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Abstract: In this paper, we discuss an EIQJR model with stochastic perturbation. First, a globally
positive solution of the proposed model has been discussed. In addition, the global asymptotic
stability and exponential mean-square stability of the disease-free equilibrium have been proven
under suitable conditions for our model. This means that the disease will die over time. We
investigate the asymptotic behavior around the endemic equilibrium of the deterministic model to
show when the disease will prevail. Constructing a suitable Lyapunov functional method is crucial
to our investigation. Parameter estimations and numerical simulations are performed to depict the
transmission process of COVID-19 pandemic in China and to support analytical results.
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1. Introduction

In December 2019, the outbreak of the novel coronavirus disease 2019 (COVID-19/
2019-nCoV/SARS-CoV-2) was detected in China [1,2]. The COVID-19 virus is similar to the
severe acute respiratory syndrome (SARS) virus [3], but it is more contagious than SARS [4].
According to the public health community [5] and the WHO [6], close contact between
infected individuals is the primary way that the COVID-19 virus spreads. The disease can
be spread by respiratory droplets from coughs and sneezes of the infected individuals [7,8],
and another way to get infected is by indirect contact with contaminated surfaces [9]. The
essential strategies for controlling virus infection include early identification, quarantine,
diagnosis, isolation, and treatment [10]. While epidemiologists have continued to do a lot of
research on COVID-19 [11], mathematicians have developed and studied the mathematical
models to help in the formulation of control strategies [12].

It is necessary to establish a mathematical model to estimate the dynamics of the
transmission and control of the virus. Thus, a large number of scholars are concentrating on
mathematical modeling [11,13–17]. For example, Wu et al. extended the SEIR model into
SEIR meta-population model to simulate the outbreak of 2019-nCoV across all major cities
in China and predicted the national and global outbreak of 2019-nCoV [17]. In [13], Lu et al.
established a conceptual model for COVID-19 transmission in Wuhan, taking into account
individual reactions as well as government-controlled action. Chen et al. constructed a
Bats-Hosts-Reservoir-People transmission network model in order to simulate the potential
transmission from the infection source (likely bats) to the human [14]. Authors have
established a SEIQR model that included an isolation class in order to show the dynamic
behavior of the COVID-19 infection [18]. Tang et al. developed a baseline model to reduce
the transmission from the campus of a university into the wider community, or from the
wider community to the campus of university [15]. Xiao et al. evaluated that a classical

Mathematics 2022, 10, 3119. https://doi.org/10.3390/math10173119 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10173119
https://doi.org/10.3390/math10173119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6787-0671
https://orcid.org/0000-0001-6522-7546
https://doi.org/10.3390/math10173119
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10173119?type=check_update&version=1


Mathematics 2022, 10, 3119 2 of 17

SIR epidemic model could be used to reduce transmission during the entire outbreak
by combining the intervention options and media impacts [16]. Because the number of
exposed, infected, quarantined, diagnosed, and recovered members is so small compared
to susceptible individuals, Zhou and Ma assumed that the infectious members of the
population are sufficient to transmit infections to susceptible individuals (the population
size of China) and then produce new infections, neglecting contacts with the others [12].
As a consequence, they forecasted on exposed, infected, quarantined, diagnosed, and
recovered members, and developed the discrete EIQJR model as follows:

E(t + 1) = E(t) + β(t)(kE(t) + I(t))− (ε + λ)E(t),

I(t + 1) = I(t) + εE(t)− (δ + θ)I(t),

Q(t + 1) = Q(t) + λE(t)− σQ(t),

J(t + 1) = J(t) + θ I(t) + σQ(t)− (δ + γ)J(t),

R(t + 1) = R(t) + γJ(t).

(1)

In system (1), they define the basic reproductive ratio, R0 = β∗(ε+k(δ+θ))
(ε+λ)(δ+θ)

, and showed

that the disease-free equilibrium P0 = (0, 0, 0, 0, 0) is globally asymptotically stable when
R0 < 1. However, the authors didn’t consider the effects of random perturbations of
the disease spreading and intervention strategies in the previous works. Continuous
approximations of discrete-time models are often used because of their mathematical
tractability [19]. And infection events can take place at every point in time. Thus continuous-
time analogue model with stochastic perturbation is interesting to consider in this article.

In mathematical modeling of an infectious disease, the deterministic approach has
some restrictions, and it is difficult to anticipate the future dynamics of the system accurately.
This occurs because deterministic models do not take the impact of a changing environment
into account. In fact, the spread of disease can actually be influenced by a wide variety
of random factors. For example, mobility, urban density, and population travelling may
have significant effects on the spread of COVID-19. Because of a higher level of travelling,
population mobility can increase the transmission rate [20]. Therefore, the effects of these
random factors can be translated to the fluctuations in the transmission rate [21]. The
parameters used in the modeling approach are not absolute constants, and they oscillate
around some average values because of environmental fluctuations. The arguments for
establishing stochastic models are the changes in our social and environmental distinctions
in our daily life [22]. Therefore, many researchers have explored that introducing parameter
perturbation can affect population dynamics [23–28]. For example, Ji et al. considered
the fluctuations in parameter β and examined the effect of oscillating environment on
SIR system [25]. Hou et al. considered a stochastic SIHR epidemic model of COVID-19
with the effects of parameter perturbation [29]. The authors considered the fluctuations
of transmission rates and proposed stochastic SIHR COVID-19 model [30]. Lahrouz et al.
considered a stochastic SIRS model by perturbing the deterministic system by a white
noise [28]. Ikram et al. proposed the COVID-19 SIVR model with stochastic perturbation
and proved the extinction of the model and ergodic stationary distribution under suitable
conditions [22]. Recently, Tesfaye and Satana proposed the stochastic COVID-19 SVITR
model [31], Zhang et al. considered the dynamics of stochastic COVID-19 SIR model [32],
Ding et al. formulated stochastic COVID-19 SEIR model with Lévy noise [33], Ninno–
Torres et al. constructed a stochastic COVID-19 model with random perturbation [34],
Tesfay et al. established stochastic COVID-19 SIR model with jump-diffusion [35]. Although
several articles examine the effect of stochastic perturbation on the SIR, SIVR, and SIRS
epidemic, we are unaware of any literature addressing the issue of stochastic COVID-19
EIQJR model dynamics, which reveals primarily as fluctuations in transmission coefficient
ε and diagnosis coefficient σ. This study attempts to fill that need.

One of the main objectives of this work is to study how stochastic perturbations in
the infectious and diagnosis forces affect the disease dynamics, by investigating the global
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asymptotic stability of disease-free equilibrium. In addition, we deduce the dynamical
behavior of the solution around the endemic equilibrium of the deterministic model to
investigate whether the disease would prevail. Numerical experiments are performed to
depict the transmission of COVID-19 in China, to describe the impact of noises on the
population and to support our theoretical results.

The paper is organized as follows. In Section 2, we formulate the stochastic EIQJR
model for COVID-19 transmission. The unique global positive solution of the system is
given in Section 3. We analyze the stochastically asymptotic stability in the large and
exponentially mean square stability of disease-free equilibrium in Section 4. We discuss the
behavior of the solution around the endemic equilibrium in Section 5. After estimating the
parameters, numerical experiments are carried out to support our analytical results and to
show the impact of parameters in Section 6. Conclusions are provided in Section 7.

2. EIQJR COVID-19 Model

Let (Ω, F, {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satis-
fying the standard conditions (i.e., it is right continuous, and F0 contains all P null sets)
throughout this work. a ∨ b is used to denote max{a, b}, a ∧ b is used to denote min{a, b},
and a.s. is used to mean almost surely. The indicator function of a set G will be denoted
by IG.

We consider the disease infection coefficient ε and diagnosis coefficient σ in the model
(1). This can be interpreted to mean that a potentially exposed individual will spread the
disease if they come into contact with another individual, and that a potentially infectious
individual will spread the disease if an infected individual comes into contact with a
susceptible individual while diagnosing the quarantine individual. In the proposed model,
we assume that some stochastic environmental components operate on each individual
continuously over a small time interval [t, t + dt), and notation d· is considered for the
small change in any quantity over this time interval.

In the time range [t, t + dt), a single exposed individual makes εdt possibly exposed
contacts with each other individual, and a single infected individual makes σdt the poten-
tially infectious connections with each other individual. As a result, ε changes to a random
variable ε̃ and σ changes to a random variable σ̃. More exactly, each exposed individual
makes ε̃dt = εdt + α1dB1(t) possibly exposed contacts with every other individual in
[t, t + dt), and each infectious individual makes σ̃dt = σdt + α2dB2(t) potentially infectious
contacts with every other individual. By using ε̃ and σ̃ in system (1), we can construct a
new stochastic EIQJR model as follows:

dE = [β(t)(kE + I)− (ε + λ)E]dt− α1EdB1(t),

dI = [εE− (δ + θ)I]dt + α1EdB1(t),

dQ = [λE− σQ]dt− α2QdB2(t),

dJ = [θ I + σQ− (δ + γ)J]dt + α2QdB2(t),

dR = γJdt,

(2)

where αi, i = 1, 2 represents the intensity of the noise, and dB1 and dB2 are independent
standard Brownian motions defined on a complete probability space. As pointed out in [12],
E(t) denotes the number of infectious individuals who are asymptomatic and possibly
infectious (without infectivity or with very low infectivity) during the incubation period,
I(t) is the number of infected individuals who have not been quarantined, Q(t) is the
number of infected individuals who have been quarantined but have not been diagnosed,
J(t) is the number of infected individuals who have been diagnosed and quarantined,
and R(t) is the number of individuals who have recovered from the disease and are
fully immune to reinfection. δ is the COVID-19 induced-death rate, γ is the recovery
rate, ε is the infection rate of exposed individuals, λ is the quarantine rate of exposed
individuals, σ is the diagnosis rate of quarantined individuals, θ is the diagnosis rate of the
infected individual, and k is the infectively proportion of exposed individuals compared
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to infective individuals. In [12], β(t) is the transmission rate per day. In this study, we
consider the long-term behaviors of the system (2). The transmission rate β(t) is time-
dependent and assumed to be piecewise constant, which is to indicate the dramatic changes
in prevention and control policy. Thus β(t) can be considered such as β0, the minimun
number of contacts per unit time due to stringent control measures and β∗, the maximum
number of new infective individuals produced by a typical infective individual per unit
time during the entire course of the outbreak. For simplicity of analysis, we assume
that β(t) = β∗ is constant in the remaining sections. So we will consider the stochastic
EIQJR model with constant coefficients. Denote R5

+ = {x ∈ R5 : xi > 0, i = 1, 2, 3, 4, 5} and
R̄5
+ = {x ∈ R5 : xi ≥ 0, i = 1, 2, 3, 4, 5}.

3. Global Positive Solution of Stochastic EIQJR Model

By proving the following theorem, we show the global positive solution of the pro-
posed stochastic EIQJR COVID-19 model.

Theorem 1. For any initial value (E0, I0, Q0, J0, R0) ∈ R5
+, there is a unique solution (E(t), I(t),

Q(t), J(t), R(t)) of system (2) on t ≥ 0, and the solution will remain in R5
+ with probability 1,

namely (E(t), I(t), Q(t), J(t), R(t)) ∈ R5
+ for all t ≥ 0 almost surely.

Proof. Because the coefficients of the equation are locally Lipschitz continuous for any
given initial value (E(0), I(0), Q(0), J(0), R(0)) ∈ R5

+, there is a unique local solution
(E(t), I(t), Q(t), J(t), R(t)) on t ∈ [0, τe), where τe is the explosion time [36].

Let N(t) = E(t) + I(t) + Q(t) + J(t) + R(t), and we obtain from the system (2)

dN(t) = [β∗kE + β∗(I + Q + J + R)− δ(I + J)− β∗(Q + J + R)]dt

≤ [β∗kE + β∗(I + Q + J + R)]dt

Since E(t) ≥ 0, I(t) ≥ 0, Q(t) ≥ 0, J(t) ≥ 0 and R(t) ≥ 0 on t ∈ [0, τe), we have

dN(t) ≤ CN(t)dt

where C = max{β∗k, β∗}, k ≥ 1. Let N1(t) be the solution of the equation for any initial
value (E(0), I(0), Q(0), J(0), R(0)) ∈ R5

+:

dN1(t) = CN1(t)dt,

N1(0) = N(0),
(3)

and we get
N1(t) ≤ (E(0) + I(0) + Q(0) + J(0) + R(0))eCt := H.

By differential equation comparison theorem, we get

N(t) ≤ N1(t) ≤ H,

and E(t) + I(t) + Q(t) + J(t) + R(t) ≤ H, t ∈ [0, τe) a.s.
To show this solution is global, we have to show that τe = ∞, a.s. Let k0 ≥ 1 be

sufficiently large so that E(0), I(0), Q(0), J(0) and R(0) all lie within the interval [ 1
k0

, k0],
for each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, τe) : min{D(t)} ≤ 1
k

or max{D(t)} ≥ k}, (4)

where we let D(t) = (E(t), I(t), Q(t), J(t), R(t)). Throughout this article, we set inf φ = ∞
(as usual, φ denotes the empty set). Clearly, τk is increasing as k → ∞. Set τ∞ =
limk→∞ τk, when τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ a.s, then τe = ∞ and
(E(t), I(t), Q(t), J(t), R(t)) ∈ R5

+ a.s for all t ≥ 0. In other words, we need to show
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that τ∞ = ∞ a.s in order to complete the proof. If this assertion is false, then there is a pair
of constants T > 0 and η ∈ (0, 1) such that

P{τ∞ < T} > η.

So, there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ η for all k ≥ k1. (5)

Consider the function V(E, I, Q, J, R) ∈ R5
+ by

V(E, I, Q, J, R) = (E− 1− log E) + (I − 1− log I) + (Q− 1− log Q)

+ (J − 1− log J) + (R− 1− log R).
(6)

The nonnegativity of this function can be noticed in (u− 1− log u), ∀u > 0.
By using Itô formula, we get

dV = (1− 1
E
)[{β∗(kE + I)− (ε + λ)E}dt− α1EdB1(t)] +

α2
1

2
dt

+ (1− 1
I
)[{εE− (δ + θ)I}dt + α1EdB1(t)] +

α2
1

2
E2

I2 dt

+ (1− 1
Q
)[(λE− σQ)dt− α2QdB2(t)] +

α2
2

2
dt

+ (1− 1
J
)[{θ I + σQ− (δ + γ)J}dt + α2QdB2(t)] +

α2
2

2
Q2

J2 dt + (1− 1
R
)[γJ]dt

= [β∗(kE + I)− (ε + λ)E + εE− (δ + θ)I + λE− σQ + θ I + σQ

− (δ + γ)J + γJ +
α2

1
2
(1 +

E2

I2 ) +
α2

2
2
(1 +

Q2

J2 )− β∗k− β∗
I
E
+ ε + λ

− ε
E
I
+ δ + θ − λ

E
Q

+ σ− θ
I
J
− σ

Q
J
+ δ + γ− γ

J
R
]dt

− α1(E− 1)dB1(t) + α1
E(I − 1)

I
dB1(t)− α2(Q− 1)dB2(t)

+ α2
Q(J − 1)

J
dB2(t)

≤ [β∗(kE + I) + ε + λ + 2δ + θ + σ + γ +
1
2
(α2

1 + α2
2) +

1
2

α2
1

E2

I2

+
1
2

α2
2

Q2

J2 ]dt + α1
I − E

I
dB1(t) + α2

J −Q
J

dB2(t).

dV ≤ [β∗kH + β∗H + ε + λ + 2δ + θ + σ + γ +
1
2
(α2

1 + α2
2) +

1
2

α2
1

H2

H2 +
1
2

α2
2

H2

H2 ]dt

+ α1
I − E

I
dB1(t) + α2

J −Q
J

dB2(t)

:= K̃dt + α1
I − E

I
dB1(t) + α2

J −Q
J

dB2(t).

where K̃ := β∗kH + β∗H + ε + λ + 2δ + θ + σ + γ + 1
2 (α

2
1 + α2

2) +
1
2 α2

1
H2

H2 + 1
2 α2

2
H2

H2 is the
positive number and therefore, if t1 ≤ T,∫ τk∧t1

0
dV(E(t), I(t), Q(t), J(t), R(t)) ≤

∫ τk∧t1

0
K̃dt +

∫ τk∧t1

0
α1

I − E
I

dB1(t)

+
∫ τk∧t1

0
α2

J −Q
J

dB2(t).
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This means that,

E[V(E(τk ∧ t1), I(τk ∧ t1), Q(τk ∧ t1), J(τk ∧ t1), R(τk ∧ t1))]

≤ V(E0, I0, Q0, J0, R0) +E
∫ τk∧t1

0
K̃dt

= V(E0, I0, Q0, J0, R0) + K̃E(τk ∧ t1) ≤ V(E0, I0, Q0, J0, R0) + K̃T.

(7)

Set Ωk = {τk ≤ T} and by (5), P(Ωk) ≥ η. Note that, for every ω ∈ Ωk, there is at
least one of E(τk, ω), I(τk, ω), Q(τk, ω), J(τk, ω) and R(τk, ω) which are equal to either k or
1
k , then V(E(τk, ω), I(τk, ω), Q(τk, ω), J(τk, ω), R(τk, ω)) is no less than

k− 1− log k or
1
k
− 1− log

1
k
=

1
k
− 1 + log k.

Hence,

V(E(τk, ω), I(τk, ω), Q(τk, ω), J(τk, ω), R(τk, ω)) ≥ (k− 1− log k) ∧ (
1
k
− 1 + log k).

It follows from (5) and (7) that

V(E0, I0, Q0, J0, R0) + K̃T ≥ E[1Ωk(ω)V(E(τk, ω), I(τk, ω), Q(τk, ω), J(τk, ω), R(τk, ω))]

≥ η[(k− 1− log k) ∧ (
1
k
− 1 + log k)],

(8)

where 1Ωk(ω) is the indicator function of Ωk. Letting k→ ∞ we obtain the contradiction ∞ >

V(E0, I0, Q0, J0, R0) + K̃T = ∞. So we must have τ∞ = ∞ a.s. The proof is complete.

Remark 1. For any initial value (E0, I0, Q0, J0, R0) ∈ R5
+, we have E(t) + I(t) + Q(t) + J(t) +

R(t) ≤ (E(0) + I(0) + Q(0) + J(0) + R(0))eCt := H, N(0) = E(0) + I(0) + Q(0) + J(0) +
R(0).

4. Asymptotic Behavior of the Disease-Free Equilibrium

It is obvious that the disease-free equilibrium P0 = (0, 0, 0, 0, 0) is a solution of (2). The
stability of the disease-free equilibrium will be investigated to see whether it contributes to
the threshold condition for managing infectious disease or elimination. The disease will
eventually die out if P0 is global asymptotic stable. We begin by recalling the definitions and
lemmas of stochastic stability, given in [37]. Consider the general d-dimensional stochastic
differential equation as follows:

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t) on t ≥ t0, (9)

with initial value x(t0) = x0 ∈ Rd. B(t) denotes d-dimensional standard Brownian motion
defined on the above probability space. Assume f (0, t) = 0 and g(0, t) = 0 for all t ≥ t0. So
the trivial solution x(t) = 0 is a solution to Equation (9). Denote by C2,1(Rd × [t0, ∞);R+)
the family of all non-negative functions V(x, t) defined on Rd × [t0, ∞), such that they
are continuously twice differentiable in x and the first order in t. Define the differential
operator L associated with Equation (9) by

L =
∂

∂t
+

d

∑
i=1

fi(x, t)
∂

∂xi
+

1
2

d

∑
i,j=1

[gT(x, t)g(x, t)]ij
∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(Rd × [t0, ∞);R+), then

LV(x, t) = Vt(x, t) + Vx(x, t) f (x, t) +
1
2

trace [gT(x, t)Vxx(x, t)g(x, t)],
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where Vt =
∂V
∂t , Vx = ( ∂V

∂x1
, ..., ∂V

∂xd
) and Vxx = ( ∂2V

∂xi∂xj
)d×d. By Itô formula,

dV(x(t), t) = LV(x(t), t)dt + Vx(x(t), t)g(x(t), t)dB(t).

Lemma 1 ([25,37]). If there exists a positive-definite decrescent radially unbounded function
V(x, t) ∈ C2,1(Rd × [t0, ∞);R+) such that LV(x, t) is negative-definite, then the trivial solution
of Equation (9) is stochastically asymptotically stable in the large.

Lemma 2 ([25,37]). Assume that there is a function V(x, t) ∈ C2,1(Rd × [t0, ∞);R+) and
positive constants a1, a2 and a3 such that

a1|x|p ≤ V(x, t) ≤ a2|x|p and LV(x, t) ≤ −a3V(x, t),

for all (x, t) ∈ Rd × [t0, ∞). Then the trivial solution of (9) is exponentially mean square stable
and the equilibrium X = 0 is globally asymptotically stable.

Theorem 2. If R0 ≤ 1 and the conditions ε + λ− β∗k− α2
1 > 0, σ > 3

2 α2
2 hold, then the solution

P0(0, 0, 0, 0, 0) of system (2) is stochastically asymptotically stable in the large.

Proof. Considering the Lyapunov function:

V(E, I, Q, J, R) =
1
2

E2 +
1
2

I2 +
1
2

Q2 + λ1 J2 + (J + R)2,

where λ1 is real positive constant. Because

1
2

E2 +
1
2

I2 +
1
2

Q2 + λ1 J2 + (J + R)2 =
1
2

E2 +
1
2

I2 +
1
2

Q2 + λ1 J2 + J2

+ R2 + 2JR

≤ 1
2

E2 +
1
2

I2 +
1
2

Q2 + (λ1 + 2)J2 + 2R2

(10)

and
1
2

E2 +
1
2

I2 +
1
2

Q2 + λ1 J2 + (J + R)2 =
1
2

E2 +
1
2

I2 +
1
2

Q2 + λ1 J2 + J2

+ R2 + 2JR

=
1
2

E2 +
1
2

I2 +
1
2

Q2 + (λ1 + 1)J2 + R2 + 2(

√
λ1

2
+ 1J)(

1√
λ1
2 + 1

R)

≥ 1
2

E2 +
1
2

I2 +
1
2

Q2 + (λ1 + 1)J2 + R2 − (
λ1

2
+ 1)J2 − 2

λ1 + 2
R2

=
1
2

E2 +
1
2

I2 +
1
2

Q2 +
λ1

2
J2 +

λ1

λ1 + 2
R2.

(11)

LV = E[β∗(kE + I)− (ε + λ)E] +
1
2

α2
1E2 + I[εE− (δ + θ)I] +

1
2

α2
1E2

+ Q[λE− σQ] +
1
2

α2
2Q2 + 2λ1 J[θ I + σQ− (δ + γ)J] + λ1α2

2Q2

+ 2(J + R)[θ I + σQ− δJ] + α2
2Q2

= β∗kE2 − (ε + λ)E2 + β∗EI + εIE− (δ + θ)I2 + α2
1E2 + λQE

− σQ2 + 2λ1θ J I + 2λ1σJQ− 2λ1(δ + γ)J2 + (
3
2
+ λ1)α

2
2Q2

+ 2θ J I + 2σJQ− 2δJ2 + 2θRI + 2σRQ− 2δRJ.
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This can be simplified to

LV = −[ε + λ− β∗k− α2
1]E

2 − [δ + θ]I2 − [σ− (
3
2
+ λ1)α

2
2]Q

2

− [2λ1(δ + γ) + 2δ]J2 + β∗EI + εIE + λQE + 2λ1θ J I

+ 2λ1σJQ + 2θ J I + 2σJQ + 2θRI + 2σRQ− 2δRJ.

(12)

From Young’s inequality, i.e., xy ≤ xp

p + yq

q for x, y > 0 such that p, q > 0 and
1
p + 1

q = 1, and we get the following inequalities

EI ≤1
2

νE2 +
1

2ν
I2, RQ ≤1

2
νR2 +

1
2ν

Q2,

QE ≤ 1
2ν

Q2 +
1
2

νE2, RI ≤1
2

νR2 +
1

2ν
I2,

J I ≤1
2

νJ2 +
1

2ν
I2,

JQ ≤ 1
2ν

Q2 +
1
2

νJ2.

Introduce these inequalities into Equation (12), and we obtain

LV ≤ −[(ε + λ− β∗k− α2
1)− ν(

ε

2
+

β∗

2
+

λ

2
)]E2 − [δ + θ − β∗

2ν
]I2

− [
ε

2ν
+

λ1θ

ν
+

2θ

ν
]I2 − [σ− (

3
2
+ λ1)α

2
2]Q

2

− [
λ

2ν
+

λ1σ

ν
+

2σ

ν
]Q2 − [2λ1(δ + γ) + 3δ− ν(λ1θ + λ1σ + θ + σ)]J2

− [δ− ν(θ + σ)]R2.

(13)

Choose ν to be sufficiently small such that the coefficients of E2, I2, and J2 are negative
and as ε + λ > β∗k + α2

1, δ + θ > β∗ and σ > ( 3
2 + λ1)α

2
2, we can choose λ1 to be positive

such as the coefficients of I2, Q2 and J2 be negative. According to Lemma 1, we conclude
that the trivial solution P0(0, 0, 0, 0, 0) of system (2) is asymptotically stable in the large.

Theorem 3. If R0 ≤ 1 and the conditions ε + λ− β∗k− α2
1 > 0, σ > 3

2 α2
2 hold, then the solution

P0 = (0, 0, 0, 0, 0) of system (2) is exponentially mean-square stable.

Proof. As in the proof of Theorem 2, we also choose the Lyapunov function:

V(E, I, Q, J, R) =
1
2

E2 +
1
2

I2 +
1
2

Q2 + λ1 J2 + (J + R)2,

where λ1 is a positive as in Theorem 2, and from the proof of Theorem 2, we see

V(E, I, Q, J, R) ≥ 1
2

E2 +
1
2

I2 +
1
2

Q2 +
λ1

2
J2 +

λ1

λ1 + 2
R2

≥ λ1

λ1 + 2
(E2 + I2 + Q2 + J2 + R2)

and
V(E, I, Q, J, R) ≤ 1

2
E2 +

1
2

I2 +
1
2

Q2 + (λ1 + 2)J2 + 2R2

≤ (λ1 + 2)(E2 + I2 + Q2 + J2 + R2),
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that is

λ1

λ1 + 2
(E2 + I2 + Q2 + J2 + R2) ≤ V(E, I, Q, J, R)

≤ (λ1 + 2)(E2 + I2 + Q2 + J2 + R2).
(14)

Besides, (13) implies that

LV ≤ −[ε + λ− β∗k− α2
1]E

2 − [δ + θ − β∗

2ν
]I2 − [σ− (

3
2
+ λ1)α

2
2]Q

2

− [2λ1(δ + γ) + 3δ]J2 − δR2

≤ −min{ε + λ− β∗k− α2
1, δ + θ − β∗

2ν
, σ− (

3
2
+ λ1)α

2
2, 2λ1(δ + γ) + 3δ, δ}

(E2 + I2 + Q2 + J2 + R2)

LV ≤ − D
λ1 + 2

V(E, I, Q, J, R), (15)

where D = min{ε + λ− β∗k− α2
1, δ + θ − β∗

2ν , σ− ( 3
2 + λ1)α

2
2, 2λ1(δ + γ) + 3δ, δ}.

Therefore from (14) and (15) and Lemma 2, we conclude that the trivial solution of
system (2) is exponentially mean-square stable. That is to say the disease-free equilibrium
P0 = (0, 0, 0, 0, 0) of system (2) is exponentially mean-square stable.

Remark 2. Zhou and Ma [12] used discrete states representing numbers of individuals to give
EIQJR model and showed the disease-free equilibrium P0 is globally asymptotically stable when
R0 = β∗(ε+k(δ+θ))

(ε+λ)(δ+θ)
< 1 (cf. Theorem 2). The asymptotic behavior around P0 is measured by the

intensity of the noise in this continuous COVID-19 model with stochastic perturbation.

5. Asymptotic Behavior around the Endemic Equilibrium

In this section, we assume R0 > 1 and examine the asymptotic behavior of the
solution near the endemic equilibrium of the deterministic model to show when the disease
will prevail.

Theorem 4. If R0 > 1 and the conditions ε + λ > α2
1 + β∗k, σ > α2

2 are satisfied, then for any
given initial value (E(0), I(0), Q(0), J(0), R(0)) ∈ R5

+, the solution of model (2) has the property

lim sup
t→∞

1
t

∫ t

0
[(E(u)− AE∗)2 + (I − I∗)2 + (Q− BQ∗)2 + (J − J∗)2 + (R− R∗)2]du

≤ K
N

(16)

where A := 2(ε+λ−β∗k)− β∗+ε+λ
c

2(ε+λ−β∗k−α2
1)−

β∗+ε+λ
c

, B := 2σ−(λ+2σ)c
2(σ−α2

2)−(λ+2σ)c
and

K :=
(2(ε + λ− β∗k)− β∗+ε+λ

c )2α2
1

2(ε + λ− β∗k− α2
1)−

β∗+ε+λ
c

(E∗)2 +
(2σ− (λ + 2σ)c)2α2

2
2(σ− α2

2)− (λ + 2σ)c
(Q∗)2,

N := min{X1, X2, X3, X4, X5}, where X1 = 2(ε + λ− β∗k− α2
1)−

β∗+ε+λ
c , X2 = 2(δ +

θ)− (β∗ + ε + 2θ)c, X3 = 2(σ− α2
2)− (λ + 2σ)c, X4 = 2δ + γ− θ+σ

c , X5 = δ
2 −

θ+σ
c , and c

is a positive constant chosen sufficiently small such that X1 > 0, X2 > 0, X3 > 0, X4 > 0, X5 > 0.

Proof. Define a C2− function V : R5
+ → R+ by

V = (E− E∗)2 + (I − I∗)2 + (Q−Q∗)2 +
1
2
(J − J∗)2 +

1
2
(J − J∗ + R− R∗)2,
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dV = LVdt− 2(E− E∗)α1EdB1(t) + 2(I − I∗)α1EdB1(t)− 2(Q−Q∗)α2QdB2(t)

+ (J − J∗)α2QdB2(t) + (J − J∗ + R− R∗)α2QdB2(t),
(17)

where

LV = 2(E− E∗)[β∗kE + β∗ I − (ε + λ)E] + α2
1E2 + 2(I − I∗)[εE− (δ + θ)I] + α2

1E2

+ 2(Q−Q∗)[λE− σQ] + α2
2Q2 + (J − J∗)[θ I + σQ− (δ + γ)J] +

1
2

α2
2Q2

+ (J − J∗ + R− R∗)[θ I + σQ− δJ] +
1
2

α2
2Q2

= 2(E− E∗)[(β∗k− ε− λ)(E− E∗) + β∗(I − I∗)] + 2α2
1E2

+ 2(I − I∗)[ε(E− E∗)− (δ + θ)(I − I∗)] + 2(Q−Q∗)[λ(E− E∗)− σ(Q−Q∗)]

+ 2α2
2Q2 + (J − J∗)[θ(I − I∗) + σ(Q−Q∗)− (δ + γ)(J − J∗)]

+ (J − J∗ + R− R∗)[θ(I − I∗) + σ(Q−Q∗)− δ(J − J∗)]

= −2(ε + λ− β∗k)(E− E∗)2 + 2α2
1E2 − 2(δ + θ)(I − I∗)2

+ 2(β∗ + ε)(E− E∗)(I − I∗)− 2σ(Q−Q∗)2 + 2λ(E− E∗)(Q−Q∗)

+ 2α2
2Q2 + 2θ(I − I∗)(J − J∗) + 2σ(Q−Q∗)(J − J∗)− (2δ + γ)(J − J∗)2

+ θ(I − I∗)(R− R∗) + σ(Q−Q∗)(R− R∗)− δ(J − J∗)(R− R∗).

(18)

By the Young’s inequality, we get the following inequalities

2(β∗ + ε)(E− E∗)(I − I∗) ≤ β∗ + ε

c
(E− E∗)2 + (β∗ + ε)c(I − I∗)2,

2λ(E− E∗)(Q−Q∗) ≤ λ

c
(E− E∗)2 + λc(Q−Q∗)2,

2θ(I − I∗)(J − J∗) ≤ θ

c
(J − J∗)2 + θc(I − I∗)2,

2σ(Q−Q∗)(J − J∗) ≤ σ

c
(J − J∗)2 + σc(Q−Q∗)2,

θ(I − I∗)(R− R∗) ≤ θ

c
(R− R∗)2 + θc(I − I∗)2,

σ(Q−Q∗)(R− R∗) ≤ σ

c
(R− R∗)2 + σc(Q−Q∗)2,

where c is a positive constant to be determined later. Insert these inequalities into the
Equation (18), we get

LV ≤ −[2(ε + λ− β∗k)− β∗ + ε + λ

c
](E− E∗)2 − 2α2

1E2

− [2(δ + θ)− (β∗ + ε + 2θ)c](I − I∗)2 − [2σ− (λ + 2σ)c](Q−Q∗)2 − 2α2
2Q2

− [2δ + γ− θ + σ

c
](J − J∗)2 − [

δ

2
− θ + σ

c
](R− R∗)2

= −[2(ε + λ− β∗k− α2
1)−

β∗ + ε + λ

c
]E2 + 2[2(ε + λ− β∗k)− β∗ + ε + λ

c
]EE∗

− [2(ε + λ− β∗k)− β∗ + ε + λ

c
](E∗)2 − [2(δ + θ)− (β∗ + ε + 2θ)c](I − I∗)2

− [2(σ− α2
2)− (λ + 2σ)c]Q2 + 2[2σ− (λ + 2σ)c]QQ∗ − [2σ− (λ + 2σ)c](Q∗)2

− [2δ + γ− θ + σ

c
](J − J∗)2 − [

δ

2
− θ + σ

c
](R− R∗)2

(19)
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= −[2(ε + λ− β∗k− α2
1)−

β∗ + ε + λ

c
](E−

2(ε + λ− β∗k)− β∗+ε+λ
c

2(ε + λ− β∗k− α2
1)−

β∗+ε+λ
c

E∗)2

− [2(δ + θ)− (β∗ + ε + 2θ)c](I − I∗)2

− [2(σ− α2
2)− (λ + 2σ)c](Q− 2σ− (λ + 2σ)c

2(σ− α2
2)− (λ + 2σ)c

Q∗)2

− [2δ + γ− θ + σ

c
](J − J∗)2 − [

δ

2
− θ + σ

c
](R− R∗)2 +

(2σ− (λ + 2σ)c)2α2
2

2(σ− α2
2)− (λ + 2σ)c

(Q∗)2

+
(2(ε + λ− β∗k)− β∗+ε+λ

c )2α2
1

2(ε + λ− β∗k− α2
1)−

β∗+ε+λ
c

(E∗)2.

(20)

Besides ε + λ > α2
1 + β∗k, δ + θ > 0, σ > α2

2, and we choose that c is positive and
sufficiently small such that 2(ε+ λ− β∗k− α2

1)−
β∗+ε+λ

c > 0, 2(δ+ θ)− (β∗+ ε+ 2θ)c > 0,
2(σ− α2

2)− (λ + 2σ)c > 0, 2δ + γ− θ+σ
c > 0, δ

2 −
θ+σ

c > 0.
Thus

dV(t) = LVdt− 2(E(t)− E∗)α1E(t)dB1(t) + 2(I(t)− I∗)α1E(t)dB1(t)

− 2(Q(t)−Q∗)α2Q(t)dB2(t) + (J(t)− J∗)α2Q(t)dB2(t)

+ (J(t)− J∗ + R(t)− R∗)α2Q(t)dB2(t).

(21)

Integrating both sides of (21) from 0 to t, then taking expectation, and considering
inequality (20), yields

0 ≤ EV(t) ≤ V(0)−E
∫ t

0
[[2(ε + λ− β∗k− α2

1)−
β∗ + ε + λ

c
]

(E(u)−
2(ε + λ− β∗k)− β∗+ε+λ

c

2(ε + λ− β∗k− α2
1)−

β∗+ε+λ
c

E∗)2 + [2(δ + θ)− (β∗ + ε + 2θ)c](I(u)− I∗)2

+ [2(σ− α2
2)− (λ + 2σ)c](Q(u)− 2σ− (λ + 2σ)c

2(σ− α2
2)− (λ + 2σ)c

Q∗)2

+ [2δ + γ− θ + σ

c
](J(u)− J∗)2 + [

δ

2
− θ + σ

c
](R(u)− R∗)2]du + Kt,

(22)

where

K :=
(2(ε + λ− β∗k)− β∗+ε+λ

c )2α2
1

2(ε + λ− β∗k− α2
1)−

β∗+ε+λ
c

(E∗)2 +
(2σ− (λ + 2σ)c)2α2

2
2(σ− α2

2)− (λ + 2σ)c
(Q∗)2,

which implies that

E
∫ t

0
[[2(ε + λ− β∗k− α2

1)−
β∗ + ε + λ

c
](E(u)−

2(ε + λ− β∗k)− β∗+ε+λ
c

2(ε + λ− β∗k− α2
1)−

β∗+ε+λ
c

E∗)2

+ [2(δ + θ)− (β∗ + ε + 2θ)c](I(u)− I∗)2

+ [2(σ− α2
2)− (λ + 2σ)c](Q(u)− 2σ− (λ + 2σ)c

2(σ− α2
2)− (λ + 2σ)c

Q∗)2

+ [2δ + γ− θ + σ

c
](J(u)− J∗)2 + [

δ

2
− θ + σ

c
](R(u)− R∗)2]du ≤ V(0) + Kt.

(23)

Dividing both sides by t and setting t→ ∞, we get
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lim sup
t→∞

1
t
E
∫ t

0
[[2(ε + λ− β∗k− α2

1)−
β∗ + ε + λ

c
]

(E(u)−
2(ε + λ− β∗k)− β∗+ε+λ

c

2(ε + λ− β∗k− α2
1)−

β∗+ε+λ
c

E∗)2 + [2(δ + θ)− (β∗ + ε + 2θ)c](I(u)− I∗)2

+ [2(σ− α2
2)− (λ + 2σ)c](Q(u)− 2σ− (λ + 2σ)c

2(σ− α2
2)− (λ + 2σ)c

Q∗)2

+ [2δ + γ− θ + σ

c
](J(u)− J∗)2 + [

δ

2
− θ + σ

c
](R(u)− R∗)2]du ≤ K.

(24)

Set N := min{X1, X2, X3, X4, X5}, where X1 = 2(ε + λ− β∗k − α2
1)−

β∗+ε+λ
c , X2 =

2(δ + θ)− (β∗ + ε + 2θ)c, X3 = 2(σ− α2
2)− (λ + 2σ)c, X4 = 2δ + γ− θ+σ

c , X5 = δ
2 −

θ+σ
c ,

and then it is easy to obtain

lim sup
t→∞

1
t
E
∫ t

0
[(E(u)−

2(ε + λ− β∗k)− β∗+ε+λ
c

2(ε + λ− β∗k− α2
1)−

β∗+ε+λ
c

E∗)2 + (I(u)− I∗)2

+ (Q(u)− 2σ− (λ + 2σ)c
2(σ− α2

2)− (λ + 2σ)c
Q∗)2 + (J(u)− J∗)2 + (R(u)− R∗)2]du ≤ K

N
.

(25)

The proof of Theorem 4 is completed.

Remark 3. Theorem 4 shows that the solution of system (2) fluctuates around the certain level which

is relevant to P∗ = (
2(ε+λ−β∗k)− β∗+ε+λ

c

2(ε+λ−β∗k−α2
1)−

β∗+ε+λ
c

E∗, I∗, 2σ−(λ+2σ)c
2(σ−α2

2)−(λ+2σ)c
Q∗, J∗, R∗) and α2

i , i = 1, 2.

With the value of α2
1 and α2

2 decreasing, P∗ will be approaching the endemic equilibrium of the
deterministic model.

6. Numerical Simulation

Numerically, we will consider the numerical method given in [38] to approximate the
proposed system (2) as follows:

Ei+1 = Ei + (βi(kEi + Ii)− (ε + λ)Ei)h− α1Ei
√

hξ
j
i +

1
2

α2
1Ei(h(ξ

j
i)

2 − h),

Ii+1 = Ii + (εEi − (δ + θ)Ii)h + α1Ei
√

hξ
j
i ,

Qi+1 = Qi + (λEi − σQi)h− α2Qi
√

hξ
j
i +

1
2

α2
2Qi(h(ξ

j
i)

2 − h),

Ji+1 = Ji + (θ Ii + σQi − (δ + γ)Ji)h + α2Qi
√

hξ
j
i ,

Ri+1 = Ri + γJih,

(26)

where ξ
j
i , j = 1, 2 are independent Gaussian random variables N(0, 1). Although the

outbreak is not over, the spread of COVID-19 in China has been basically controlled in
March. So, we have collected data between 23 January and 18 April 2020 in order to
estimate the parameters in the model. The parameters of the stochastic EIQJR model are
estimated following [39], then the numerical approximations are performed. We assume
that the average latent period is 4 days [40], which means that the first symptom appears
on the fifth day as a result of infection. Thus, we assume that the time from infection to
diagnosis is 7 days, with the first 4 days in the exposed case having low infectivity and the
last 3 days in the infected case having high infectivity. The proportion k is assumed to be
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0.3. 94.3% of the diagnosed COVID-19 cases come from the quarantined class, whereas the
remaining 5.7% come from the infected classes that have not been quarantined [40]. So,

ε =
1
4

5.7
100

, λ =
1
4

94.3
100

, θ =
1
3

, σ =
1
3

.

Infected individuals will recover after 21 days on average, so we choose γ = 1
21 . The

period of death for COVID-19 patients is 17 days, and the average death rate is 6.1%, and
hence δ = 1

17
6.1
100 . Since the transmission rate β(t) vary t ∈ [0, 86], we try to fix the function

based on [41]. We assume that the transmission rate is 0.523 before 20 February and 0.009
after 20 February as a result of intervention strategies. From the data of [42], we estimate
the initial values E(0) = 9000, I(0) = 1240, Q(0) = 7347, J(0) = 771, R(0) = 34 as of 23
January 2020. We choose α1, α2 ∈ [0, 1]. We perform numerical simulations to certify our
models, to discuss the transmission of COVID-19 and the effectiveness of control measures
in China.

We carry out the simulation for different values of α1 and α2 to determine the impact
of environmental noises while leaving the other parameters unchanged. In Figure 1, we
choose α1 = 0.09, α2 = 0.07 (left) and α1 = 0.95, α2 = 0.95 (right). We see that the smaller
noise has slight impact in the population whereas the larger white noises create more
violent fluctuation curves and increase in infected population. Therefore the increases in
environmental forcing may result in a reduction in the average time to extinction.
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Figure 1. The numbers of diagnosed case with different noises. In particular, α1 = 0.09, α2 = 0.07
in (left) and α1 = 0.95, α2 = 0.95 in (right). It depicts that fluctuation is getting smaller with the
decrease of the noise.

Figure 2 depicts the diagnosed populations at two time ranges: from 23 January
to 20 February, and from 20 February to 6 March. At the transmission rate 5.23 and
δ = 9.61, α1 = 0.95, α2 = 0.95, Figure 2 (left) illustrates that the final diagnosed population
is 68,000 as the result of few preventive and control measures before 20 February 2020.
Due to the stringent control measure, the transmission rate and death rates decrease to
δ = 1

17
0.67
100 , k = 0.1, α1 = 0.09, α2 = 0.07, and transmission rate is 0.009 and result in the

diagnosed case is 30,000 in the right side of Figure 2.
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Figure 2. The numbers of diagnosed patient between 23 January and 20 February (left), and between
20 February and 6 March (right).

On the left side of Figure 3, the blue line is the statistical data reported (by Kaggle),
the fluctuation curve is the prediction of the model. In the fluctuation curve, we choose
α1 = 0.05, α2 = 0.07, the transmission rate is 0.87 and the other parameters are unchanged.
The prediction curve relates to the actual data well. This figure illustrates the disease
persists in the population. The right side of Figure 3 illustrates the daily new case in China,
and it is suggested that the COVID-19 infection is stochastic.
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Figure 3. Prediction and actual accumulated cases in China (left) and new confirmed cases in China
(right).

In Figure 4, choose α1 = 0.09, α2 = 0.07, k = 0.1 and transmission rate is 0.009, then
µ + ε > β∗ + α2

1, σ > 3
2 α2

2. That is to say, the disease-free equilibrium condition is satisfied;
therefore according to Theorem 2, Figure 4 depicts that P0 is globally asymptotically stable.
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Figure 4. The solution of system (2) when ε + λ > β∗k + α2
1 and σ > 3

2 α2
2. It depicts the disease-free

equilibrium P0 is stable.
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7. Discussion

In this paper, we propose and analyze a stochastic EIQJR model, which is an extension
of deterministic model studied by Zhou and Ma [12]. We have investigated how stochastic
perturbations in transmission coefficient ε and the diagnosis coefficient σ affect the pop-
ulation dynamics of COVID-19. We have developed the analysis of the model in both
theoretical and numerical ways.

First, we have shown that the proposed model has a global positive solution. Our
Theorems 2 and 3 extend the corresponding Theorem 2 (if R0 < 1, the disease die out)
in [12]. For the stochastic dynamics of our model (2), we obtain the sufficient condition of
the extinction of the disease, namely, if R0 ≤ 1, ε + λ− β∗k− α2

1 > 0 and σ > 3
2 α2

2 hold,
then the disease-free equilibrium is global asymptotic stability (see, Theorems 2 and 3). We
have also examined the population behavior of system (2) around the endemic equilibrium
of the deterministic system if R0 > 1, ε + λ > α2

1, and σ > 3
2 α2

2 hold. Comparing the
previous deterministic model with our model (2), we find out that the presence of stochastic
perturbation can restrain the spread of the disease. Epidemiologically, we can conclude
that the volatility of the infected population rises with increasing noise intensity, and that
environmental noises can maintain the irregular repetition of disease.

We have carried out numerical simulation to support theoretical results and to show
the transmission process of COVID-19 in China. Numerical results suggest that disease-free
equilibrium is global asymptotic stability under suitable conditions (see, Figure 4). In
Figures 1 and 2, our results suggest that the increase of α1 and α2 and transmission rate
might cause the volatility of infected population. Figure 3 suggests that our prediction
curve fits the actual data, and we can see that COVID-19 infection is stochastic. Because the
explicit solutions are available in numerical analysis, it is interesting for one to consider a
numerical method for stochastic EIQJR models. Some scholars have already worked in the
literature (e.g., ([43–45])). We leave these investigations for future work.
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