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Abstract: The distribution of emergency perishable materials after a disaster, such as an earthquake,
is an essential part of emergency resource dispatching. However, the traditional single-period
distribution model can hardly solve this problem because of incomplete demand information for
emergency perishable materials in affected sites. Therefore, for such problems we firstly construct a
multi-period vehicle path distribution optimization model with the dual objectives of minimizing
the cost penalty of distribution delay and the total corruption during delivery, and minimizing the
total amount of demand that is not met, by applying the interval boundary and most likely value
weighting method to make uncertain demand clear. Then, we formulate the differential evolutionary
whale optimization algorithm (DE-WOA) combing the differential evolutionary algorithm with the
whale algorithm to solve the constructed model, which is an up-and-coming algorithm for solving
this type of problem. Finally, to validate the feasibility and practicality of the proposed model and the
novel algorithm, a comparison between the proposed model and the standard whale optimization
algorithm is performed on a numerical instance. The result indicates the proposed model converges
faster and the overall optimization effect is improved by 23%, which further verifies that the improved
whale optimization algorithm has better performance.

Keywords: emergency material distribution; multi-period; uncertain demand; perishable materials;
whale optimization algorithm; differential evolution algorithm

MSC: 90B06

1. Introduction

Large-scale sudden natural or man-made disasters occur frequently around the world
every year, posing serious threats and impacts on society, human production, and life [1].
How to respond quickly effectively to these unpredictable emergencies has attracted much
attention from governments and management at all levels, and has also placed high
requirements on them from all aspects [2].

A scientific distribution and reasonable delivery of emergency relief materials, a key
aspect of emergency relief work, can reduce the damage to property and casualties caused
by disasters, improve the efficiency of rescue work and release the psychological pres-
sure on the victims [3-5]. Due to the suddenness of disasters and the urgency of rescues,
the demand for perishable emergency supplies for affected locations is often vague [6].
In addition, the longer the transport time, the more serious the spoilage phenomenon. Cur-
rently, this problem can be solved by a single-period delivery model. However, in this case,

Mathematics 2022, 10, 3124. https:/ /doi.org/10.3390/math10173124 https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math10173124
https://doi.org/10.3390/math10173124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2515-1019
https://orcid.org/0000-0003-0014-2095
https://doi.org/10.3390/math10173124
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10173124?type=check_update&version=1

Mathematics 2022, 10, 3124

20f17

plenty of restrictions influence the solution’s precision. For example, the actual demand
for one disaster site is much greater than the maximum loading capacity of a vehicle, and
the number of vehicles is limited. Thus, the single-period delivery cannot satisfactorily
solve this problem. To more efficiently solve this problem, we consider a multi-period
distribution model. Given the situation of sufficient supplies in the distribution center, one
can use it to make decisions on the distribution vehicle’s path and the distribution quantity
in each period to minimize the cost penalty of distribution delay and total corruption
during delivery, and minimize the total amount of demand that is not met, which is worthy
of studying to improve relief work’s efficiency and reduce losses in disaster areas.

The remainder of this paper is organized as follows. Section 2 performs literature
reviews relevant to this study. Section 3 constructs the optimization model with the bi-
objective and multi-period vehicle path distribution, and proposes the improved differential
whale optimization algorithm, which is a novel algorithm for solving the vehicle path
problem with multi-objective optimization. Section 4 presents a practical example to verify
the validity of the proposed model and algorithm. A comparison of the solution results
of the algorithm before and after the improvement reveals that the improved differential
evolutionary whale optimization algorithm optimizes better regarding the two objectives
of minimizing the distribution delay penalty and corruption cost, and minimizing the
unsatisfied degree of demand. Finally, conclusions and possible future research are given
in Section 5.

2. Literature Review

The vehicle routing problem (VRP), as a classical problem in the field of operations
research and combinatorial optimization, has been widely studied and played a significant
role in transportation, logistics production and emergency rescue since its introduction in
1959 by Dantzig and Ramser [7]. A large number of experts and scholars have conducted
in-depth research and analysis on it so far. Many variants of the VRP problem have been
derived, and related theories and models have become relatively mature, among which,
the multi-period vehicle path problem (PVRP) is one. Traditional vehicle paths and their
derivatives are mostly deterministic vehicle path optimization problems, where the relevant
variables are known in advance. However, in practice, uncertain information abounds
whether in production transport or emergency relief, including demands, road condi-
tions, casualties and so on. It can be divided into fuzzy information, random information
and dynamic information concerning the properties of uncertain information. Therefore,
the analysis and research of uncertain vehicle path optimization problems have become
the focuses of experts and scholars. With the increasing development of intelligent opti-
mization algorithms in recent years, a good research foundation has been laid for solving
such problems.

The problem of optimizing the routes of emergency material distribution vehicles is a
typical VRP problem in which the distribution center provides materials to some demand
points with different quantities of materials, and vehicles are assigned to appropriate routes
which form closed loops such that departure and final return are both the distribution
center, so that the demand points’ needs are met. Such goals of minimum transport costs,
shortest driving distance and time spent under certain constraints should also be accounted
for. Given the condition of the demand of distribution being known, the shortest driving
distance is used as a goal to indicate the shortest resource allocation time, and a suitable
distribution path is selected for a vehicle to satisfy the distribution demand of each affected
location. Zhou et al. constructed a heterogeneous vehicle path optimization model for the
vehicle path problem in which the pre-emergency transporters’ vehicles are insufficient;
the maximum system satisfaction and the minimum total time and the total cost were
considered as the goals [8]. Li Zhuo et al., focusing on different interests of demand points
and transporters, developed a multi-objective hybrid vehicle path optimization model with
a soft time window, and a non-dominated sorting ant colony algorithm was proposed to
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solve this model. An arithmetic case analysis indicated the effectiveness of the modified
algorithm [9].

For the multi-site, open-emergency material distribution vehicle path problem consid-
ering secondary disasters, with the objective of shortest transportation time, Tan Jie et al.
established two types of mathematical planning models that, under the one-sided fuzzy
soft time window and fuzzy demand constraints, consider the risk of random failure at
supply points, and designed an improved variable neighborhood search algorithm to solve
the problem [10].

To solve the site-path problem of post-disaster emergency relief, different objectives
and models were developed by scholars. With the objectives of maximizing rescue effi-
ciency and minimizing the total cost, Gao Xinyu et al. developed a multi-stage site-path
optimization model under the constraint of demand uncertainty and proposed an im-
proved fast non-dominated genetic algorithm [11]. To maximize the matching degree of
emergency demand at each dispatch point in the current stage, minimize the variance of
the average matching degree of emergency demand at the previous k stages of dispatch
and minimize the total travel time of the dispatch path, Liu Yang et al. constructed a
multi-stage distribution and dispatching model for emergency relief supplies based on
the historical travel time functions of road sections to portray the dynamics of the traffic
on a road network [12]. In addition, an integrated optimization algorithm and coding
adjustment strategy were made for the solution of multi-stage distribution and dispatching
of disaster relief supplies. With the objective of minimizing the maximum distribution time,
Zhou Yufeng et al. formulated an emergency facility siting-allocation model applicable
to the initial post-earthquake relief phase by considering the phase characteristics, facility
disruption scenarios, multi-species uncertain demand, facility capacity limitations, etc.
The defuzzification of uncertain demand was processed through the expectation value for-
mula of interval boundary, and on this basis, the result could be obtained by the proposed
hybrid integer coding genetic algorithm [13].

The period vehicle routing problem (PVRP) was firstly proposed by Bekrami and
Bodin in 1974 [14], arguing that different customers have different access frequencies for
the recycling of industrial waste in New York City. Christofides et al. (1984) initially
constructed a mathematical model of PVRP [15]. After nearly forty-five years of devel-
opment, PVRP has been further extended in practical applications, such as the period
vehicle routing problem with time window (PVRPTW), multidepot and periodic vehi-
cle routing problems (MAPVRP) and the dynamic multi-period vehicle routing problem
(DPVRPD) [16-19], and other existing studies mostly used heuristic algorithms to solve the
extended PVRP model.

Wang et al. (2019) put forward a multi-stage model for distributing emergency sup-
plies to multiple affected locations with the objectives of minimizing losses caused by
shortages, total fixed costs of transportation and distribution costs. They designed and
constructed a nonlinear utility function to reflect the negative utility caused by a lack of
funding, and experiment results proved the feasibility of this model [20]. With the objectives
of minimizing total delay time and total system loss for distribution of emergency supplies,
Wang Yanyan et al. developed a dynamic distribution optimization decision model that
uses fuzzy information conditions with multiple demand points, multiple distribution
centers, multiple supplies, multiple periods and multiple objectives. After analyzing the
clarification methods of the interval objective function, interval fuzzy constraints and tri-
angular fuzzy constraints, they designed a two-dimensional Euclidean distance-based
objective empowerment fuzzy algorithm to solve the model [21]. With the dual objectives
of minimizing the risk of sending unsatisfying amounts of resources and minimizing the
risk of resources not reaching disaster areas, Zhou et al. considered of the inherent nature
of the multi-period dynamic emergency resource scheduling (ERS) problem to establish
a multi-objective optimization model for the multi-period dynamic emergency resource
scheduling (ERS) problem, and a decomposition-based multi-objective evolutionary algo-
rithm (MOEA /D) was made to achieve great performance [22].
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The vehicle routing problem for perishable goods (VRPFPG) is one of the vehicle
routing problems (VRP) [23]. Large quantities of perishable goods around the world
are transported from suppliers to consignees on a daily basis. Perishable goods, such as
food and pharmaceuticals, require special handling during transportation due to their
limited lifespans, and they must be transported as fast as possible before they deteriorate.
Besides transport time constraints, the high frequency of transport can generate high
transportation costs, which makes the optimization of perishable materials particularly
vital. With the multiple objectives of minimizing operational costs, spoilage costs and
carbon emissions, and maximizing customer satisfaction, Zulvia et al. paid attention to
time windows, different travel times during peak and off-peak hours and working hours
to develop a green VRP model and design a multi-objective gradient evolution (MOGE)
algorithm whose results showed great performance [24].

To solve the perishable with uncertain demand material distribution vehicle path
problem, researchers constructed various models with different objectives. With minimum
total cost, maximum product freshness and minimum carbon emission as objectives, Qian
Zhang et al. established a multi-objective optimization model for distribution path plan-
ning, and designed the main objective method and fruit fly algorithm based on robust
optimization to deal with the uncertainty problem [25]. With the objective of minimizing
the operating cost and emission cost, Babagolzadeh et al. constructed a two-stage stochastic
planning model to determine the optimal replenishment strategy and transportation plan
in the presence of carbon tax controls and uncertain demand, and an improved result was
obtained by the proposed mathematical algorithm with respect to iterative local search
(ILS) algorithm and mixed integer programming [26]. With the objectives of minimiz-
ing costs, minimizing environmental impacts and maximizing customer service levels,
Talouki et al. formulated a dynamic green vehicle path model for perishable material
under green transportation conditions in view of time window implementation, and then
designed an algorithm based on a new augmented-constrained heuristic for solutions [27].
With the goal of profit maximization, Wu et al. developed a variable fractional inequality
distribution path optimization model considering the uncertainty of perishable food de-
mand for high speed rail and designed an augmented Lagrangian with the Euler algorithm
based on the pairwise algorithm [28].

For the problem of uncertainty in demand and return of perishable goods with differ-
ent periods, with the objective of minimizing the total cost of the system, Guo Jiangyan et al.
constructed a multi-period closed-loop logistics network for perishable goods and figured
out a mixed-integer linear programming (MILP) model solving by a proposed genetic
algorithm [29].

For the problems of high-frequency distribution, uncertain demand and return of
fresh goods due to perishability, with the objective of minimizing the total cost of the
system, Yang et al. constructed the corresponding fuzzy mixed-integer linear programming
(FMILP) model for the system and designed genetic algorithm (GA) and particle swarm
optimization (PSO) algorithms to solve it [30].

The vehicle path problem is considered as an NP-hard problem, so it may be time-
consuming and ineffective to use ordinary mathematical methods, such as exact algorithms,
to deal with it. Most scholars nowadays use intelligent optimization algorithms for solving
such problems. The whale optimization algorithm (WOA) is a biomimetic metaheuristic
algorithm developed by Mirjalili et al. in 2016 to simulate the feeding mode of whales [31].
In recent years, it has been successfully applied to some large-scale optimization problems
with the advantages of few artificial parameters and simple operation, such as resource
scheduling problems [32], workflow planning for construction sites, site selection and
path planning [33] and neural network training [34]. However, because the traditional
WOA has the disadvantages of slow late convergence and easily falling into a local optima,
some scholars have combined other algorithms with it to improve its performance in op-
eration speed. Rohit Salgotra et al. addressed the problems of poor search performance
and easily falling into a local optimum of the WOA algorithm. Three different improved
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versions, including WOA-adversarial-based learning, exponentially reduced parameters
and worst-particle elimination and reinitialization methods, have been proposed to im-
prove its exploratory capabilities. These properties have been exploited to improve the
exploration capabilities of WOA by maintaining the diversity among search agents [35].
Shang Mang et al. proposed a WOA-based vehicle path optimization method for the
distribution logistics of the VRP problem; modified the WOA algorithm using random
inertia weights and a non-uniform variation strategy; and verified the effectiveness of the
improved algorithm by testing functions. The verification results showed that the improved
whale optimization algorithm can efficiently optimize the distribution path for vehicles
and reduce the distribution cost of logistics [36].

As anovel algorithm, the WOA algorithm has attracted extensive attention from schol-
ars in various fields since a basis has been built for the research, development and improve-
ment of the algorithm, and application studies have been conducted regarding engineering,
scheduling, optimization and site selection. Additionally, there is a richness in algorithm
improvement. However, there are fewer applications in vehicle path research, so further
development and utilization are needed.

A great deal of research has been carried out in the existing literature on the op-
timization of vehicle paths for the distribution of emergency and perishable materials.
In addition to large demands for emergency supplies, such as communication equipment,
quilts and tents, in the early stage of post-disaster relief, there also would be large demands
for life-saving and living emergency supplies, such as medicines and foodstuffs. As for
the perishable characteristics of these emergency supplies, along with the likelihood of
severe damage to some roads, there is often uncertainty about the needs of the affected
sites, making it difficult for these emergency perishable supplies to be delivered quickly
and meet demand requirements at once. Therefore, in order to improve the optimization
efficiency, this paper combines the differential evolutionary algorithm with the whale
optimization algorithm to solve the vehicle path problem for the distribution of emergency
perishable materials with dual objectives, which is rarely studied at present. Finally, further
verification of the effectiveness of the improved whale optimization algorithm at solving
the realistic vehicle path problem through examples shows convincing performance.

3. Multi-Period Optimization Model and DE-WOA Algorithm

The distribution vehicle path problem for emergency perishable materials has special
characteristics compared to the same problem for general emergency materials, which
negatively affect the solving process. The standard whale optimization algorithm greatly
improves the operation efficiency of the algorithm because of the relatively simpler process
and searching mechanism. Thus, it is suitable for solving the problem of emergency
perishable material distribution optimization. This sub-section, while taking the uncertain
demand situation into account, analyses the situation of adequate supplies in distribution
centers and constructs a multi-period vehicle path distribution optimization model with
the dual objectives of minimizing the cost penalty of distribution delay and total corruption
during delivery, and minimizing the total amount of demand that is not met. The improved
differential evolutionary whale algorithm is designed to solve the model by combining the
features of the differential evolutionary algorithm with the standard whale optimization
algorithm with strong global search capability.

3.1. Description of the Problem

Given a simple discrete undirected road traffic network G = (V,E), where V =
(vo,v1,02,...,vy) is the set of nodes and vy denotes the distribution center for emergency per-
ishable relief supplies, v1, v, . .., v, denotes the affected point and E = {e(v;, v;)|v, v} € v}
is the set of edges. Assume that the supplies are sufficient. The demand for emergency perish-
able supplies at the affected point v; is represented by interval boundary D;(i = 1,2,...,n).
The distribution center vy possesses a sufficient emergency perishable supply, and the total
quantity is S. The spoilage rate of emergency perishable supplies during the distribution
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process will linearly change along with the distribution time, and it is 6¢;. The demand for
emergency perishables at each site can be hardly met at once due to uncertain information
on demand and limited vehicle capacity.

vp: The distribution center now has k vehicles available with a maximum capacity of
R for each; d;; represents the distance between any two points; v;;, depending on the road
conditions, represents the actual speed of the vehicle on edge (i, j) during transportation,
and U;; represents the average speed of the vehicle so that the actual time for the vehicle
to reach the disaster site j is t; = d;;/v;; and the ideal time is t; = d;;/7;;. ¢; is defined
as the delay penalty, relying on the demand and the degree of damage at the disaster
site. The distribution service will deliver emergency perishable materials to each disaster
site and back to the distribution center until all the needs of the disaster sites are met.
The most probable value weighting method is used to identify the uncertain demand,
and the distribution route and the amount of each demand point in each period are decided
with the dual objectives of minimizing the cost penalty of distribution delay and the total
corruption during delivery, and minimizing the total amount of demand that is not met.

The model was constructed based on the following assumptions.

(1) The demand points’ locations and total amounts are known.

(2) A tour of one vehicle is a closed loop such that its departure and final return are both
the distribution center.

(3) The condition of the roads and the extent of damage to the affected sites are known
for each period, so vehicles’ ideal and actual speeds can be calculated.

3.2. Model Building and Notation Definition

The symbols and parameters used in this model are defined in Table 1. Decision
variables are identified in Table 2.

Table 1. The symbols and parameters used in the model.

Collection of distribution periods
The set of all nodes
The maximum load capacity per vehicle
ip Disaster site i demand for emergency perishable goods for period p
Total amount of material in distribution center
The ideal arrival time of vehicles
The actual time of arrival of the vehicle
Cost of delay penalties per unit of vehicle delivery time
The number of vehicles that can be arranged
The minimum permissible rate of spoilage of material during vehicle transport
Vehicle utilization

D m™ N

~
o

~
7

S%k‘h

Table 2. Decision variables.

o 1, if vehicle transports material from point i to point j in period p
ijk 0, otherwise
p 1, if the task at point i is performed by vehicle k

Yik 0, otherwise

g Volume of emergency perishable materials provided by vehicle k to disaster site i in
ipk period p

Taking into account all the objectives and constraints, the model is developed.

min Z Z (i’] — i’O)Cl]'XZ-k + Czjdikat]', while i’]' < ty, i to=20 (1)
icZ peP
min{ Y 1—di(1—0t))/Dip, i€ Z, ke K} 2)
peP
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s.t. 2 d,-pkyf; <R, k€K, pePp 3)
i€z
Y Y dpk<S peP; @)
ieZ kekK
0< Y dibt; <Dj,, icZ peP; (5)
keK
Y. Y x <IS|-1L keK peP; (6)
ieSjes
Y=Y Ny SlLi€Z keKpePp )
j€Z j€Z
Z xfjkgl,iez,kEK,pEP,‘ (8)
j€Z,i#j
p p.
Xik < Vip ©)
di0t;
0< T <5, (10)
dipk
dipk
—_ > 11
R, = (11)
xpy=00rl, yj =00rl, (i,j)€Z peP; (12)
dipk >0; (13)

Equations (1) and (2), respectively, represent the dual objectives that minimize the
cost penalty of distribution delay and the total corruption during delivery and minimize
the total amount of demand that is not met. Equation (3) guarantees the load amount of
each vehicle does not exceed the maximum capacity per vehicle. Equation (4) ensures
that the total amount of distribution in each period is less than the available amount
in the distribution center. Equation (5) is aimed at restricting the amount of emergency
perishable supplies delivered to the disaster site in each period that does not exceed its
ideal demand. Equation (6) indicates that the sub-loop in the distribution process is broken.
Equation (7) guarantees each vehicle starts and ends transportation at the distribution center.
Equation (8) presents a vehicle does not pass through the same path twice or more in any
period. Equation (9) ensures that the vehicle serves a disaster site before passing through.
Equation (10) indicates the degree of spoilage of emergency perishable materials during
distribution should be less than a given rate. Equation (11) represents that each vehicle’s
utilization rate for each period should be more than a given rate. Equation (12) is related to
the integer variable constraint. Equation(13) represents the non-negative constraint.

Where D;, = Djp + [Dj(p—1) — Ldix(p—1)| when p > 2.

3.3. Clarity of Ambiguous Needs
In this paper, uncertain demand is expressed as interval boundary:

Dip = [91i, 921,931, 911 < 921 < q3i (14)

The affiliation function is:

0 x < g1, X 2 3
pp, (%) = § (x = q1:)/ (921 — q11) i < x < 2 (15)
(q3i — %)/ (q3i — 921)  Goi < x < q3;

where 411, g2i and q3i represent the left boundary, the point with affiliation 1 (most likely
value) and the right boundary of the interval boundary, respectively. The interval boundary
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is constant with the weights given by experts or decision-makers. ﬁip = [q1i, 921, 93i] is
expressed by the Equation (16)

Dy = w1q1i + w2q2i + w3qs;- (16)

w1 is the weight of the lower boundary, w is the weight of the most probable value
and wj3 is the weight of the upper boundary.

Such methods that determine weights by experience and knowledge of experts or
decision makers are relatively subjective. The results thus are influenced by strong human
elements. Some more objective methods to identify fuzzy weights were developed, such
as the same weight method and hierarchical analysis. The most common is the most
likely method. The most likely value of the interval boundary is given the highest weight,
as it is most accurate. The value of boundary is less accurate; thus, they are assigned
smaller weights.

To indicate differences between the three estimates q; ; and g3, the weights of them
are consequently determined by wy = w3 = 1/6 and w;, = 4/6. Therefore, Equation (15)
can be converted into Equation (16).

S it 4400 1 g3

Dj, . (17)

After replacing Equation (5) with Equation (17), the updated constraint is shown as
Equation (18):

1 4 1 .
0< Y dipk < —qui+ _qoi+ Zq3i, i€ Z, pe P (18)
kek 6 6 6
. ~ 1 4 1 .
ming Y 1 — diy(1 - 01;)/ e+ g2+ g3 i€ Z, k€K (19)
peP

3.4. Handling of Dual Targets

The € conventional method aims to convert a muti-objective problem into a single-
objective optimization problem by linear weighting. However, because of the non-uniformity
of the objective magnitude, the solution of the original problem and that of the converted
problem are not in simple one-to-one correspondence. The weights of each objective
may largely affect the accuracy of solutions. This paper takes advantage of the idea of
the constraint method (Haimes et al. 1971), combining it with an improved differential
evolutionary whale algorithm.

In this case, two single-objective optimization problems are solved by converting one
of the dual objectives into the other’s constraints based on the importance of the objectives
in each period in turn and solving them separately to obtain the Pareto solution set of
the model.

1. Construct a single objective optimization problem with objective A and objective B, re-
spectively, and find the value domain (upper and lower bounds) of the two objective functions.

Objective A.

min 2 2 (t] — to)CUXZ-k + Czjd,'pkgtj, while f]' < to, tj —tg=0
JEZ peP (20)
s.t. constraint(1) — constraint(13)

Objective B.

min { Y 1—di(1—0t))/Dip, i€ Z, ke K}

peP (21)

s.t. constraint(1) — constraint(13)
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2. Step 1 finds the minimum value of objective A as m, and then adds Z4, < aas a
constraint to get the result of objective B. Construct a single-objective optimization problem
for objective B. If the problem has a feasible solution, find the optimal solution for objective
B as Z}, and go to Step 3; if there is no feasible solution, go to Step 4.

3. Then, add Zp < Zj as a constraint to objective A to construct a single objective
optimization problem for objective A. Similarly, if there is a feasible solution to the problem,
the optimal solution to objective A is found at Z7, at which point the solution obtained in
the above step is counted in the Pareto solution set; if there is no feasible solution, then go
to step 4.

4. Make a = a + €. € is a fixed step; go to step 2 to continue solving.

5. Stop when 4 is greater than the maximum value of target A.

3.5. The Basic Process of DE-WOA
The improved differential evolutionary whale algorithm is computed as Figure 1.

L 2

\ Uncertain demand clarification ‘

v

‘ Parameters assignment ‘

L ]

‘ Initializing the population ‘

v

\ Calculate the fitness ‘

Yes l No
Update solution
and parameters Variations and
such asa,A,P crossovers

No L l
@ No Select

Yes No
Y
Shrinkage Random search Spiral position
surrounds for predators update
| l
Iterative location
update

Qutput the optimal
solution

Figure 1. Flowchart of the DE-WOA algorithm.

Step 1: Uncertain demand clarification. The demand parameters in the model are
the interval boundary. The most probable weight method is used to convert the interval
boundary into definite values and replace them in the model.
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Step 2: Initialize parameters. Assign values to parameters, such as population size pop,
the maximum number of iterations M, the logarithmic spiral shape constant b, the scaling
factor F and the crossover probability CR.

Step 3: Calculate the individual fitness function at F and the population average
fitness function at F;vmge. Based on the obtained fitness function values, record the location
of the global optimal solution in the initial population xy,s;, where the global optimal value
is Fppq;-

Step 4: When F < F;Umge, iteratively update the solution and calculate the values of
parameters such as a, A, p, C and [; otherwise adapt it for global exploitation using X;(t + 1)
= Xpest(t) —AxD,A=2axr—a,C=2xrto expand the population diversity.

Step 5: When P < 0.5 and |A| < 1, the whale position is updated using D =
|C % Xpest (1) — x(t)|; when P > 0.5 and |A| < 1, the whale position is updated using
D' = |Xpest(t) — x;(t)|; when P < 0.5 and |A| > 1, the whale position is updated using
D = [C* Xygna(t) — xi(t)|. ,

Step 6: Update the global optimal solution xp,; and the global optimal value F, ;.

Step 7: Stop the iteration if the algorithm stopping condition is met; otherwise, re-
peat step 4-step 7.

4. Analysis of Numerical Examples and Computational Results

In this section, we report the results of numerical experiments that were applied to
verify the feasibility and effectiveness of the constructed model and proposed algorithm.
All experiments were tested on a PC equipped with an Intel(R) Core(TM) i7-9750H CPU @
2.60 GHz 2.59 and 8 GB of RAM. The model programming was solved by Python 3.8.1.

4.1. Parameter Setting

There are one distribution center and ten disaster locations labeled in order from 0 to
10. Related information, including coordinate values, is shown in Table 3. The network
topology between the distribution center and the affected points is shown in Figure 2.

Table 3. Coordinates of the distribution center and locations of affected points.

No. X Y

Distribution Center 0 30 70
1 35 55

2 38 73

3 25 70

4 30 55

. 5 32 85

Affected sites 6 38 2
7 43 79

8 40 60

9 38 85

10 24 65
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e ¢ Distribution Center

v Disaster Location

85 - o5 .9 -
80 - n
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‘WDistribution Center
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Figure 2. Network topology in the affected area.

Due to the lack of information on data from the affected areas, the demand for emer-
gency perishable goods and the speed of vehicle movements at each affected location need
to be estimated based on published information, such as local casualties and the probability
of secondary disasters. The specific demand parameters g1 (pessimistic value), g, (most
likely value) and g3 (optimistic value) are shown in Table 4.

Table 4. Demand parameters.

Point of Need 0 1 2 3 4 5 6 7 8 9 10
71 0 103 52 78 210 53 41 43 80 65 52
q2 0 125 70 86 226 70 50 56 91 74 61
q3 0 140 82 100 242 81 56 64 100 81 70
Demand 0 123.833 69 87 226 69 49.5 55.163 90.667 73.667 61
The distribution center has three small trucks of the same type. In order to obtain a
more accurate distribution time, the actual distance between any two points is measured
according to the latitude and longitude of the map, and the maximum speed of the vehicles
traveling on each road is estimated according to the road damage. The transport network
parameters (a,b) and vehicle parameters are shown in Tables 5 and 6.
Table 5. Transport network parameters.
1 2 3 4 5 6 7 8 9 10
0  (30,30)  (22.4,38) ) (6.545)  (18.6,60) (--) ) (32535)  (15241)  (7.7,46)
1 0,0 (40.637)  (31.5,40) ") (15.742)  (20.4,33) ) 43.737)  (22.141) )
2 (40.6,37) 0,0 (51240)  (362,38)  (25.6,42) 1) (17.5,39) 1) ) (27.1,45)
3 -~ (51.2,40) 0,0 (-~ (-~ (34.6,47) (15.3,39) (-~ (22.2,30) (-~
4 (6545  (362,38) ) 0,0 ") (17.8,33) ) (33.6,42) ) (29.5,40)
5 (18.6,60) (25.6,42) (-~ (-~ 0,0 (--) (29.3,36) (19.3,42) (-~ -~
6 (-~ (-~ (34.6,47) (17.8,33) (-~ 0,0 (-~ (-~ (42.1,36)  (14.2,45)
7 (--) (17.5,39) (15.3,39) (--) (29.3,36) (--) 0,0 (--) (23.4,35) (--)
8  (32.535) 1) ) (33.642)  (19.3,42) --) ) 0,0 ) (47.1,60)
9 (15241) ) ) &) ) 42.1,36)  (23.4,35) ) 0,0 (38.9,39)
10 (7.746)  (27.145)  (29.540)  (29.5,40) - (14.2,45) 1) (47.1,60)  (38.9,39) 0,0
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Table 6. Vehicle parameters.

. Quantity Max. Loading Average Travel Speed
Vehicle Type (Volume) Capacity (kg) (km/h)
Small trucks 3 500 60

In Table 5, a denotes the distance between two points (km), b denotes the actual speed
of the vehicle traveling between this path v (km/h) and “-” denotes that this section is
impassable, resulting in the delivery time parameters shown in Table 7.

Table 7. Distribution time parameters.

0 1 2 3 4 5 6 7 8 9 10
0 0 0.5 0.22 - 0.04 0 - - 0.39 0.12 0.02
1 0.5 0 0.42 0.26 - 0.11 0.28 - 0.45 0.17 -
2 0.22 0.42 0 0.43 0.35 0.18 - 0.16 - - 0.15
3 - 0.26 0.43 0 - - 0.16 0.14 - 0.37 -
4 0.04 - 0.35 - 0 - 0.24 - 0.24 - 0.25
5 0 0.11 0.18 - - 0 - 0.33 0.14 - -
6 - 0.28 - 0.16 0.24 - 0 - - 047 0.08
7 - - 0.16 0.14 - 0.33 - 0 - 0.28 -
8 0.39 0.45 - - 0.24 0.14 - - 0 - 0
9 0.12 0.17 - 0.37 - - 0.47 0.28 - 0 0.35
10 0.22 - 0.15 - 0.25 - 0.08 - 0 0.35 0

4.2. Results

After several trials, the parameters of the improved whale algorithm (DE-WOA) based
on the difference algorithm were set as shown in Table 8.

Table 8. DE-WOA parameter settings.

Parameter Description Value
pop_num Initial population size 80
Max_iteration Maximum number of iterations 300
R Maximum vehicle loading capacity 500 kg
0 Corruption rate 0.02kg/h
Minimum permissible rate of spoilage of materials during
o . 0.90
vehicle transport
k Number of vehicles 3
B Minimum allowable loading rate during vehicle transport 0.5

After five trials, a Pareto frontier solution set for the problem was obtained and
is shown in Figure 3. The horizontal coordinates and vertical coordinates, respectively,
represent the value of objective A (the distribution delay penalty and corruption cost) and
the value of objective B (total amount of demand that is not met). Each point represents a
distribution solution that satisfies the Pareto optimum. The decision maker can choose a
relative compromise by weighing the relationship between multiple objectives according
to the situation in practice.
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The relationship between the transport volume and the optimal solution at each
affected point is obtained, and the optimal path is output as shown in Tables 9 and 10.

Table 9. Relationship between transport volumes at affected sites and optimal path.

First Period  Affected Sites Transport Second Period  Affected Sites Transport
Volume Volume
0 0 0 0
5 69 Vehicle 1 2 73.2
Vehicle 1 1 123.83 0 0
8 90.67 10 63.66
0 0 8 86
2 69 Vehicle 2 5 74.37
7 55.17 7 50
Vehicle 2 3 87 3 92.8
6 495 9 74.33
9 73.67 0 0
0 0 4 232.83
Vehicle 3 .
Vehicle 3 10 61 ehicle 6 53.5
4 226 1 156
0 0 0 0
Table 10. Distribution vehicle paths and objective function values.
Periodicity Vehicles Transport Objective A Objective B
Routes
1 0-5-1-8-0
2 0-2-7-3-6-9-0 318.760 5.358
3 0-10-4-0
1 0-2-0
2 0-10-8-5-7-3-9-0 490.679 7.790
3 0-4-6-1-0

4.3. Algorithm Comparison

Two algorithms, the standard whale algorithm (WOA) and the improved differential
evolutionary whale algorithm (DE-WOA), were used to solve the algorithms, resulting in
the set of Pareto front solutions under both algorithms shown in Figure 4. It can be seen
from Figure 4 that the Pareto ranks of the solutions of the improved differential evolutionary
whale algorithm are lower than the Pareto ranks of the solutions of the standard whale
algorithm, thereby indicating that the improved differential evolutionary whale algorithm
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can effectively improve the local search capability and increase the diversity of solutions in
the population.

Pareto Frontier Solution Sets
500 -
® DE-WOA

® WOA

450

400

Object B

350 |

300 | =

4 5 6 7 H ° 10
Object A

Figure 4. Set of Pareto front solutions under both algorithms.

After 100 runs of both algorithms, the optimal objective values were obtained as shown
in Table 8, and the convergence of the algorithms under the two objectives was obtained as
shown in Figures 5 and 6.

1. Comparison of target results.

Minimal Distribution Delay Penalty =~ Minimize Total Amount of Demands

Algorithms and Corruption Costs That Are Not Met
WOA 332.120 6.015
DE-WOA 318.760 5.358

2. Analysis of convergence effects.

2000 4
— WOA

18001 —— DE-WOA
1600 -
1400 -

1200 4

Fitness

1000 -
800 - ‘ ,

600 4 l_-_‘ .
400 4 = H—=

0 50 100 150 200 250 300
Iteration

Figure 5. Convergence diagram of distribution delay penalty and corruption costs.
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Figure 6. Convergence diagram of total amount of demand that is not met.

By comparison, it can be seen that the improved differential evolutionary whale

algorithm outperformed the standard whale algorithm in terms of solution results and
converged faster when solving. This shows that the improved differential evolutionary
whale algorithm outperforms the standard whale algorithm in solving the dual objective
model of this paper, thereby also verifying the validity of the model and algorithm.

5. Discussion and Conclusions

For the optimization problem of the multi-cycle distribution of emergency perishable

materials under a uncertain demand, this paper draws the following conclusions.

@

@

In this paper, we studied the multi-cycle distribution problem for emergency perish-
able materials under the situation of sufficient materials in distribution centers after
disasters, and considered characteristics such as the degree of road destruction in real
situations. We established a dual-objective PVRP distribution optimization model
minimizing the cost penalty of distribution delay and the total corruption during
delivery, and minimizing the total amount of demand that is not met. Additionally,
the uncertain demand in the model is processed using the interval number and the
most probable weight method, and the dual objective is processed with the idea of a
constraint method. It was verified by an example that the solution is more accurate
and faster after the model is processed.

Combined with the real application conditions and scenarios, the whale optimization
algorithm was chosen due to the characteristics of the model for optimization. To solve
the shortcomings of small population diversity and falling into a local optimum of the
standard whale optimization algorithm, the idea of combination with the differential
evolution algorithm was proposed. It was improved by adding the characteristics
of easy operation and strong global search ability of the differential evolution algo-
rithm. Finally, the analysis of the numerical calculation results of the earthquake
in Jiuzhaigou County, Sichuan, showed that the improved differential evolutionary
whale algorithm can find a better distribution solution than the standard whale op-
timization algorithm with less distribution time and the less material corruption.
Additionally, it improves the demand satisfaction, and converges faster, which further
verifies the feasibility and applicability of the algorithm in practical applications.

The main purpose of this paper was to provide a set of scientific distribution scheme for

emergency rescue, through the reasonable distribution of emergency perishable materials
and reasonable arrangement of vehicles, so as to effectively reduce the damage caused by
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an earthquake, reduce casualties, improve the rescue work efficiency, etc. The research
model and algorithm proposed in this paper can be applied not only to the disaster scenario,
but also to the logistics distribution in urban and rural areas in practical daily life, which
can effectively improve the operation efficiency among supply chains.

The model we proposed in this paper also has a few shortcomings. This case oper-
ates under the assumption that the distribution center has sufficient supplies and only
distributes a single variety of perishable materials, though in practice the distribution
center is often short of supplies and the demand for emergency perishable materials at
the disaster site is often multi-species. In future work, we will take this shortcoming
into account and consider how to combine and distribute multiple species of emergency
perishable materials and improve the model to take more factors into account and build a
more realistic emergency material distribution model. At the same time, as the complexity
of the model increases, more efficient algorithms should be designed to correspondingly
solve the model.
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