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Abstract: Due to its covert and real-time properties, electroencephalography (EEG) has long been the
medium of choice for emotion identification research. Currently, EEG-based emotion recognition
focuses on exploiting temporal, spatial, and spatiotemporal EEG data for emotion recognition. Due
to the lack of consideration of both spatial and temporal aspects of EEG data, the accuracy of EEG
emotion detection algorithms employing solely spatial or temporal variables is low. In addition,
approaches that use spatiotemporal properties of EEG for emotion recognition take temporal and
spatial characteristics of EEG into account; however, these methods extract temporal and spatial
information directly from EEG data. Since there is no reconstruction of the EEG data format, the
temporal and spatial properties of the EEG data cannot be extracted efficiently. To address the
aforementioned issues, this research proposes a multi-channel EEG emotion identification model
based on the parallel transformer and three-dimensional convolutional neural networks (3D-CNN).
First, parallel channel EEG data and position reconstruction EEG sequence data are created separately.
The temporal and spatial characteristics of EEG are then retrieved using transformer and 3D-CNN
models. Finally, the features of the two parallel modules are combined to form the final features for
emotion recognition. On the DEAP, Dreamer, and SEED databases, the technique achieved greater
accuracy in emotion recognition than other methods. It demonstrates the efficiency of the strategy
described in this paper.

Keywords: EEG; transformer; 3D-CNN; feature fusion
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1. Introduction

Emotions are the attitudes and related behavioral responses of individuals towards
objective things. It is a complicated psychological and physiological state resulting from
the interaction of emotions, thoughts, and actions. Changes in emotions frequently cause
alterations in physiological and non-physiological signals, including intonation [1,2], body
posture [2,3], facial expressions [4,5], and the EEG [4]. However, it is difficult to guarantee
the reliability and validity of non-physiological signs such as facial expressions, gestures,
and speech signals in practical applications [5]. Studies [6] in neuroscience and psychology
indicate that EEG can intuitively represent emotional changes in individuals. Furthermore,
because EEG signals are difficult to conceal and have outstanding real-time performance,
the accuracy is superior to that of other methods, making it one of the most widely used
for emotion recognition.

Deep learning is often used for EEG emotion identification since it provides auto-
mated feature extraction and classification from beginning to end. To collect EEG data with
temporal and spatial characteristics, multiple electrode locations are used. EEG emotion
recognition based on deep learning can be loosely divided into temporal recognition meth-
ods, spatial recognition methods, and spatiotemporal recognition approaches. Emotion
recognition algorithms based on temporal characteristics primarily examine the contextual
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characteristics of EEG. Early studies on temporal features were based on manually extracted
features [7–11], and deep networks were only used as classifiers. With the development of
deep learning, the convolutional neural network (CNN) has been used for temporal feature
extraction and has achieved excellent performance in emotion recognition [12–17]. How-
ever, CNN often depends on the size of the convolution kernel [18] and has certain defects
in extracting global temporal features. The recurrent neural network (RNN) can solve the
problem [19], and the long short-term memory model (LSTM) [20] and the gated recurrent
network (GRU) [21] are used for the extraction of temporal features and gain satisfactory
effects. These approaches are generally effective in extracting temporal features from EEG,
but due to the limited amount of data, they are not very reliable at learning the electrode
location connection. Methods for emotion recognition based on EEG spatial features ac-
count for the spatial interaction between electrodes and rebuild the EEG using electrode
spatial information. Early, the spatial features extraction often used the CNN [22–26]. Later,
the hybrid networks of CNN and other networks [27,28] perform well in extracting more
features from reconstructed images. Such methods take the spatial information of each
electrode into account, yet the reconstruction of EEG results in poor contextual feature
extraction precision. Therefore, methods based on spatiotemporal characteristics have
been proposed to address the abovementioned issues [29–32]. In these methods, temporal
features are extracted first, and the features containing temporal information are inputted
into the deep network to extract spatial features. However, such algorithms typically
utilize only a single type of EEG data to extract features and cannot obtain spatial and
temporal details.

To address the aforementioned issues, the study offers an EEG emotion identification
model based on the parallel transformer and 3D-CNN spatiotemporal feature fusion. The
parallel channel EEG map and position reconstructed EEG sequence are created first. Then,
the model transformer [33] and 3D-CNN are employed to extract the respective temporal
and spatial information. Finally, the simultaneously extracted spatial and temporal fea-
tures are connected to a joint feature vector, and the Softmax layer receives it as input to
predict emotion.

2. EEG Data Pre-Processing

This section prepares for emotion recognition using EEG. The utilized datasets are
detailed in Section 2.1. In Section 2.2, a baseline preprocessing procedure is used to
eliminate the impact of individuals’ pre-experiment emotions on the results. Section 2.3
creates the parallel channel EEG maps and position reconstructed EEG sequences for the
temporal and spatial feature extraction portions.

2.1. EEG Dataset

The DEAP dataset was constructed by Sander Koelstra [34] as a multimodal dataset.
The dataset gathered signals from the patients’ central and peripheral nerve systems by
exposing them to numerous music videos. Utilizing a self-assessment form, the subject’s
emotional information was gathered. The sample comprised of 32 healthy individuals
between the ages of 19 and 37, including 16 males and 16 females. Each subject viewed
forty one-minute music videos in accordance with the experimental parameters. According
to their feelings, volunteers judged arousal, valence, liking, and dominance after each
movie. The score range is 1 to 9. The experimental protocol is depicted in Figure 1. Valence
and arousal are the two primary measures utilized to assess human emotions. As valence
indicates that people’s emotional state goes from negative to positive [35], arousal indicates
that people’s emotional intensity ranges from weak to robust, with a score over 5 indicating
a high emotional state and a score below 5 suggesting a low emotional state.
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Figure 1. The experimental paradigm for the DEAP dataset. For each experiment, the current
experiment number is displayed for 3 s, followed by a 5 s break after the music is played for 63 s, and
finally the self-assessment session.

The DEAP dataset contains 40 segments of 32-channel EEG signals from each of
32 participants, with each segment lasting 63 s. The signal has been reduced in frequency
to 128 Hz. The initial three seconds of each channel’s EEG signal represent the preparatory
period, whereas the latter sixty seconds represent the emotion-induced process. We treat the
40-segment EEG signals of a single individual as an independent dataset with the following
format: where 40 represents the number of experiments, 32 represents the number of
channels, and 8064 represents the number of sampling points.

In addition to the DEAP dataset, the Dreamer and SEED datasets are utilized to
validate the model’s performance. The Dreamer dataset [36] collected the EEG and ECG
signals of 23 subjects during emotion induction; arousal and valence continue to be used
as labels for EEG data. If the value is greater than 3, it denotes a high emotional state;
otherwise, it suggests a low emotional state. The SEED dataset [37] contains fifteen subjects.
Positive, negative, and neutral labels correspond to the target emotion of emotion-evoked
segments. The Dreamer and SEED datasets are trained and validated with the same
procedure as DEAP.

2.2. Baseline Preprocessing

This article employs the baseline mean approach [38] to determine the respondents’
pre-test emotional state. First, remove the pre-test signals from the first three seconds of all
channels, divide them into three 1-s segments, and take the mean of the three segments as
the baseline mean, which represents the subjects’ basic emotions at that moment. Second,
the last 60 milliseconds of EEG signal are separated into 60 pieces of equal size, and the
baseline effect is subtracted using a Formula (1). Finally, as illustrated in the equation, all
baselines shall be spliced (2).

Removedi = Rawdatai − Basemean (1)

data = Concat(Removed1; Removed2; . . . ; RemovedH) (2)

where Basemean ∈ RC×L, Rawdatai ∈ RC×L, Removedi ∈ RC×L, data ∈ RC×(L×H); C = 32
denotes the number of channels; L = 1 s, which represents the length of a segment; H = 60
represents the number of segments; Concat denotes the connected operations.

Figure 2a depicts the EEG signal of a random channel from the DEAP dataset. Figure 2b
depicts the outcome of baseline preprocessing. With baseline interference removed, the
EEG signal exhibits a smoother waveform and more pronounced wave features. Following
baseline processing, the data format for each participant is where 40 represents the number
of experiments, 32 represents the number of channels, and 7680 is the number of sample
points in 60 s.
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Figure 2. The EEG signal before baseline preprocessing (a) and after baseline preprocessing (b).

Five people are selected from the DEAP dataset to investigate the impact of baseline
preprocessing on emotion recognition performance. Both baseline-preprocessed and un-
preprocessed EEG data are used for emotion identification, and the results on arousal and
valence are depicted in Figure 3.

Figure 3. Comparison of accuracy on Arousal (a) and Valence (b) before and after baseline preprocessing.
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Compared to the original EEG, the accuracy of arousal and valence has increased by
24.24 percent and 40.81 percent, respectively, when preprocessed by baseline. Therefore,
the baseline is used to preprocess EEG data in this study.

2.3. Construction of Two EEG Representations

To simultaneously gather temporal and spatial features, we need EEG data in two
formats that can account for both temporal and spatial aspects. Figure 4 illustrates the
construction of parallel channel EEG maps and position-reconstructed EEG sequences.

Figure 4. The construction process of two EEG representations. Parallel channel EEG is obtained
through a sliding window, and then superimposed with the position projection to convert it to
Position Reconstructed EEG sequence.

Initially, the baseline-processed data is divided into EEG segments via a sliding win-
dow with all channels placed in a single image, which is referred to as parallel channel
EEG. The size 9 × 9 matrix then stores the parallel channel EEG map based on the electrode
distribution map [39]. The placement of the signal of each channel in the corresponding
location of the matrix is referred to as the EEG reconstructed sequence. Where 0 indicates
the absence of an electrode channel. The data format is then changed from the original
matrix to a matrix sequence, which not only retains position information but also maintains
temporal characteristics.

To segment EEG data, sliding windows with dimensions of 128, 256, 384, 512 and
steps with sizes of 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, and 1 of the window widths were
selected. Figure 5 depicts the obtained accuracy of arousal and valence. The maximum rate
of accuracy is achieved when the window size is 128 and the step size is 1.

Figure 5. The results on Arousal (a) and Valence (b) for multiple window size and step parameters.
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Each individual can obtain 60 data samples in two formats per experiment, for a total of
2400 EEG samples throughout 40 experiments. A parallel channel EEG map size of 32× 128
is utilized to derive temporal characteristics. The sequence size of a position-reconstructed
EEG is 9× 9× 128, which is used to extract spatial data.

3. Proposed Method

This section proposes TSFFN (Temporal–Spatial Feature Fusion Network), a paral-
lel spatiotemporal feature fusion model based on transformer and 3D-CNN. It includes
temporal feature extraction, spatial feature extraction, and temporal-spatial feature fusion
modules. In Section 3.1, the attention model transformer in machine translation is utilized
to extract the temporal characteristics in order to retrieve the contextual information of the
parallel channel EEG maps. In Section 3.2, we employ 3D-CNN to determine the spatial
properties of the position-reconstructed EEG episodes. Temporal and spatial features are
used as the final emotion detection feature for classification in Section 3.3. The particular
procedure is depicted in Figure 6.

Figure 6. The overall framework of TSFFN. EEG data are simultaneously recorded while subjects
watch emotional film clips as stimuli. The spatial and temporal features of EEG are extracted by a
parallel model. The emotion predictions are given with the model based on the fused features.

3.1. TSFFN’s Temporal Characteristics Extraction Module

This module primarily extracts EEG temporal information, hence EEG parallel channel
maps that have been preprocessed serve as input. Considering that the creation of emotions
in the brain is a continuous and full process in time, getting the contextual characteristics
of EEG is crucial for emotion detection. We used the Transformer to construct a model to
extract the temporal characteristics of EEG because the attention mechanism can efficiently
perceive the contextual relationships of the signal. The particular procedure is depicted
in Figure 7.

Firstly, the position encoding module employs convolution with two channels to
obtain the segment position characteristics [40]. The kernel size of convolution influences
the accuracy of arousal and valence classification. Table 1 displays the findings of the
investigation into the effect of position kernel size on the accuracy of arousal and valence
classification. The classification accuracy of arousal and valence is greatest when the
convolution kernel size is set at (1, 51). Therefore, the (1, 51) is selected as the position
encoding kernel parameter.



Mathematics 2022, 10, 3131 7 of 15

Figure 7. Diagram of temporal feature extraction using the Transformer algorithm.

Table 1. The accuracy of arousal and valence classification based on kernel size.

Kernel Size Arousal Valence

(1,1) 96.34% 96.40%
(1,11) 97.16% 97.54%
(1,21) 96.58% 96.50%
(1,31) 97.33% 96.75%
(1,41) 97.29% 97.12%
(1,51) 98.53% 98.27%
(1,61) 97.45% 96.63%
(1,71) 96.83% 96.87%
(1,81) 96.15% 96.08%
(1,91) 97.50% 97.24%

Secondly, the resulting feature maps are then fed into the dimension transformation
module, which has a convolution kernel size of (32,16) and a channel count of 10. It
transforms the feature maps into seven 1 × 10 vectors.

Thirdly, the one-dimensional vector sequences are input into the Transformer Encoder,
which consists of 2 encoder blocks. After layer normalization, the input is fed into the
multi-head attention (MHA) module in the encoder block. The input is turned into five
vectors of size 7 × 2, which are then fed into five heads where the attention mechanism
works in parallel. The outputs of all heads are then concatenated and converted to the
original size 7 × 10 following Formulas (3) and (4). At the same time, there is a residual
module here.

MultiHead(Q, K, V) = Concat(head1, . . . , headh)Wo (3)

Where headi = Attention(QWQ
i , KWK

i , VWV
i ) (4)

where WQ
i ∈ Rdmodel×dk Wk

i ∈ Rdmodel×dk , Wv
i ∈ Rdmodel×dv , Wo ∈ Rhdv×dmodel denote the linear

transformation used to obtain the query, key and value for each head; headi represents the
outputs of the i-th head after attention mechanism; Concat represents the operation used to
concatenate all headi; W0 indicates a linear change to obtain the final result.
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Then the normalization layer’s utput is as FF (feed-forward) module’s input. The first
fully connected layer increases the number of features by four times 7 × 40. Another full
connection layer is connected after the activation function GeLu and the normalization
layer to reconstruct the characteristic number to the initial size 7 × 10.

Finally, a global averaging pooling layer is connected to average the one-dimensional
vectors of all channel outputs as the extracted temporal features.

3.2. Spatial Characteristics EXTRACTION Module of TSFFN

The spatial feature extraction module primarily extracts electrode position features,
hence the preprocessed position-reconstructed EEG sequence containing electrode posi-
tion information serves as its input. Since the data comprises both position and tempo-
ral information for the electrodes, the 3D convolution [41] is utilized for feature extrac-
tion rather than the conventional 2D convolution. The particular procedure is depicted
in Figure 8.

Figure 8. Flow chart of spatial feature extraction based on 3D-CNN. The spatial features of the EEG
are extracted through a series of 3D convolution modules and fully connected layers.

The model employs three successive 3D convolutional layers with kernel sizes of 1,
2, and 3, respectively. Convolution kernels in each layer are successively 32, 64, and 128.
Because the pooling layer will result in data loss, it is not employed after the convolutional
layer to store the electrode position data. Instead of the pooling layer, batch normalization
(BN) is introduced to expedite model training. It is then followed by the activation function
ReLu. Finally, we apply a complete connection layer to the extracted spatial characteristics
to output them. Table 2 displays the model’s specific parameters.

Table 2. The structural parameters of 3D-CNN.

Type of Layer
Filter

In Layer Out Layer Feature Size
Width Height Length

conv

Conv1 4 4 2 1 32 32 × 6 × 6 × 127

Conv2 4 4 2 32 64 64 × 3 × 3 × 126

Conv3 3 3 2 64 128 128 × 1 × 1 × 125

fc Fc-512 1 1 125 128 512 512

3.3. Fusion of Temporal and Spatial Modules

Feature fusion and decision fusion are the two most prevalent fusion techniques.
The research constructs a TSFFN based on spatiotemporal feature fusion and a TSDFN
(Temporal–Spatial Decision Fusion Network) based on spatiotemporal decision fusion to
evaluate the performance of the two fusion approaches.

TSFFN concatenates the temporal and spatial features extracted by the transformer
and 3D-CNN to obtain a 1 × 522 vector, which is used as the final feature vector, and then
uses a fully connected layer and SoftMax layer for emotion classification. The TSDFN
model uses the weighted sum approach [14] to fuse the decision results of the transformer
and 3D-CNN, as stated in Formula (5):

v f inal = ∑n
i=1 wivi (5)
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Among them, n denotes the number of modules; vi = {+1,−1} is the prediction
result of the ith model, where +1 represents a high emotional state, and −1 represents a
low emotional state; wi is the probability of the ith model for emotional prediction; v f inal
is the final decision of the model. If it is greater than or equal to 0, it is judged as a high
emotional state, otherwise it is a low emotional state.

In this research, the experimental performance of TSFFN and TSDFN under the
two fusion procedures is compared, and the findings are presented in Table 3. Table 3
demonstrates that the classification accuracy of the TSFFN based on feature fusion is
higher for both arousal and valence than that of the TSDFN based on decision fusion.
Consequently, feature fusion is picked as the model’s fusion strategy.

Table 3. The results of different fusion strategies.

Method Accuracy (Arousal) Accuracy (Valence)

TSDFN 96.14% 95.76%
TSFFN 98.53% 98.27%

4. Experiments and Analysis of Results

This section verifies the performance of the model. Section 4.1 introduces the hard-
ware and software environment and parameters for model implementation; Section 4.2
describes the model evaluation metrics; Section 4.3 shows the evaluation metrics scores,
ablation experiments, and cross-dataset experiments to evaluate the performance of the
model; Section 4.4 presents the comparison experiments with other existing EEG emotion
recognition algorithms.

4.1. Environment of Software and Hardware for Model Implementation

The proposed model is implemented using Python 3.7 under the PyTorch 1.10.0
framework and trained on the GPU provided by NVIDIA Tesla k80. Python 3.7.0 was
released by the python Software Foundation in Delaware, USA, and the python 1.10.0
framework was developed by Facebook in California, USA

4.2. Evaluation Metrics

The Accuracy, Precision, Recall, and F1-score metrics are used to evaluate the per-
formance of the TSFFN. Among them, Accuracy indicates the correct proportion of the
model’s prediction of all samples; Precision suggests the ratio of the actual positive samples
to all the predicted positive samples; Recall indicates the proportion that the correctly
predicted positive samples account for all the positive samples; F1-score is a comprehensive
indicator of precision and recall, and the calculation formula is as follows:

Accurcacy =
TP + TN

TP + TN + FP + FN
× 100% (6)

Precision =
TP

TP + FP
× 100% (7)

Recall =
TP

TP + FN
× 100% (8)

F1-score = 2× Precision× Recall
Precision + Recall

× 100% (9)

where TP represents the prediction is positive and the actual is positive; FP represents that
the prediction is positive and the actual is negative; FN represents that the prediction is
negative and the actual is positive; TN represents that the prediction is negative and the
actual is also negative.
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4.3. TSFFN Model Performance Verification

The experiment is carried out on the DEAP dataset. After preprocessing the EEG data
of 32 subjects, each subject contains 2400 samples in the form of a parallel channel map and
a position reconstructed EEG sequence. The samples are divided into a training set and
a test set by 8:2, in which the training set contains 1980 samples, and the test set contains
480 samples. The batch size is 56, epoch is 50, and learning rate is 1 × 10−3. It minimizes
the cross-entropy loss function using the Adam optimizer for training. Moreover, in the
case of subject independence, the average training time of the model TSFFN proposed in
this paper lasts 714.4523 s.

The TSFFN model is utilized to conduct studies on 32 subjects with the arousal and
valence labels, respectively. The results are presented in Tables 4 and 5 respectively.

Table 4. Recognition Accuracy for each subject on “Arousal”.

Subject Accuracy Subject Accuracy Subject Accuracy Subject Accuracy

S01 99.74% S09 98.77% S17 97.27% S25 99.31%
S02 96.74% S10 99.89% S18 98.31% S26 96.2%
S03 99.91% S11 96.95% S19 98.37% S27 98.47%
S04 96.31% S12 98.66% S20 99.72% S28 96.43%
S05 98.22% S13 99.06% S21 99.39% S29 99.33%
S06 98.29% S14 97.39% S22 98.29% S30 98.95%
S07 98.68 S15 99.33% S23 99.27% S31 99.12%
S08 99.12 S16 98.85% S24 99.47% S32 98.85%

Table 5. Recognition Accuracy for each subject on “Valence”.

Subject Accuracy Subject Accuracy Subject Accuracy Subject Accuracy

S01 99.95% S09 97.45% S17 97.62% S25 97.79%
S02 95.25% S10 98.87% S18 98.93% S26 98.37%
S03 98.97% S11 95.29% S19 97.58% S27 98.97%
S04 97.12% S12 98.22% S20 99.25% S28 97.68%
S05 98.43% S13 97.47% S21 98.64% S29 99.12%
S06 98.89% S14 97.41% S22 97.87% S30 99.14%
S07 99.00% S15 98.85% S23 99.62% S31 98.83%
S08 98.04% S16 99.29% S24 98.43% S32 98.35%

The arousal and valence labeling accuracy of the TSFFN model is greater than 95 per-
cent for all participants, as seen in the tables above. On arousal, the mean ± standard
deviation of the accuracy is 98.53% ± 1.05% percent, and on valence, it is 98.27% ± 1.04%.

The assessment metrics are computed based on the outcomes of all predictions in the
test set, as shown in Table 6. It can be seen that the TSFFN model’s arousal scores are higher
than its valence ratings. It scored 98.91% on both the Recall and F1-Score tests and 98.92%
on the accuracy test. Recall and F1-Score for label valence obtained 98.90% and 98.80%
respectively. Precision increased by 98.72% as well.

Table 6. The evaluation metrics scores of TSFFN.

Label Accuracy Precision Recall F1-Score

Arousal 98.53% 98.92% 98.91% 98.91%
Valence 98.27% 98.72% 98.90% 98.80%

Figure 9 depicts the confusion matrices for the arousal and valence labels. According
to the data, the TSFFN has a greater recognition rate for intense emotional states. In the
task of label arousal identification, the predictive accuracy of the model for high and
low emotions is 99 and 98 percent, respectively. The model also achieves 99 percent
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accuracy in valence recognition for high emotional states and 96 percent accuracy for low
emotional states.

Figure 9. Confusion matrices of our method on Arousal (a) and Valence (b).

The ablation experiments are carried out to verify the validity of each module of the
TSFFN. Ablation variables include the temporal feature extraction module (temporal) and
the spatial feature extraction module (spatial). Calculate the accuracy of each model’s
arousal and valence label prediction according to Figure 10.

Figure 10. The results of ablation experiments on Arousal (a) and Valence (b).

Figure 10 demonstrates that for the two labels of arousal and valence, the accuracy
of TSFFN is superior to models based on temporal or spatial variables alone. Therefore,
combining spatial and temporal variables can enhance the overall performance of a model.
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4.4. TSFFN Performance Testing on Different Datasets

In addition to the DEAP data set, the study also verifies the performance of TSFFN
in datasets Dreamer and SEED. On the basis of the results of all subjects, the Accuracy,
Precision, Recall, and F1-score indicators are calculated as shown in Table 7, which reveals
that on the Dreamer dataset, the accuracy of the model in the arousal label reaches 97.74%
and the accuracy in the valence label reaches 96.80%. Additionally, TSFFN scores well
in both Precision and Recall. The model also performs exceptionally well on the SEED
dataset. The accuracy of the classification of emotions into three categories has reached
97.64%. Therefore, the TSFFFN has good performance not only in DEAP dataset, but also
in Dreamer and SEED datasets.

Table 7. The results of cross-dataset experiments.

Index
DEAP Dreamer

SEED
Arousal Valence Arousal Valence

Accuracy 98.53% 98.27% 97.74% 96.80% 97.64%
Precision 98.92% 98.72% 98.66% 98.07% 98.86%

Recall 98.91% 98.90% 98.45% 97.48% 98.86%
F1-score 98.91% 98.80% 98.55% 97.77% 98.86%

4.5. Comparison Experiment with Existing Algorithms

In terms of arousal and valence accuracy, TSFFN compares favorably to PSD [42],
DE_CNN [43], IJCNN [38], ACRNN [44], and FSA-3D-CNN [45]. PSD utilized time con-
volution to obtain spatial features from reconstructed EEG frames and then combines the
extracted features with temporal properties for emotion recognition. DE_ CNN described a
preprocessing method based on differential entropy (DE) characteristics for transforming
raw EEGs to 2D frames, followed by classification of emotions using 3D-CNN. IJCNN
captured spatiotemporal characteristics from raw EEG for emotion classification using
a hybrid CNN and RNN network. ACRNN provided a hybrid convolutional recurrent
network based on attention in which CNN is used to extract spatial features from EEG
weighted by the attention mechanism and then an upgraded RNN combines temporal fea-
tures for emotion recognition; FSA-3D-CNN proposed a four-dimensional representation
of the EEG that incorporates spatiotemporal information and then employs a 3D-CNN
to classify emotions. Table 8 provides the results. It can be seen from Table 8 that our
proposed method has significantly better performance than methods that only use spatial
information to reconstruct EEG (DE_CNN, FSA-3D-CNN) or only use time series (ACRNN)
as input. In addition, with the method of fusion with spatial and temporal features (PSD,
IJCNN), the accuracy of the proposed TSFFN is still far ahead.

Table 8. Performance comparison of different approaches.

Method Accuracy (Arousal) Accuracy (Valence)

PSD 85.49% 84.02%
DE_CNN 90.23% 89.78%

IJCNN 91.02% 90.79%
ACRNN 93.81% 92.56%

FSA-3D-CNN 95.87% 95.23%
TSFFN 98.53% 98.27%

5. Limitations

The research has serval limitations, although it achieved greater accuracy in emotion
recognition. First, although parallel input can extract more detailed spatial and temporal
features, it also requires more runtime. Second, the performance of this study is excellent
on independent data sets, but for multi-person diverse data sets, the accuracy of the model
will decrease due to individual differences.
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In the future, we will try to simplify the network structure and reduce the running
time of the model. The model’s generalization ability is improved by using multimodal
data to minimize the impact of individual differences on the performance of the emotion
recognition model.

6. Conclusions

This study introduces TSFFN, a parallel transformer and 3D-CNN-based spatiotempo-
ral feature fusion model. Two forms of EEG are utilized to fully and successfully extract
the temporal and spatial characteristics of EEG data. The transformer and 3D-CNN are
selected to extract temporal and spatial features from the parallel channel EEG map and
reconstructed position EEG sequence, which are then merged to generate the final emotion
feature. Not only does the approach simultaneously consider the temporal and spatial
aspects of EEG, but it also creates two data forms, which is useful for transformer and
3D-CNN to extract all information. The experimental findings on the DEAP, Dreamer, and
SEED datasets demonstrate the adequacy of the suggested model.
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