the proposal of a controller with learning
characteristics. The controller adds the best identification control component that minimizes
the error variance of future estimates. Consequently, the algorithm enables learning the
unknown parameters more accurately and controls the system to run in the direction
required by the performance index. The weight factor is used to balance learning and
control. However, the use of the learning process renders the control law derived in
this paper sub-optimal. Thus, future studies should explore the weight factor settings to
optimize the control and learning effect. Furthermore, it would be interesting to combine
the advantages of the self-learning algorithm in this paper with the advantages of other
adaptive algorithms for a system with gradually changing parameters.
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