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Abstract: As the length of single sling increases, double slings with transverse connections are
gradually becoming one of the effective measures to control the undesirable vibration of single slings.
In the analysis of the dynamic characteristics of the double sling system, this paper firstly deduces
the dynamic stiffness matrix of the elastically connected double sling system by the dynamic stiffness
method (DSM), solves the frequency equation evolved from the dynamic stiffness matrix by using
the Wittrick-Williams (W-W) algorithm, and obtains the systematic analysis and calculation of the
dynamic characteristics of the double sling system under arbitrary boundary conditions. Secondly,
a complete and accurate analysis method of the dynamic characteristics of the double sling system
is obtained by comprehensively considering the bending stiffness and boundary conditions of the
sling, and the accuracy of the calculation can be verified by the actual measurement data. Finally,
the best installation position and quantity of transverse sling clamps in the double sling system are
obtained by the parametric analysis of transverse sling clamps. The analysis of this paper will provide
a theoretical basis for the design and optimization of slings, and further promote the wide application
of the double sling system.

Keywords: double sling system; dynamic stiffness method; W-W algorithm; parametric analysis

MSC: 37M99; 65M99

1. Introduction

Due to the increase of single sling length, the flexibility of the sling also increases,
making its lateral stiffness and internal damping reduced, and it is susceptible to various
environmental effects such as wind and rain coupling as well as moving loads, producing
various types of vibration phenomena. In order to effectively control the vibration of slings,
multiple slings at the same lifting point are usually connected with transverse tie rods or
vibration damping frames, thus forming a synergistic working system [1]. However, the
double sling-clamp system as a special sling system still lacks a detailed discussion on the
mechanical and usable properties of the system, and its mechanical principle has not been
fully analyzed. The existing studies mainly propose cable network analysis models for
horizontal double-cable or stay double-cable of cable-stayed bridges [2–6], while there are
still fewer cable network analysis models for suspension bridges with suspension cables.
Although the two bridges are extremely similar in form, there are some differences in
the composition of the cables. The former usually consists of two slings with different
lengths and physical parameters, while the latter is composed of two cables with the same
physical and geometric parameters, making it difficult to distinguish the target sling from
the adjacent sling. However, accurate analysis of the dynamic characteristics of the double
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sling system and study of the relevant factors affecting its dynamic characteristics are of
great significance in guiding the design of the double sling system, monitoring during
use, and maintenance of the sling at a later stage. Based on this, it is necessary to further
research the dynamic characteristics of the double sling system.

In earlier studies, experimental and numerical simulation methods were usually used
to study the mechanical properties of cable network systems. Yamaguchi [7,8] conducted
an experimental study on free vibration of the double sling system connected by two
cable clamps and investigated its intrinsic frequencies and vibration patterns as well as the
control effect of sub-cables by means of a scaled model. Bosch [2] further used finite element
software to simulate the mechanical properties of a sling system connected by cross-ties
and obtained the performance of a set of diagonal cables connected by cross-ties, in which
the effectiveness of the cross-ties depended on the geometry, number, size and anchorage
conditions of their arrangement. Compared with experimental and numerical studies,
numerical analysis can reveal the working mechanism of the double sling system more
effectively [9]. Xu Hanzheng and Gan Quan [10,11] simplified the sling with a damping
frame to the force model of a single sling under different constraints and loads, but the
suspension bridge sling is actually a multi-cable system under the coupling of internal
nodes, and its vibration is a comprehensive manifestation of the interaction of each cable,
which is different from the vibration behavior of a single sling or a cable with good integrity.
Caracoglia L [3–5] conducted a preliminary analysis of the natural vibration characteristics
of double-layer and multi-layer cable networks connected by coupling; Ahmad J [12,13]
further analyzed the natural vibration characteristics of a hybrid cable network system with
coupled cable net and external damper; Sun L M and Zhou Yagang [6,14] applied the cable-
spring-damper system model to the auxiliary cable of cable-stayed bridge and analyzed its
damping mechanism; Chen Zhengqing [15] determined the dynamic characteristics of the
sling and the damping scheme of the separator by the environmental excitation method
and conducted a comparative study on the damping effect of the separator; considering the
in-plane vibration of double strand sling, Li Shouying [16] deduced the motion differential
equation when installing damper between double strands; Shan Deshan [17] established the
motion differential equation of the sling with damping frame, and clarified the relationship
between damping frame stiffness, sling force and its vibration frequency; Zhou H J [18–20]
established a double tensioner-spring-damping system model, and analyzed the frequency
and damping characteristics of the system free vibration.

As the suspension bridge slings are relatively shorter and stiffer than other cable
structures such as cable-stayed, the influence of bending stiffness has a greater propor-
tion. If the influence of bending stiffness is ignored when calculating the natural vibration
characteristics of the coupled cable-stay system, the natural vibration frequency of the
cable calculated by the theoretical formula will be smaller than the actual value, which will
lead to a difference in the actual situation. Therefore, when studying the natural vibration
characteristics of the coupled slings, it is necessary to consider the bending stiffness of
the sling [21]. Chen Wei et al. [22] proposed a model of a double cable-strand coupled
system considering the cable bending stiffness and deduced a theoretical formula for sling
vibration; and the theoretical formula was verified using experimental and numerical
analysis methods after solving for the sling natural vibration frequency, which paved
the theoretical foundation for a comprehensive study of the double sling system. In a
recent study, Jing [23] analyzed the dynamic characteristics of the cable network using uni-
formly distributed elastic cross-ties instead of the conventional single or multiple cross-ties.
Lz A and Song Y A et al. [24] proposed the study on the dynamic characteristics of double
slings considering the bending stiffness in their recent study, and the analysis of the slings’
own parameters in the literature provided new ideas for this paper and the subsequent
study of the dynamic characteristics of double slings. However, the boundary conditions
of the double slings and the transverse sling clamps are only simply treated as rigid in
the existing literature, ignoring the effect of the transverse sling clamps and the actual
boundary conditions of the slings, as well as the influence of the boundary conditions on
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the dynamic characteristics of the double slings. For this reason, it is necessary to further
integrate the sling boundary conditions for the analysis of the dynamic characteristics of
the double sling.

Based on this, further dynamic characteristics of slings considering bending stiffness
and boundary conditions will be carried out in this paper. In this paper, a double slings
system with an elastic transverse cable clamp (hereinafter referred to as DSS-ETC) will be
selected as the research object for further analysis, and the elastic transverse cable clamp
in the double sling system is further analyzed in the form of sling boundary conditions.
Firstly, the frequency equation considering the bending stiffness of the double sling system
is derived from the differential equation controlling the free vibration in the plane, the
frequency equation is solved and calculated by using the W-W algorithm [25], and the
accuracy of the proposed system frequency equation analysis and calculation is verified by
comparing the results with the results of existing literature results. Secondly, considering
the effect of boundary conditions at both ends of the sling, a complete set of dynamic
characteristic analysis methods for a double sling system can be obtained, which is verified
by the measured data. Finally, based on the proposed frequency equation, the influence
of the number and position of the clamps on the dynamic characteristics of DSS-ETC
in the double sling-clamp system is analyzed to provide a theoretical basis for the wide
application of the double sling system.

2. Dynamic Characteristic Analysis of the Double Sling System
2.1. Basic Assumptions and Frequency Equations

The following assumptions were made for the DSS-ETC in order to investigate the
dynamic characteristics of the double slings system with the clamps.

a. The sling is idealized as tensioning cable;
b. Consider the bending stiffness of the sling system;
c. Neglect the additional cable force due to lateral vibration in the sling;
d. The material of the sling system is linear elastic as well as always in the range of

linear elasticity during the vibration;
e. The strain of the sling is small and its cross-sectional size does not change;
f. The vibration of the sling only occurs in the transverse plane and its vertical axial

vibration is ignored;
g. The change of the internal tension of the sling along the length of the sling is

not considered;
h. The cable clamp is a linear elastic spring device;
i. The movement of the cable clamp is mainly longitudinal, and the transverse move-

ment is ignored.

Based on the above assumptions, the basic analysis model of DSS-ETC with the clamps
evenly dividing slings is established, as shown in Figure 1 below.

When the effects of the damping and shear of the sling are ignored, the general
differential equation of the differential equation for the in-plane free vibration of the single
sling can be directly obtained from the literature [26]. However, for the above-mentioned
analysis model of the double sling system, in order to clearly express the specific situation
of each sling section for subsequent analysis, the vibration differential equation can be
further expressed with reference to the single sling as

Ei Ii
∂4uij(xij, t)

∂xij
4 + mi

∂2uij(xij, t)
∂t2 − Hi

∂2uij(xij, t)
∂xij

2 − hij(t)
d2yij(xij)

∂xij
2 = 0 (1)

where, i = 1, 2 is the sling number, j = 1, 2, 3, . . . . . . , n is the segment number of the sling,
EI is the bending stiffness of the sling, and u(x, t) is the transverse displacement function of
the sling; H is the sling force; x for the distance of the sling from the upper end boundary;
m is the mass per unit length of the sling; t is the vibration time, h(t) is the additional force
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of the sling; y(x) is the initial static configuration of the sling. Obviously, uij(xij, t) is the
transverse displacement function of the jth section of the sling of sling I.
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Figure 1. Analysis model of double slings system.

This paper aims to study the dynamic characteristics of vertical slings considering
bending stiffness. Since the slings themselves are vertical and the transverse vibration of
the slings is within a small range, the influence of the static configuration and the sag of the
slings on the transverse vibration of the slings can be ignored, while the slings of specially
designed arch bridges and suspension bridges need to be studied separately. Based on
this, this paper will no longer consider the nonlinear term of the additional sling force, and
Equation (1) can be further simplified as follows

Ei Ii
∂4uij(xij, t)

∂xij
4 + mi

∂2uij(xij, t)
∂t2 − Hi

∂2uij(xij, t)
∂xij

2 = 0 (2)

According to the dynamic stiffness method (DSM) [27], it is assumed that

uij
(
xij, t

)
= ϕij(xij)eiωt (3)

where, ϕij(xij) is the mode shape function, ω is the circular frequency (rad/s), and t is the
vibration time,

√
i2 = −1.

Introducing the dimensionless parameters: ξij =
xij

li
, µij =

lij
li

, ϕij(ξij) =
ϕij(xij)

li4
, the

dimensionless control differential equation of the system can be obtained by combining
Equations (2) and (3).

ϕij(ξij)
′′ ′′ − γi

2 ϕij(ξij)
′′ − ω̃2 ϕij(ξij) = 0 (4)
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where, γi
2 =

Hili2

Ei Ii
is the ratio of the sling axial force to the bending stiffness value,

ω̃ =
ωli2√
Ei Ii/mi

is dimensionless frequency of the sling, and ω̃2 = ηiω
2, ηi =

mili4√
Ei Ii

.

Thus, the general solution of the differential Equation (4) can be expressed as

ϕij(ξij) = Φij(ξij)
{

Aij
(1) Aij

(2) Aij
(3) Aij

(4)
}T

(5)

where, Φij(ξij) =
{

e−piξij e−pi(1−ξij) cos(qiξij) sin(qiξij)
}

, in which the specific ex-

pression of each element can be seen in Appendix A; Aij
(1) ∼ Aij

(4) is the coefficient to be
determined with respect to the boundary conditions.

According to the relationship between nodal force and displacement functions in the
sling system, the nodal displacements of the system characterized by the vibration mode
function can be obtained as follows.

αaij

θaijli
αbij

θbijli

 =
li4

Ei Ii


ϕij(ξij|=0)

ϕ′ ij(ξij|=0)

ϕij(ξij|=µij).

ϕ′ ij(ξij|=µij).

 =
1
ςi

Gij


Aij

(1)

Aij
(2)

Aij
(3)

Aij
(4)

 (6)

where, ςi =
Ei Ii

li4
, Gij =

{
Φij(ξij|=0) Φ′ ij(ξij|=0) Φij(ξij

∣∣∣=µij) Φ′ ij (ξij

∣∣∣=µij)
}T

. The

explicit expressions are given in Appendix A. αaij, θaij, αbij and θbij are the boundary line
displacement and corner displacement near and far away from the lower end of the jth sling

segment of sling i, respectively. The constant vector
{

Aij
(1) Aij

(2) Aij
(3) Aij

(4)
}T

can

be expressed from Equation (6) as
Aij

(1)

Aij
(2)

Aij
(3)

Aij
(4)

 = ςiGij
−1


αaij
θaijli
αbij
θbijli

 (7)

The relationship between its nodal force and displacement is
Vij(xij, t) = (Ei Ii

∂3ϕij(xij)

∂xij
3 − Hi

∂ϕij(xij)

∂xij
)eiωt = li(ϕ′′′ ij(ξij)− γi

2ϕ′ ij(ξij))eiωt

Mij(xij, t) = Ei Ii
∂2ϕij(xij)

∂xij
2 eiωt = li2ϕij

′′ (ξij)eiωt
(8)

Combining Equations (6) and (7), we can obtain


Vaij
Maij/li
Vbij
Mbij/li

 = liςiGij
−1


Φ′′′

ij(ξij
∣∣
=0)− γi

2Φ′ ij(ξij|=0)
−Φ′′

ij(ξij|=0)

Φ′′′
ij(ξ
∣∣∣=µij)− γi

2Φ′ ij(ξij

∣∣∣=µij)

−Φ′′
ij(ξij

∣∣∣=µij)



αaij
θaijli
αbij
θbijli

 = liςiDijGij
−1


αaij
θaijli
αbij
θbijli

 (9)

where the specific explicit expressions are shown in Appendix A.
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Then the dynamic stiffness matrix of the double slings system with the clamps can be
obtained as

K = liςiDijGij
−1 = κiDijGij

−1 = κi


k11

ij k12
ij k13

ij k14
ij

k21
ij k22

ij k23
ij k24

ij

k31
ij k32

ij k33
ij k34

ij

k41
ij k42

ij k43
ij k44

ij

 (10)

where, κi = liςi =
Ei Ii
li3

, the specific explicit expressions for each element are detailed in

Appendix A.

2.2. Frequency Equation and Its Solution

Combining the boundary conditions of the force in the double sling system and
Equation (10), the dynamic equilibrium equation of each sling segment in the double sling
system can be obtained as follows.

Ei Ii
li3


k11

ij k12
ij k13

ij k14
ij

k12
ij k22

ij −k14
ij k24

ij

k13
ij −k14

ij k11
ij −k12

ij

k14
ij k24

ij −k12
ij k22

ij



αaij
θaijli
αbij
θbijli

 =


kaij
ααaij

kaij
θθaij

kbij
ααbij

kbij
θθbij

 (11)

where, kaij
α, kaij

θ, kbij
α and kbij

θ are the boundary line displacement stiffness and corner
displacement stiffness of the j-th sling segment of sling i close to and away from the
lower end, respectively. The specific expressions for each of element kij

ij are detailed in
Appendix A. By further matrix transformation, we can get

Ei Ii
li3



k11
ij − li

Ei Ii
kaij
α k12

ij k13
ij k14

ij

k21
ij k22

ij − li
Ei Ii

kaij
θ k23

ij k24
ij

k31
ij k32

ij k33
ij − li

Ei Ii
kbij
α k34

ij

k41
ij k42

ij k43
ij k44

ij − li
Ei Ii

kbij
θ




αaij
θaijli
αbij
θbijli

 =


0
0
0
0

 (12)

Then there is

K(ω)


αaij
θaijli
αbij
θbijli

 =


0
0
0
0

 (13)

After obtaining the dynamic stiffness matrix of the double slings system with the
clamps, the modal frequencies of each sling segment in the sling system can usually be
solved by the following frequency equation.

|K(ω)| = 0 (14)

where |·| represents the value of the determinant.
Equation (14) is the frequency equation of DSS-ETC. By solving Equation (14), the

dynamic characteristics of each cable section in the DSS-ETC system can be analyzed.
That is, the value satisfying the frequency equation of Equation (14) above is the modal
frequency of each cable section of the sling system. The program is written by the W-W
algorithm [25], and the calculation method of the frequency equation in the literature [28]
is used to solve the dynamic characteristics.
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2.3. Method Validation

In order to verify the accuracy of the model and calculation method proposed in this
paper, the calculation results of the frequencies of each cable segment in the DSS-ETC are
compared with the theoretical model proposed in reference [24] and the analytical method
proposed in reference [12]. At the same time, parameter degradation of the theoretical
hypothetical model in this chapter is required to unify the DSS-ETC model assumed in this
paper with the models proposed in each piece of research literature.

The transverse elastic connection sling clamp in the single-clamp DSS-ETC is simplified
to a rigid transverse rod, i.e., the single-clamp double sling system with rigid transverse
connection (DSS-RTC), where the transverse connection transmits only shear force but not
bending moment, and the sling clamp is connected at one-half of the length of the two
slings, i.e., µ = 0.5. Meanwhile, assuming that the parameters of the two slings in terms of
mass, bending stiffness, and cross-sectional area are completely consistent, both ends of the
slings are fixed supports, and the two slings are symmetrical about the cross-ties. Then,
the simplified dynamic stiffness matrix of the double slings system in this paper can be
obtained, and the frequency equation can be obtained as∣∣∣∣∣∣∣∣

k11
ij k12

ij k13
ij k14

ij

k21
ij k22

ij k23
ij k24

ij

k31
ij k32

ij k33
ij k34

ij

k41
ij k42

ij k43
ij k44

ij

∣∣∣∣∣∣∣∣ = 0 (15)

In the literature [29], the authors used the dynamic stiffness matrix to solve the fre-
quencies of each order of the single-clamp double system with rigid transverse connections
solidified at both ends of the sling, but the specific expressions of each element in the
dynamic stiffness matrix were solved by the finite element method (shown Appendix A).
The dynamic stiffness matrix is as follows

S =



k11
(1)(µ11) k11

(2)(µ11) −k12
(1)(µ12) −k12

(2)(µ12) 0 0 0 0

k11
′(1)(µ11) k11

′(2)(µ11) −k12
′(1)(µ12) −k12

′(2)(µ12) 0 0 0 0

k11
′′ (1)(µ11) k11

′′ (2)(µ11) k11
′′ (1)(µ12) k11

′′ (2)(µ12) 0 0 0 0

0 0 0 0 k21
(1)(µ21) k21

(2)(µ21) −k22
(1)(µ22) −k22

(2)(µ22)

0 0 0 0 k21
′(1)(µ21) k21

′(2)(µ21) −k22
′(2)(µ22) −k22

′(2)(µ22)

0 0 0 0 k21
′′ (1)(µ21) k21

′′ (2)(µ21) k21
′′ (1)(µ22) k21

′′ (2)(µ22)

k11
(1)(µ11) k11

(2)(µ11) 0 0 −k21
(1)(µ21) k21

(2)(µ21) 0 0

δ11
(1) δ11

(2) δ12
(1) δ12

(2) δ21
(1) δ21

(2) δ22
(1) δ22

(2)


(16)

where, S is the dynamic stiffness matrix of the single-clamp double system with rigid
transverse connections, and the specific expressions of the elements in the stiffness matrix
are shown in Appendix A. In order to obtain the frequency of each cable section of the
system, it is only necessary to solve the following frequency equation.

|S| = 0 (17)

In reference [4], the author adopts the finite element analysis and calculation method.
The sling parameters used in the numerical verification are those of the sling system used
in reference [4], and the parameters are listed as shown in Table 1. However, the influence
of the sling’s own stiffness was not considered in that literature, i.e., the two parameters E
and I were not used in the reference. In order to make a unified comparison of the results,
the I parameter in the table is the minimum value that can be calculated by the method
proposed in the literature.

Table 1. Sling parameters.

Parameter Symbols H1,2 (kN) m1,2 (kg/m) l1,2 (m) µ1,2 E1,2 (MPa) I1,2 (m4)

Values 1598 47.9 67.34 0.5 195 2.260× 10−9
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The frequency equations obtained using the analytical method in this paper were
programmed by the W-W algorithm to calculate the frequency results of each cable segment
in the single cable clamp DSS-RTC, compared with the results calculated by the method in
each reference, as shown in Table 2.

Table 2. Frequency of each order for each sling section of the DSS-RTC with single sling clamp.

Modal
Order

Frequency Calculation Value Error Analysis Modal
PositionLiterature 1 Literature 2 This Paper δ1 (%) δ2 (%)

1 1.3569 1.3563 1.3569 0.00 0.04 GM
2 2.7137 2.7126 2.7137 0.00 0.04 GM
3 2.7137 2.7126 2.7137 0.00 0.04 LM-US
4 2.7137 2.7126 2.7137 0.00 0.04 LM-LS
5 4.0706 4.0676 4.0706 0.00 0.07 GM
6 5.4274 5.4226 5.4274 0.00 0.09 GM
7 5.4274 5.4226 5.4274 0.00 0.09 LM-US
8 5.4274 5.4226 5.274 0.00 0.09 LM-LS
9 6.7843 6.7749 6.7843 0.00 0.14 GM

10 8.1412 8.1273 8.1412 0.00 0.17 GM

The following items need to be explained in Table 2.

(1) GM in the table represents the global mode of the sling, LM-US represents the local
mode of the upper end of the sling, and LM-LS represents the local mode of the lower
end of the sling.

(2) δ1, δ2 represents the relative error between the results calculated by the method in this
paper and those calculated in literature 1 and 2, respectively, and the expression is

δ =

∣∣∣∣Calculation results in this paper − Calculation results in literature
Calculation results in literature

∣∣∣∣.
(3) The calculation results of literature 1 are those in reference [24], where the calculation

of the global mode of the sling is from the calculation method of literature [29], and
the calculation results of literature 2 are using the finite element analysis method of
reference [30], while the frequency of the global mode of the sling is calculated in this
paper by using the method in literature [28].

In Table 2, comparing the frequency values of each sling segment in DSS-RTC with a
single clamp obtained from each piece of the literature and the theoretical calculation in
this paper, it is found that each order frequency values calculated by using the analytical
calculation in this paper are exactly the same as the calculation results in literature 1, and
the frequency error between the proposed method and literature 2 is also small enough
to be negligible. The error is mainly due to the fact that the analytical calculation method
proposed in this paper takes into account the bending stiffness of the double sling system,
and the system stiffness of the single clamp DSS-RTC is greater than that in literature 2.
Therefore, the frequency calculated by the method proposed in this chapter will be slightly
larger accordingly. It is also shown that considering the bending stiffness of a single sling
increases the system stiffness of the single clamp DSS-RTC. The error analysis verifies in
both directions the accuracy of the theoretical analysis and calculation method of the modal
frequencies of each order for each section of the single-clamp double sling system in this
chapter. The method can be accurately applied to the analysis of the dynamic characteristics
of the double sling system to provide an accurate theoretical basis for further parametric
analysis and calculation of the double sling system.

2.4. Consideration and Verification of Boundary Conditions

The determination of the boundary conditions in the analysis and calculation of a
single sling is proposed in the literature [25] and has been applied in engineering. The
actual boundary conditions of the sling are determined from the parameters of the sling.
The simply supported boundary can be used for the calculation at both ends of the sling
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of l ≥ 45

√
EI
H

; when l ≤ 15

√
EI
H

, the boundary conditions at both ends of the sling shall

be treated as solid support boundary; when 15

√
EI
H
≤ l ≤ 45

√
EI
H

, the boundary at both

ends of the sling shall be treated as an elastic complex boundary. The above conclusions
will be applied to the sling system in DSS-ETC to determine the actual boundary conditions
in the double sling system.

In order to verify whether the method of determining single sling boundary conditions
can accurately reflect the actual boundary conditions of each sling in the double slings
system, the measured dynamic characteristic data of the Yunnan Red River Special Bridge
were selected for error analysis with the calculated frequencies of the double slings system
in the case of double slings boundary conditions determined by applying the conclusions
in the literature [28].

Engineering overview of the Red River Special Bridge, as shown in Figures 2 and 3:
The Red River, with a total length of 1280 km, is an international river that spans China and
Vietnam. The Red River Special Bridge is built to cross the Nansha Reservoir of the Red
River and is the first highway suspension bridge across the Red River in China. The bridge
is 1366 m long, of which the Jianshui bank approach bridge is 580 m long, the Yuanyang
bank approach bridge is 80 m long and the main span is 700 m long. The main bridge
of the bridge adopts a single span of 700 m simply supported steel box stiffening beam
suspension bridge, and the main cable span is (310 + 700 + 175) m.
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The DS44 and DS54 double slings systems in the Red River Special Bridge were
selected as the research objects of this paper, which are double sling systems with evenly
divided sling lengths for the single clamp device. As the difference of each sling length in
the double slings system is negligible, it is assumed that the length of the single sling and
other parameters in the double sling remains the same, and its main parameters are shown
in Table 3. By installing the sensor device on the sling, the measured time and voltage are
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converted into the variation value of the vibration acceleration in the sling system with
time. Further, the spectrum graph of the double slings system is obtained by fast Fourier
transform (FFT), and the frequencies of each order in the vibration process of the sling
system are finally obtained in the obtained spectrum graph. Based on the recording time of
120 s, the spectrum of the sling system and the frequency values of each order are obtained,
as shown in Figures 4 and 5.

Table 3. Parameters of double slings system.

Sling Number H1,2 (kN) m1,2 (kg/m) l1,2 (m) µ12 E1,2 (MPa) I1,2 (m4)

DS44 500 12.75 19.44 1/2 200 7.73 × 10−7

DS54 715 12.75 51.68 1/2 200 7.73 × 10−7

DS55 750 12.75 55.82 1/3 200 7.73 × 10−7
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Figure 4. Frequency conversion diagram of DS44. (a) Acceleration variation graph. (b) Spectrogram.
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Through the error analysis between the calculated frequency of the double sling
system under the determined boundary conditions and the measured analysis value of
the actual Red River Special Bridge, the application of the single sling boundary condition
conclusions to the double sling system was verified. The two sling systems DS44 and
DS54 with evenly divided sling lengths of transverse connection clamps in the Red River
Special Bridge were selected as examples, and the first six order frequencies of the sling
systems were calculated by combining the specific boundary conditions and the method
of this paper, and the calculated frequencies of the sling systems were compared with the
measured frequencies of the sling systems, as shown in Table 4 below. The relative error in
the table is the absolute value of the relative error of the calculated frequency value of the
sling relative to the measured frequency value.

Table 4. Frequency analysis of double slings system.

Modality
DS44 DS54

Measured
Values (Hz)

Calculated
Values (Hz)

Relative
Errors (%)

Measured
Values (Hz)

Calculated
Values (Hz)

Relative
Errors (%)

1st order 5.011 5.11 1.98 2.075 2.02 2.65
2nd order 10.81 10.35 4.26 5.554 5.37 3.31
3rd order 15.05 15.28 1.53 7.831 7.63 2.57
4th order 24.85 24.37 1.93 9.473 9.13 3.62
5th order 31.48 31.21 0.86 11.54 11.57 0.26
6th order 38.02 37.31 1.87 13.41 13.94 3.95

From Table 4 above, it can be seen that the maximum relative error between the mea-
sured value and the calculated frequency value of the double slings system evenly divided
by transversely connected sling clamp does not exceed 4.26%, i.e., the sling frequency
value obtained by the calculation method in this paper combined with the analysis of
the boundary conditions of the single sling is not much different from the actual value of
the project. The relative error analysis shows that the conclusions and definitions of the
single sling boundary condition analysis are also applicable to the analysis of the dynamic
characteristics of the double slings system, which means that the conclusions of the single
sling boundary condition analysis can be applied to the calculation of the double slings
system with certain accuracy. In the subsequent analysis of the dynamic characteristics of
the double slings system, the single sling boundary conditions can be used to determine
the boundary conditions of each sling section in the double slings system, so as to lay the
boundary conditions foundation for the accurate analysis of the dynamic characteristics of
the double slings system.

3. Influence of Sling Clamp Parameters on the Dynamic Characteristics of Double
Slings System
3.1. Analysis of Sling Clamp Position

In order to study the influence of the transverse clamp position on the dynamic
characteristics of the double slings system, the DHS_ECT system divided equally by the
clamp is simplified accordingly, and only the influence of the different positions of the
single clamp on the dynamic characteristics of the single-clamp DHS_ECT is considered.
When analyzing the effect of transverse sling clamp position on the dynamic characteristics
of the double slings system, the parameters of the slings in the system are set to be the
same, and the parameters of the analyzed slings system are included in Table 5 as shown.

Table 5. Parameters of double slings system.

Parameter Symbol H1,2 (N) m1,2 (kg/m) l1,2 (m) µ1,2 E1,2 (MPa) I1,2 (m4)

Value 1.5 × 106 45.7 20 0.5 195 2.260 × 10−6
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15

√
EI
H

= 8.13 and 45

√
EI
H

= 24.39 can be obtained from the sling parameters of the

parameters in the table. Under the consideration of the influence of the boundary conditions
of the double slings system on the dynamic characteristics of the double slings, the first
six order vibration frequency values of the double slings system at different sling clamp
positions are calculated by using the analytical calculation method of this chapter. The
transverse clamp position is transformed in the middle of the upper and lower boundaries
of the sling, i.e., it changes in the middle of 0~l. In this section, the values of the transverse
cable clamp positions are taken at a spacing of 0.1 l, 0.2 l, 0.3 l, . . . , . . . , 0.8 l, and 0.9 l,
respectively. Based on the calculated frequency values of each order, the variation curve of
each order frequency value of the double slings system with the position of the transverse
cable clamp is drawn, as shown in Figure 6. At the same time, the first six frequency values
of double slings when the transverse cable is clamped at 0.1 L, 0.2 L, and 0.5 L are listed
in Table 6, and the corresponding frequencies of single slings are calculated for further
analysis and comparison.
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Figure 6. Variation of each order frequency of the double slings system with the position of the
sling clamp.

Table 6. Frequency values of slings considering the position of the transverse sling clamp.

Sling Type Clamp Position
Modal Frequency (Hz)

1st Order 2nd Order 3rd Order 4th Order 5th Order 6th Order

Double slings
0.1 l 4.36 4.78 10.24 13.84 17.59 19.92
0.3 l 4.57 6.05 8.73 13.28 17.05 21.52
0.5 l 4.91 9.76 14.94 20.99 26.19 34.09

Single sling 4.546 9.189 14.024 19.139 24.613 30.516

The parameters of the double sling system in Table 5 are from the literature [24], but
the calculation results in this paper are somewhat different from those in the literature,
mainly because this paper considers the influence of the boundary conditions of the sling on
the dynamic characteristics of the sling, while the literature [29] assumes at the beginning
that all the boundary conditions in the sling system are rigid connections.

The variation of the first six frequencies of the double slings system under different
transverse sling clamp positions is shown in Figure 6. From the frequency change diagram
of the sling system, it can be obtained that the transverse sling clamp position has a
significant effect on the dynamic characteristics of DSS-ETC with the single sling clamp.
Compared with the odd-order frequency, the even-order frequency fluctuates relatively
more with the change of the transverse sling clamp position, i.e., the influence of the clamp
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position on the even-order frequency is more obvious, and this frequency change is more
obvious with the increase of the frequency order. When the transverse sling clamp is
located in the middle position of the sling, the frequency of each order of the sling in the
double slings system reaches the peak.

As can be seen from the data in Table 6, when the transverse sling clamp is located
near the middle of the sling, the frequencies of the double slings system are very close to
those of the single sling. The frequencies of the double sling system at other transverse
sling clamp installation locations are different from the calculated frequency values of the
single sling because the adjacent frequency range of a single sling in a double sling system
usually contains two system frequencies. In other words, when there is a transverse sling
connection, in addition to the vibration of the single sling, other frequency components
of vibration will be introduced. The reason for this is that the transverse clamps divide
the sling into multiple sling segments which have local modal vibrations. However, when
the transverse clamps are installed in the middle of the slings, i.e., the stationary point
of the even-order vibration pattern, the effect of the transverse clamps on the dynamic
characteristics of the slings in the double slings system can be basically negligible.

3.2. Quantitative Analysis of the Number of Sling Clamps

As the influence of single clamp position on the double slings system has been ana-
lyzed in the previous paper, in order to further study the influence of the number of clamps
on the dynamic characteristics of the sling system in the double slings system with multi
sling clamps, it is first assumed that the (n − 1) transverse clamps in the double slings
system with multi sling clamp divide the length of a single sling into n segments, i.e., the
length of each sling segment in the double slings system is the same. Take a certain double
slings system a for the research object of the influence of the number of transverse clamps
on its frequency, the main parameters of the double slings system are shown in Table 7.

Table 7. Parameters of double slings system.

Sling Number H1,2 (kN) m1,2 (kg/m) l1,2 (m) µ12 E1,2 (MPa) I1,2 (m4)

a 1500 45 20 1/n 195 6.24 × 10−6

In order to calculate the effect of the clamp number on the dynamic characteristics of
the multi-clamp double slings system, the transverse clamps were installed in the form of
evenly divided sling lengths with 1, 2, and 3 . . . . . . 9 clamps, respectively. The frequency
equation under consideration of boundary conditions is solved by programming with the
W-W algorithm, and then each order frequency of each sling segments in the double slings
system with different amounts of clamps are obtained, and the frequency values of each
order of the corresponding single sling are calculated by using the calculation method in
literature [28]. The frequency values of the double slings system varying with the number
of transverse clamps when considering the actual boundary conditions of the sling are
obtained from the calculations, as well as the frequency values of the corresponding single
sling, as shown in Figure 7.

It can be obviously seen from Figure 7 that when the number of transverse clamps is
0 and 1, the sling frequency of each order basically does not change with the number of
clamps, i.e., the frequency when the transverse clamp is installed in the middle position of
the sling is basically the same as the frequency value of the single sling, and the transverse
clamp installed only in the middle position of the sling does not affect the frequency of
the single sling. This conclusion is consistent with the research conclusion of the effect
of the single clamp position on the frequency of the double slings system in the previous
section. In the double slings system, with the increase of the number of transverse clamps,
the frequency value of each order of the sling gradually decreases. When the number of
transverse clamps in the double slings system is n = 2, the change of the sling frequency
value is the largest, which is obviously different from the double slings system with a single
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transverse clamp connected in the middle and the single sling without clamp connection.
However, it can be seen from the figure that after the number of transverse clamps in the
double slings system with multiple sling clamps is greater than two, the changes in each
order frequency of double sling begin to stabilize, i.e., when the number of transverse
clamps in double slings system is (n− 1) > 2, the frequency of double slings system has little
relationship with the number of transverse clamps in the system. Therefore, in practical
engineering, we do not need to blindly increase the number of transverse clamps to control
the vibration of the sling.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 20 
 

 

sling clamp installation locations are different from the calculated frequency values of the 

single sling because the adjacent frequency range of a single sling in a double sling system 

usually contains two system frequencies. In other words, when there is a transverse sling 

connection, in addition to the vibration of the single sling, other frequency components of 

vibration will be introduced. The reason for this is that the transverse clamps divide the 

sling into multiple sling segments which have local modal vibrations. However, when the 

transverse clamps are installed in the middle of the slings, i.e., the stationary point of the 

even-order vibration pattern, the effect of the transverse clamps on the dynamic charac-

teristics of the slings in the double slings system can be basically negligible. 

3.2. Quantitative Analysis of the Number of Sling Clamps 
As the influence of single clamp position on the double slings system has been ana-

lyzed in the previous paper, in order to further study the influence of the number of 

clamps on the dynamic characteristics of the sling system in the double slings system with 

multi sling clamps, it is first assumed that the (n − 1) transverse clamps in the double slings 

system with multi sling clamp divide the length of a single sling into n segments, i.e., the 

length of each sling segment in the double slings system is the same. Take a certain double 

slings system a for the research object of the influence of the number of transverse clamps 

on its frequency, the main parameters of the double slings system are shown in Table 7. 

Table 7. Parameters of double slings system. 

Sling 

Number 
H1,2 (kN) m1,2 (kg/m) l1,2 (m) μ12 E1,2 (MPa) I1,2 (m4) 

a 1500 45 20 1/n 195 6.24 × 10−6 

In order to calculate the effect of the clamp number on the dynamic characteristics of 

the multi-clamp double slings system, the transverse clamps were installed in the form of 

evenly divided sling lengths with 1, 2, and 3……9 clamps, respectively. The frequency 

equation under consideration of boundary conditions is solved by programming with the 

W-W algorithm, and then each order frequency of each sling segments in the double slings 

system with different amounts of clamps are obtained, and the frequency values of each 

order of the corresponding single sling are calculated by using the calculation method in 

literature [28]. The frequency values of the double slings system varying with the number 

of transverse clamps when considering the actual boundary conditions of the sling are 

obtained from the calculations, as well as the frequency values of the corresponding single 

sling, as shown in Figure 7. 

 

0 1 2 3 4 5 6 7 8 9
3

6

9

12

15

18

21

24

27

30

33

Fr
eq
ue
nc
y

(H
z)

Number of clamps

 1st order

 2nd order

 3rd order

 4th order

 5th order

 6th order

Figure 7. Variation diagram of each order frequency of double slings system a with the number
of clamps.

4. Conclusions

In this paper, the dynamic characteristics of the double slings system are analyzed.
Starting from the model of the double slings system, the dynamic stiffness matrix in DSS-
ETC with single clamp and multi clamps is deduced by the dynamic stiffness method, and
the frequency equation is solved by the W-W algorithm. At the same time, the boundary
condition conclusions for a single sling are applied to the double slings system, and the
accuracy of the dynamic characteristic calculation method in this paper when combined
with the boundary conditions is further verified. In order to have a deeper understanding
of the dynamic characteristics of the double slings system, parametric analyses are carried
out for the transverse sling clamp positions and the number of transverse clamps in the
double slings system, respectively. The main conclusions are as follows.

(1) The generalized frequency equations for double slings systems are deduced.
(2) In the double sling system, the parameters of each sling section can be used to

determine the boundary conditions, both ends of the sling of l ≥ 45

√
EI
H

can be

calculated by simple supported boundary; when l ≤ 15

√
EI
H

, the boundary con-

ditions at both ends of the sling shall be treated as solid support boundary; when

15

√
EI
H
≤ l ≤ 45

√
EI
H

, the boundary at both ends of the sling shall be treated as

elastic complex boundary.
(3) When a transverse sling clamp is installed in the middle of the double slings system,

the frequency value is basically the same as that of the single sling without the
transverse clamp; when each sling in the double slings system is divided into three
sections by two transverse clamps, the sling frequency is most obviously reduced;
however, when the number of transverse clamps is greater than two, the number of
transverse clamps has little effect on the frequency value in the double slings system.
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Through the analysis of the dynamic characteristics of the double slings system with
sling clamps, the systematic analysis theory of the dynamic characteristics of the double
slings system and the analysis conclusion of sling parameters in the double slings system
obtained in this paper provide a research means for the evaluation and analysis of the
safety, suitability, and durability of large span bridges and provide a solid theoretical basis
for the wide application of the double slings system in practical engineering.
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Appendix A

Φij(ξij) =
{

e−piξij e−pi(1−ξij) cos(qiξij) sin(qiξij)
}

Φij
′(ξij) =

{
−pi e−piξij pie−

pi(1−ξij) −qi sin(qiξij) qi cos(qiξij)
}

Φij
′′ (ξij) =

{
pi

2 e−piξij pi
2e−pi(1−ξij) −qi

2 cos(qiξij) −qi
2 sin(qiξij)

}
Φij

′′′ (ξij) =
{
−pi

3 e−piξij pi
3e−pi(1−ξij) qi

3 sin(qiξij) −qi
3 cos(qiξij)

}
(A1)

where,
pi
qi

}
=

√√
(
γi
2
)

2
+ ω̃2 ± γi

2

2
=

√√
(
γi
2
)

2
+ ηiω

2 ± γi
2

2
, pi

2 − qi
2 = γi

2,

piqi = Hiω̃ = πγiω,ω = ω/ω0,ω0 =
π

li
√

Hi/mi

Gij =

{
Φij(ξij|=0) Φ′ ij(ξij|=0) Φij(ξij

∣∣∣=µij) Φ′ ij (ξij

∣∣∣=µij)
}T

(A2)

where

Φij(ξij|=0) =
{

1 e−pi 1 0
}

Φ′ ij(ξij|=0) =
{
−pi pie−pi 0 qi

}
Φij(ξij|=µij). =

{
e−piµij e−pi(1−µij) cos(qiµij) sin(qiµij)

}
Φ′ ij(ξij|=µij). =

{
−pie

−piµij pie
−pi(1−µij) −qi sin(qiµij) qi cos(qiµij)

}

Namely Gij =


1 e−pi 1 0

−pi pie−pi 0 qi

e−piµij e−pi(1−µij) cos(qiµij) sin(qiµij)

−pie
−piµij pie

−pi(1−µij) −qi sin(qiµij) qi cos(qiµij)



Dij =


Φ′′′

ij(ξij
∣∣
=0)− γi

2Φ′ ij(ξij|=0)

−Φ′′
ij(ξij|=0)

Φ′′′
ij(ξ|=µij)− γi

2Φ′ ij(ξij|=µij)..

−Φ′′
ij(ξij|=µij).

 (A3)
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where

Φ′′′
ij(ξij

∣∣
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2Φ′ ij(ξij|=0) =
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−pi

3 + γi
2 pi pi

3e−pi − γi
2 pi 0 −qi

3 − γi
2qi

}
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ij(ξij|=0) =
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2e−pi qi

2 0
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2)c41
ij = −piqi

2(c11
ij − εijc21

ij)− qi pi
2c41

ij

k12
ij = −pi(pi

2 − γi
2)(c12

ij − εijc22
ij)− qi(qi

2 + γi
2)c42

ij = −piqi
2(c12

ij − εijc22
ij)− qi pi
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(A4)

where

c11
ij = −

piqiCij(Cijεij − 1) + qiSij + εij piSij
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yij
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kij
(1)(ξij) = e−piξij − cos(qiξij) +

pi
qi

sin(qiξij), kij
(2)(ξij) = (e−piξij − cos(qiξij)−

pi
qi

sin(qiξij))e−pi

kij
′(1)(ξij) = −pie

−piξij + qi sin(qiξij) + pi cos(qiξij), kij
′(2)(ξij) = (pie

−piξij + qi sin(qiξij)− pi cos(qiξij))e−pi

kij
′′ (1)(ξij) = pi

2e−piξij + qi
2 cos(qiξij)− piqi sin(qiξij)

kij
′′ (2)(ξij) = (pi

2e−piξij + qi
2 cos(qiξij) + piqi sin(qiξij))e−pi

kij
′′′ (1)(ξij) = −pi

3e−piξij − qi
3 sin(qiξij)− piqi

2 cos(qiξij)

kij
′′′ (2)(ξij) = (pi

3e−piξij − qi
3 sin(qiξij)− piqi

2 cos(qiξij))e−pi

δij
(1) = kij

′′′ (1)(ξij)− γi
2kij
′(1)(ξij), δij

(2) = kij
′′′ (2)(ξij)− γi

2kij
′(2)(ξij)

(A5)
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