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Abstract: In this paper, we present a modelling, dynamic analysis, and controller tuning comparison
for a five-degree-of-freedom (DoF) multi-joint robotic arm based on the Lyapunov-based Adaptive
Controller (LAC). In most pick-and-place applications of robotic arms, it is essential to control the
end-effector trajectory to reach a precise target position. The kinematic solution of the 5-DoF robotic
arm has been determined by the Lagrangian technique, and the mathematical model of each joint
has been obtained in the range of motion condition. The Proportional-Integral-Derivative (PID)
control parameters of the LAC have been determined by the Lyapunov stability approach and are
initialised by four observation methods based on the obtained transfer function. The effectiveness of
the initialised controller’s parameters is compared by a unit step response as the desired input of
the controller system. As a result, the average error (AE) for Ziegler–Nichols is 6.6%, 83%, and 53%
lower than for Pettit & Carr, Chau, and Bucz. The performance of LAC for the robotic arm model
is validated in a virtual 3D model under a robot operating system environment. The results of root
mean square error by LAC are 0.021 (rad) and 0.025 (rad) for joint 1 and joint 2, respectively, which
indicate the efficiency of the proposed LAC strategy in reaching the predetermined trajectory and the
potential of minimizing the controller tuning complexity.

Keywords: multi-joint robotic arm; Proportional-Integral-Derivative; controller tuning; Lyapunov
approach

MSC: 93C40

1. Introduction

The advancements in robotic and autonomous systems involve various types of robots
in our daily lives and in industry [1]. Therefore, the multi-joint robotic arm represents
an essential role in the automotive, agriculture, and bio-medical sectors because of its
satisfactory performance, flexibility, and accuracy [2–4].

The robotic arm is one of the most common types of robots that is used in several
industrial applications [5]. For example, Xie et al. [6] developed an obstacle avoidance and
path planning algorithm for a multi-joint manipulator equipped with a spacecraft based on
forward and backward inverse kinematics. Pavlovcic et al. [7] utilised a six-degree-of-freedom
(DoF) robotic arm for simultaneous laser profilometry and hand–eye calibration in an
industrial application. In another study, Jeong et al. [8] presented brain–machine interfaces
for robotic arm applications. They developed an electroencephalogram, worn by humans
to acquire signals for implementation as desire tracking for a robotic arm.

Proportional-Integral-Derivative (PID) is one of the classical controllers, and it has been
widely used in different industries due to its simplicity, flexibility, adequate results [9,10],
ease of implementation, and excellent performance [11]. In order to increase the precision
and robustness of the controller, its parameters are tuned by various methods, such as
classical observation and optimisation techniques [12,13]. Belkadi et al. [14] presented a
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swarm optimisation to tune the parameters of the controller by minimizing the steady-state
error. They verified their controller in a simulation model and compared it with conventional
methods by numerical analysis. Phu et al. [15] combined optimisation with sliding mode
control based on the Bolza–Meyer criterion to increase the performance of the controller by
minimising and eliminating disturbances such as the vibration effect. Another example
of the usage of a PID controller in different applications is the study by Wang et al. [16]
that developed an optimal controller for vibration active control systems. In another study,
Suhaimin et al. [17] used a PID controller for a 5-DoF robotic arm and controlled its joints
for point-to-point trajectory tracking of the end-effector.

Adaptive control systems have been used in various works for different applications [18,19].
Pezzato et al. [20] presented an active inference controller that used an adaptive controller
for industrial robots. They compared their proposed controller with a state-of-the-art
model reference adaptive controller for an experimental setup of a 7-DoF robotic arm for
the pick-and-place cycle. Tavoosi et al. [21] introduced an adjusting PID parameter through
model predictive control. The parameters of the PID are tuned in real time by type-2
fuzzy-logic systems for a tank reactor application. Ma et al. [22] presented a trajectory
regulating model reference adaptive controller to increase the stability and robustness
of adaptation for the joint trajectory of a robotic arm. In our work, the PID controller’s
parameters are tuned by a Lyapunov-based Adaptive Controller (LAC) and are initialised
by observation methods. In general, the contributions of this paper are as follows:

• We tuned the controller parameters in real time based on stability analysis of the
non-linear control system;

• The LAC’s parameters are initialised by using various observation methods and they
are used to initialise the controller’s parameters.

The contributions are validated in a 5-DoF robotic arm due to its serial structure,
flexible action, accessible operation, and satisfactory load capacity in virtual simulation; it
is extensively used in many robotic fields and industries [23].

The rest of the paper is organised as follows: Section 2 addresses the dynamic models
of the 5-DoF robotic arm, developed using the Lagrangian method. Section 3 presents the
LAC strategy determination. The results and discussion are presented in Section 4. The
conclusions are given in Section 5.

2. Structure and Dynamics of the Robotic Arm

In this paper, a 5-DoF robotic arm, consisting of a base, four links, a wrist, and grippers,
is selected as an example of a serial manipulator. The links are connected to each other by
joints, which are powered by a motor and encoder sensor to move and capture the angular
trajectory. The robotic arm is composed of two rotating and three swinging joints, among
which the first and fifth joints are rotating and joints 2, 3, and 4 are swinging. Figure 1
shows the structure of the robotic arm.
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Figure 1. Structure of the 5-DoF robotic arm.
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In this work, we employ the energy-based Lagrangian method to establish the relation
between the torque and angle of joints [24]. The energy-based equation is expressed as
follows:

L = Ek − Ep (1)

τi =
d
dt
( ∂L

∂θ̇i

)
−
( ∂L

∂θi

)
+ Bi(θ̇i) (2)

where L represents the Lagrangian function; Ek and Ep are the total kinetic and potential
energies, respectively; Bi is the joint friction coefficient; τi is the torque of each joint, with
i = 1, 2, 3, 4, 5; θi and θ̇i are the angular trajectory and velocity, respectively. The equations
of Ep and Ek are given as follows [25]:

Ep =
5

∑
i=1

migzdi (3)

Ek =
5

∑
i=1

[
1
2

mi(ẋ2
di + ẏ2

di + ż2
di) +

1
2

Ii θ̇
2
i ] (4)

g is the gravity acceleration; mi and Ii are the mass and inertia of each link, respectively;
and (ẋdi, ẏdi, żdi) is the time derivative of the centroid position of each linkage. According
to the geometric relation, the centroid position (xdi, ydi, zdi) of every linkage is represented
as

Xdi
=

i−1

∑
j=1

(Rj
zj X) + Ri

zi
Xd (5)

Here, jX ∈ <3×1 is the position of joint (i− 1)th according to the reference frame; Xdi
∈

<3×1 is the position of the centroid point of link ith relative to the reference frame; and
iXd ∈ <3×1 represents the centroid position of the link ith regarding the coordinate system
located in the joint ith. Moreover, Rzi ∈ <3 is the rotation matrix around the z-axis according
to the coordinate system placed in the ith joint, given as follows:

Rzi =

cos(θi) −sin(θi) 0
sin(θi) cos(θi) 0

0 0 1

 (6)

By substituting Ek and Ep into the Lagrangian function, the dynamic equation is
determined as follows:

τ = Mθ̈ + V(θ̇, θ) + G(θ) (7)

where τ ∈ <5×1 represents the torque vector; θ ∈ <5×1 and θ̈ ∈ <5×1 are the angular
rotation and acceleration; V ∈ <5 is the centrifugal, coriolis and friction matrix, and
G(θ) ∈ <5 represents the gravity matrix, expressed as follows:

V(θ̇, θ) = Bi · I5×5 (8)

G(θ) = egi · I5×5 (9)

where I5 ∈ <5 is the identity matrix and egi denotes the elements of mass and gravity
matrices, represented as follows:

egi = (li
5

∑
i=i+1

(mi) + lci mi)gsin(θi) (10)

where g represents gravitational acceleration. M ∈ <5 is a matrix containing mass and
inertia elements, which is shown as follows:
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M =


em1 0 0 0 0
0 em2 0 0 0
0 0 em3 0 0
0 0 0 em4 0
0 0 0 0 em5

 (11)

where emi i = 1, 2, 3, 4, 5 represent the mass and inertia elements, expressed as follows:

em1 = I1; emi = l2
i

5

∑
i=i+1

(mi) + Ii + mil2
ci

(12)

where lci is the length of the centroid position for each link and li is the length of the links.
Table 1 shows the physical characteristics of the robotic arm’s links.

Table 1. Characteristics of 5-DoF robotic arm.

Link li(m) lci(m) mi(kg) Ii Bi

i = 1 0.3 0.15 0.748 0.0013 0.72
i = 2 0.19 0.095 0.8020 0.0043 0.83
i = 3 0.14 0.07 0.792 0.0023 0.95
i = 4 0.15 0.075 0.691 0.0015 0.88
i = 5 0.04 0.02 0.2562 0.0012 0.83

The mathematical model of the robotic arm has non-linear characteristics. Thus,
to simplify the model for further analysis, methods such as the range of motion (RoM)
condition, where one joint is moving and the other ones are fixed, have been applied. The
transfer functions of each joint are represented as follows:

G1 =
θa1

τ1
=

1
I1s2 + B1s

(13)

G2 =
θa2

τ2
=

1
a21s2 + B2s + a23

(14)

G3 =
θa3

τ3
=

1
a31s2 + B3s + a33

(15)

G4 =
θa4

τ4
=

1
a41s2 + B4s + a43

(16)

G5 =
θa5

τ5
=

1
a51s2 + B5s + a53

(17)

where
a21 = l2

2m5 + l2
2m4 + l2

2m3 + l2
c2

m2 + I2 (18)

a23 = gl2m4 + gl2m3 + lc2 gm2 (19)

a31 = l2
3m5 + l2

3m4 + l2
c3

m3 + I3 (20)

a33 = gl3m5 + gl3m4 + lc3 gm3 (21)

a41 = l2
4m5 + l2

c4
m4 + I4 (22)

a43 = gl4m5 + lc4 gm4 (23)

a51l2
c5

m5 + I5 (24)

a53 = lc5 gm5 (25)
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3. LAC Strategy for Robotic Arm Joints

PID control has been used by many researchers to move the joints’ trajectory in
the robotic arm, because of its potential in providing acceptable results and ease of
operation [26,27]. The input and output of the control system are the desired and actual
trajectory angle of each joint, respectively. In this paper, the PID controller’s parameters
are determined by stability analysis and initialised by observation tuning methods, i.e.,
Ziegler–Nichols (Z-N), Pettit & Carr, Chau, and Bucz [28,29].

Figure 2 shows the block diagram of the PID closed-loop control system, in which the
parameters of the controller are tuned by a combination of observation methods and LAC
based on the steady-state error. The process of observation methods is carried out by the
mathematical model of the robotic arm and LAC is the real-time tuner of the controller.

θdi Eri+− Ci(s)
Ti

Gi(s)
θai

Eri∫
Eri dt
Ėri

observation
methods LAC

+
Kp, Ki, Kd

Figure 2. Block diagram of LAC strategy.

The steady-state error is the difference between the desired and actual trajectory, given
as follows:

Eri = θdi
− θai i = 1, 2, 3, 4, 5 (26)

where θai (s) and θdi
(s) represent the actual and desired angular trajectories for each joint,

respectively.

Lyapunov-Based Adaptive Controller

The controller law for the Lyapunov-based adaptive controller is defined as follows:

u = KpEr + Ki

∫ t

0
Erdt + Kd

dEr

dt
(27)

where it is assumed that Ż , Er; therefore, Z ,
∫ t

0 Erdt. Equation (27) is rewritten as
follows:

u = KpEr + KiZ + KdĖr (28)

Theorem 1. Consider a general non-linear dynamic system as follows:

Ẋ = −AX + Bu (29)

y = f (X) (30)

where X ∈ <n is the state vector, y ∈ <n is the controller output, u is the control input vector.
f : <n → <n is a Lipschitz function. Consider a function V : <n → [0, ∞], which is positive
definite, denoted by Vx. Therefore, there is a Lyapunov function for the non-linear dynamic system,
if the following expression is valid.

V̇ := Vx(x) · f (x) < 0 ∀x 6= 0 (31)

Proof. The non-linear dynamic system can be shown to be asymptotically stable if such a
Lyapunov function exists [30–33]. It is assumed that for a given positive-definite matrix
Q, there is a positive-definite solution P such that PA + AT P = −Q, where P is the



Mathematics 2022, 10, 3126 6 of 14

positive-definite matrix that is used to simplify the algebra without any loss of generality.
The Lyapunov candidate function is defined as follows:

V = XT PX + K̃p
TΓ−1K̃p + K̃i

TΓ−1K̃i + K̃d
TΓ−1K̃d (32)

where Γ is the adaptive rate, and K̃p, K̃i, and K̃d are the differences between the actual and
estimated controller parameters, K̂p, K̂i, and K̂d respectively, given as follows:

K̃p = Kp − K̂p (33)

K̃p = Ki − K̂i (34)

K̃p = Kd − K̂d (35)

Differentiating the Lyapunov candidate function over time, we have

V̇ = ẊT PX + XT PẊ + ˙̃KT
p Γ−1K̃p + K̃p

TΓ−1 ˙̃Kp

+ ˙̃KT
i Γ−1K̃i + K̃i

TΓ−1 ˙̃Ki +
˙̃KT
d Γ−1K̃d + K̃d

TΓ−1 ˙̃Kd (36)

where ẊT is the transpose of Equation (29) and ˙̃KT
p Γ−1K̃p = K̃p

TΓ−1 ˙̃Kp, ˙̃KT
i Γ−1K̃i =

K̃i
TΓ−1 ˙̃Ki, and ˙̃KT

d Γ−1K̃d = K̃d
TΓ−1 ˙̃Kd. Therefore, the derivative of the Lyapunov candidate

function is written as follows:

V̇ = XT AT PX + BTUPX + XT PAX + XT PBU

+ 2 ˙̃KT
p Γ−1K̃p + 2 ˙̃KT

i Γ−1K̃i + 2 ˙̃KT
d Γ−1K̃d (37)

V̇ = XT AT PX + BTuPX + XT PAX + XT PBu

+ 2 ˙̃KT
p Γ−1K̃p + 2 ˙̃KT

i Γ−1K̃i + 2 ˙̃KT
d Γ−1K̃d (38)

By substituting Equation (28) in Equation (38), the derivative of the Lyapunov function
is given as follows:

V̇ = −XTQX + K̃p(BT PXEr + XT PBEr + 2 ˙̃KT
p Γ−1K̃p)

+K̃i(BT PXZ + XT PBZ + 2 ˙̃KT
i Γ−1K̃i)

+ K̃d(BT PXĖr + XT PBĖr + 2 ˙̃KT
d Γ−1K̃d). (39)

Therefore, ˙̃Kp, ˙̃Ki, and ˙̃Kd are expressed as follows, to have V̇ = −XTQX, which is
negative-definite and satisfies Theorem 1.

˙̃Kp = K̇p =
−ΓBT PXEr − ΓXT PBEr

2
(40)

˙̃Ki = K̇i =
−ΓBT PXZ− ΓXT PBZ

2
(41)

˙̃Kd = K̇d =
−ΓBT PXĖr − ΓXT PBĖr

2
(42)

Therefore,

Kp =
∫ t

0
K̇pdt + Ḱp (43)

Ki =
∫ t

0
K̇idt + Ḱi (44)



Mathematics 2022, 10, 3126 7 of 14

Kd =
∫ t

0
K̇ddt + Ḱd (45)

where Ḱp, Ḱi, and Ḱd represent the initial values of PID parameters that are determined by
conventional observation methods. The closed-loop transfer function of the control system
is given as

θai (s)
θdi

(s)
=

C(s)Gi(s)
1 + C(s)Gi(s)

(46)

where C(s) is the transfer function of the controller, and Gi(s) is the transfer function of
each link. The controller C(s) is given as follows:

C(s) = Ḱp + Ḱi
1
s
+ Ḱds (47)

There are various PID tuning methods, such as pole assignment, Cohen–Coon, amplitude,
and phase margin methods. In this study, the parameters of PID are tuned by conventional
observation methods of Z-N, Pettit & Carr, Chau, and Bucz. For tuning the controller
by conventional methods, the values of Ḱi and Ḱd are set as zero to convert the PID
into a proportional controller. Initially, the gain of the proportional controller is tuned.
Subsequently, Ḱi and Ḱd are obtained based on the tuned proportional gain, and the
proportional controller is established as follows:

Gp(s) =
KuG(s)

1 + KuG(s)
(48)

where Ku is the proportional gain, which increases gradually until the output of the control
system starts to oscillate by equal amplitude. This parameter is the ultimate gain for Ku
and its period is selected as the oscillation period, Tu. Figure 3 represents the unit step
response to the proportional controller for joint 3.

Figure 3. Unit step response for proportional controller for joint 3, in which Tu = 1.5 s and Ku = 7.

The tuning of controller parameters with various conventional methods is shown in
Table 2. Although, in the observation methods, there is a lack of selection of parameters
and excessive overshoot in the time response, they are still well-known and convenient to
use. These methods are adopted to minimise the rise time, overshoot, and settling time.

Table 2. Conventional observation methods for tuning PID.

Ḱp Ḱi Ḱd

Z-N 0.6Ku
1.2Ku

Tu
0.075KuTu

Pettit & Carr 0.67Ku
0.67Ku

Tu
0.1002KuTu

Chau 0.2Ku
0.3636Ku

Tu
0.066KuTu

Bucz 0.28Ku
0.1944Ku

Tu
0.1005TuKu
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Algorithm 1 expresses the overall pseudo-code of the LAC strategy. Ks is the proportional
step to increase Ku gradually until the ultimate gain is obtained.

Algorithm 1 Pseudo-code of LAC.

1: Start;
2: Determine K̇p, K̇i, and K̇d;
3: Set Ḱi = 0, Ḱd = 0, and Ḱp = Ku;
4: Initialise Ku;
5: Set step value for as Ks;
6: while Observe stable oscillation do
7: Set value for Ku;
8: Ku = Ku + Ks;
9: end while

10: Set Ku = Kcr;
11: Calculate oscillation period as Tu ;
12: Calculate Ḱp, Ḱi, and Ḱd;
13: Set Kp =

∫ t
0 K̇pdt + Ḱp, Ki =

∫ t
0 K̇idt + Ḱi, and Kd =

∫ t
0 K̇ddt + Ḱd

14: End.

The ultimate gains, Ku, for joints 1 to 5, are 1, 44.5, 7, 66, and 25, respectively. Similarly,
Tu is 0.003, 0.5, 1.5, 0.3, and 0.6 for joint 1 to 5, respectively. Table 3 illustrates the PID
parameters tuned for each joint.

Table 3. PID parameters tuned by conventional observation methods.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5

Ḱp 0.6 26.7 4.2 39.6 15

Z-N Ḱi 400 106.8 5.6 264 100

Ḱd 0.0002 1.66 0.78 1.48 0.56

Pettit
&

Carr

Ḱp 0.67 29.82 4.69 44.22 16.75

Ḱi 223.33 59.63 3.12 147.4 55.84

Ḱd 0.0003 2.22 1.05 1.98 0.75

Ḱp 0.2 8.9 1.4 13.2 5

Chau Ḱi 121.19 32.36 1.7 79.92 30.3

Ḱd 0.0002 1.48 0.69 1.31 0.5

Ḱp 0.28 12.46 1.97 18.48 7

Bucz Ḱi 64.8 17.3 1.903 42.8 16.2

Ḱd 0.0003 2.23 1.05 1.2 0.75

4. Results and Discussion

We compare the performance of the tuned parameters by the conventional observation
methods between Z-N, Pettit & Carr, Chau, and Bucz, in which the determined parameters
are implemented in a closed-loop control system for each joint transfer function. Figure 4
compares the unit step response results of each joint in the closed-loop control system
based on the transfer function of each link.
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(a) Joint 1 (b) Joint 2

(c) Joint 3 (d) Joint 4

(e) Joint 5

Figure 4. Unit step response of tuned closed-loop control system.

Table 4 compares the average error (AE) in radian and settling time (ST) in seconds
determined by the tuning methods for each joint.

In Table 4, it can be observed that the AE and ST for Z-N show lower values in all
joints. In addition, each joint followed the desired trajectory, with lower overshoot by the
tuned Z-N parameters than other methods. For example, the AE for Z-N is 6.6%, 83%, and
53% lower than the AE for Pettit & Carr, Chau, and Bucz. Therefore, parameters Z-N are
selected for the initialization of LAC due to its lowest AE and ST. To monitor the stability
of the closed-loop control system tuned by Z-N, the root locus method is analysed for each
joint based on the mathematical models and tuned controller. Figure 5 represents the root
locus graph for the PID close-loop control system tuned for each joint.
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Table 4. Analysis of unit step response by tuning methods for each link.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5

Z-N
AE 0.003 0.011 0.038 0.01 0.015

ST 0.1 0.3 2.3 0.4 0.6

Pettit
and Carr

AE 0.009 0.013 0.064 0.011 0.016

ST 0.11 0.9 4.8 0.5 0.8

Chau
AE 0.004 0.019 0.114 0.016 0.028

ST 0.13 0.8 5 0.8 1.6

Bucz
AE 0.008 0.03 0.102 0.014 0.023

ST 0.115 2.12 5.1 0.9 1.5

(a) Joint 1 (b) Joint 2

(c) Joint 3 (d) Joint 4

(e) Joint 5

Figure 5. Root locus stability analysis.
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In Figure 5, all the roots are on the left side of the graph, i.e., the stable region of the root
locus. To validate the performance of the tuned controller, a 3-D model of a robotic arm was
created in a virtual environment integrated with ROS, in which the physical characteristics
are as defined in Table 1. The virtual environment and the model are designed to analyse
the performance of the robotic arm, which resembles the actual one [24,34]. In addition, the
model is designed and simulated with similar DoF and structure to the analysed robotic
arm. Figure 6 shows the performance of the LAC strategy initialised by the Z-N method
for the robotic model in the virtual environment, while the step response actual trajectory
is applied for each joint.

(a) Joint 1 (b) Joint 2

(c) Joint 3 (d) Joint 4

(e) Joint 5

Figure 6. Performance of LAC for robotic model in virtual environment.

The experimental results in Figure 6 show that the robotic arm has good performance
for various step response trajectories. There is an overshoot when there is a change in steps
of the desired trajectory because the designed LAC needs to overcome the disturbances and
converge the error. In the other experiment, the LAC strategy tuned by Z-N is validated in
a 3D model in RoM condition, as shown in Figure 7.
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(a) Joint 1 (b) Joint 2

(c) Joint 3 (d) Joint 4

(e) Joint 5

Figure 7. Validation of LAC for robotic model in virtual environment in RoM condition.

The experimental results are shown in Figure 7, in which the control system input
is a periodic signal. The results represent satisfactory performance within an acceptable
range of error. Table 5 illustrates the AE and root mean square (RMS) for each joint in RoM
condition.

Table 5. Statistical analysis of LAC’s performance for each joint in RoM condition.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5

AE 0.0193 0.022 0.0215 0.0217 0.0228

RMS 0.0215 0.025 0.0239 0.0241 0.0254

AE and RMS are measured in radians and they are in the acceptable range. The
statistical analysis shows that AE and RMS did not exceed 0.05 (rad), which represents
satisfactory performance [35]. It is concluded that the proposed control method and tuning
based on the mathematical model in RoM condition have satisfactory tracking performance.

5. Conclusions

This paper presented the modelling and analysis of an LAC strategy for a 5-DoF
multi-joint robotic arm. The Lagrangian technique has been utilised to determine the
mathematical model of a robotic arm based on its structure. The transfer functions of each
joint were obtained in RoM condition. The LAC’s parameters were determined based
on the Lyapunov stability approach. The LAC parameters were initialised based on four
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observation methods, including Z-N, Pettit & Carr, Chau, and Bucz. The control strategy
was validated in a 3D model of the robotic arm in a virtual environment. The results show
that the controller with Z-N based on the mathematical model of each joint has better
performance than other observation methods. For instance, the AE for Z-N in the unit step
response was 6.6%, 83%, and 53% lower than the AE for Pettit & Carr, Chau, and Bucz. In
addition, validation results in the virtual environment showed that the AE and RMS were
in an acceptable range that was below 0.05 (rad).

The method can be employed for any multi-joint robotic arm to control its end-effector
and track its angular trajectory. The limitation of this work is that we did not obtain the
desired trajectory of each joint based on tracking the end-effector. In addition, this method
was not validated in an actual robotic arm in the presence of disturbances. Future work
will be devoted to combining inverse kinematic and visual algorithms to be developed for
practical applications. Moreover, the proposed method is applicable in industries such as
welding, material handling, and thermal spraying, or any other industrial applications.
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