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Abstract: When the spatial response variables are discrete, the spatial logistic autoregressive model
adds an additional network structure to the ordinary logistic regression model to improve the
classification accuracy. With the emergence of high-dimensional data in various fields, sparse spatial
logistic regression models have attracted a great deal of interest from researchers. For the high-
dimensional spatial logistic autoregressive model, in this paper, we propose a variable selection
method with for the spatial logistic model. To identify important variables and make predictions, one
efficient algorithm is employed to solve the penalized likelihood function. Simulations and a real
example show that our methods perform well in a limited sample.
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1. Introduction

As a branch of modern econometrics, spatial econometrics has been widely used in
many traditional economic fields such as regional economy, real estate economy, demand
analysis, and labor economics as well as ecology, epidemiology, and other disciplines. At
present, many modeling methods have been used to deal with spatial econometrics. In
many models, our commonly used models are Spatial Autoregressive Model (SAR), Spatial-
Lag of X Model (SLX), Spatial Error Model (SEM), Spatial Autoregressive Combined Model
(SAC), and Spatial Durbin Model (SDM), etc. Among them, the spatial autoregressive (SAR)
model proposed by Ord (1975) [1] has been popularly used. In the framework of spatial
autoregression, Anselin (1980) [2] discussed the estimation method of parameters. Cliff and
Ord (1981) [3] investigated the maximum likelihood estimation based on this work. Lee
(2004) [4] applied the maximum likelihood estimation and quasimaximum likelihood esti-
mation to the spatial econometric model and strictly deduced the asymptotic distribution
of the estimated parameters. SAR models can be applied to many fields including social
Sciences (Ma (2020) [5], Darmofal (2015) [6]), real estate (Osland (2010) [7]), crime incidents
(Ahmar et al. (2018) [8]), analyzing poverty (Islamy et al. (2021) [9]) and ecological analysis
(Jay et al. (2018) [10]). According to the SAR model, we can view the factors affecting
dependent variables as a natural combination of the independent variables and the spatial
spillover effects of the dependent variables. Thence, the model can conveniently deal with
traditional covariates and network dependence problems.

The main focus of the existing spatial econometrics literature is the statistical inference
of the spatial mean regression model whose dependent variable is continuous, which only
reflects the location information of the conditional distribution of the explained variable.
As many scholars have found that many dependent variables in practical problems are
discrete variables in empirical research, spatial logistic autoregressive model has attracted
the attention of theoretical econometrists and applied researchers. Spatial logistic regression
model studies the influence of covariates on the correlation response of spatial discrete
values. Spatial logistic regression model based on classification technology to model spatial
data is a new field of spatial econometrics, and the related research is still limited.
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In recent years, many studies on spatial autoregressive model have proposed several
methods to analyze the regression under high-dimensional data. Penalized techniques and
their variants have attracted people’s attention to high-dimensional data analysis by shrink-
ing inactive coefficients to 0. Such as LASSO (Tibshirani (1996) [11]), SCAD (Fan and Li
(2001) [12]) and MCP (Zhang (2010) [13]) for mean regression. For high dimensional spatial
data, Han et al. (2017) [14] proposed the estimation and model selection of higher-order
spatial autoregressive models through an efficient Bayesian approach. They developed a
more efficient algorithm based on the exchange algorithm, in order to solve the problem of
computing the Jacobian determinant in the likelihood function of the parametric posterior
distribution when the number of cross-sectional spatial units is large. Liu et al. (2018) [15]
developed a penalized quasimaximum likelihood method for simultaneous model selection
and parameter estimation in the spatial autoregressive model with independent and identi-
cal distributed errors. Michael (2019) [16] proposed two global-local shrinkage priors under
the background of high-dimensional matrix exponential spatial specifications. Especially
when the number of parameters to be estimated surpasses the number of observations,
both simulations and real data results reveal that they perform particularly well in high-
dimensional settings. Song et al. (2021) [17] propose a class of penalized robust regression
estimators on the basis of exponential squared loss with independent and identical dis-
tributed errors for general spatial autoregressive models.Numerical studies demonstrate
that the proposed method is especially robust and applicable when there are outliers or
intensive noise in the observations or when the estimated spatial weight matrix is imprecise.
To alleviate the problems of computational time for Bayesian model-averaging for spatial
autoregressive models, Justin M. Leach et al. (2022) [18] proposed a novel approach to
using the spike-and-slab prior with the elastic net when predictors display spatial structure.
The elastic net may outperform LASSO when the number of predictors far exceeds the
sample size and the predictors behave strong correlations. Romina et al. (2022) [19] studied
the variable selection for spatial regression models with locations on irregular lattices and
errors according to Conditional or Simultaneous Autoregressive (CAR or SAR) models. The
strategy is to whiten the residuals by estimating their spatial covariance matrix and then
proceed by performing the standard L1-penalized regression LASSO for independent data
on the transformed model. The above studies are only for spatial autoregressive models
with continuous response variables. As far as we know, there are still no studies on variable
selection for spatial logistic autoregression in high dimensional space data.

In this paper, we put forward a class of penalized regression estimators on the basis of
quasimaximum likelihood with independent and identical distributed errors for general
spatial logistic autoregressive models. Consider estimating β = (β1, · · · , βp)T by solving
the following optimization problem,

min(β,ρ) − ln[L(β, ρ)] + 2n ∑
p
j pλ

(∣∣β j
∣∣).

In this work, we presented a variable selection method for spatial logistic autore-
gressive based on the quasimaximum likelihood loss function and the SCAD penalty.
This method was capable of selecting significant predictors while estimating regression
coefficients. The following are the main contributions of this work.

1. We construct a variable selection method for high-dimensional spatial logistic regres-
sion model.

2. We propose a new optimization algorithm to solve the penalized spatial logistic
regression model and then construct the model selection criteria to select the optimal
tuning parameter.

3. We conducted specific numerical studies and verified the effectiveness of the proposed
method in selecting significant variables. Numerical studies indicate that the proposed
method far outperforms the comparative methods in terms of the number of correctly
identified zero coefficients, the number of incorrectly identified nonzero coefficients
and ME.
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The outline of the remainder of this paper is as follows. Section 2 discusses the general
specification of the spatial autoregression model and the spatial logistic regression model.
Section 3 proposes a penalized spatial logistic autoregressive model and a optimization
algorithm to solve this model. Section 4 performs a simulation study to evaluate the effect
of variable selection in spatial logistic regression. Section 5 applies the model to a real
example and Section 6 concludes.

2. Materials and Methods
2.1. Spatial Autoregressive Model (SAR)

Consider a network with n nodes. We can describe the structure of the network by
the matrix A ∈ Rn×n. Define aij = 1 when node i follows node j, and aij = 0 otherwise. If
we have a n× 1 vector of observations on the dependent variable Y and a n× d matrix of
regressors X, we can establish the following SAR model:

Y = ρWY + Xβ + ε, (1)

where ρ ∈ R is network autocorrelation coefficient and β = (β1, ..., βd)
T ∈ Rd is the regres-

sion coefficient vector. W is the row-normalized version of A such that wij = aij/ ∑n
j=1 aij.

Let θ = (ρ, βT)T ∈ Rd+1 be the estimator and denote ε = (ε1, ..., εn)T be the error vector,
we assume it is i.i.d. with zero mean and finite variance σ2.

Denote G = I − ρW, S = Y− ρWY− Xβ, then we have the log likelihood function of
SAR model:

ln L(θ, σ2) = −n
2

ln(2π)− n
2

ln σ2 + ln |G| − 1
2σ2 STS. (2)

2.2. Spatial Logistic Regression Model

Spatial logistic regression model is a combination of spatial autoregressive model and
logistic regression model, and the response variables of logistic regression model can be
binary classification or multi-classification, nevertheless, we only consider that the response
variables are binary.

The model (1) can be written as:

y∗ = (I − ρW)−1(Xβ + ε)

= (I − ρW)−1Xβ + (I − ρW)−1ε

= HXβ + e, e ∼ MVN(0, Ω)

(3)

To make it easily distinguish, we use y∗ instead of Y , where H is an (n× n) matrix,
define H = (I − ρW)−1, define the ith component of HXβ as [HXβ]i, e is an (n × 1)
vector, define e = (I − ρW)−1ε. Latent variable y∗ has binary category which is defined as
variable y:

yi =

{
1, for y∗i > 0
0, for y∗i ≤ 0

(4)

Therefore, the probability of P(yi = 1) and P(yi = 0) is:

P(yi = 1 | Xi) = P(y∗i > 0)

= P([HXβ]i + e > 0)

= P(−e ≤ [HXβ]i)

=
1

1 + exp(−[HXβ]i)

(5)
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P(yi = 0 | Xi) = P(y∗i ≤ 0)

= P([HXβ]i + e ≤ 0)

= P(−e > [HXβ]i)

= 1− P(−e ≤ [HXβ]i)

= 1− 1
1 + exp(−[HXβ]i)

(6)

When we assume the mean value of e is 0 and the variance is Ω, then we get

P(yi = 1) =
1

1 + exp
(
− [HXβ]i

Ωii

) (7)

where Ωii is diagonal element of Ω, which is formed as Ω =
[
(I − ρW)T(I − ρW)

]−1, so
the same can be obtained P(yi = 0).

The estimation of spatial logistic regression parameters can be acquired by maximum
likelihood estimation (MLE). The parameter is estimated by maximizing likelihood function
of random variable yi, which follow Bernoulli distribution:

L(β, ρ) =
n

∏
i=1


 1

1 + exp
(
− [HXβ]i

Ωii

)
yi
1− 1

1 + exp
(
− [HXβ]i

Ωii

)
1−yi

 (8)

Then, the likelihood function is transformed by natural log(ln) as follows:

ln[L(β, ρ)] =
n

∑
i=1

yi ln

 1

1 + exp
(
− [HXβ]i

Ωii

)
+

n

∑
i=1

(1− yi) ln

1− 1

1 + exp
(
− [HXβ]i

Ωii

)
 (9)

To estimate β, we use the maximization Formula (9), then define β̂ = argmax ln[L(β, ρ)].

3. Results
3.1. Variable Selection with Linear Constraints

In this section, we consider the variable selection of high-dimensional spatial logistic
regression model. The objective function of the model consists of the likelihood function of
the Spatial Logistic regression Model( ln[L(β, ρ)]) and the penalty function.By minimizing
the objective function, we can get the estimated parameters.

We will study the variable selection of high-dimensional spatial logistic regression model:

(β̂, ρ̂) = arg min
(β,ρ)
− ln[L(β, ρ)] + 2n

p

∑
j

pλ

(∣∣β j
∣∣). (10)

where pλ(•) is the penalty function, the shrinkage degree of penalty is determined by the
tune parameter λ in the penalty term. Some possible choices include:

(1) the LASSO penalty with pλ(t) = λ|t| ;
(2) the SCAD penalty with pλ(t) = λ

∫ |t|
0 min{1, (a− t/λ)+/(a− 1)}dt, a > 2 where v+

denotes its positive part, that is, vI(v ≥ 0) ;
(3) the MCP with pλ(t) = λ

∫ |t|
0 (1− t/(λa))+dt, a > 1.
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Fan and Li (2001) [12] use unbiasedness, sparsity and continuity to evaluate penalty
functions. LASSO is not unbiased, and MCP calculation is relatively complex. Fan and Li
(2001) [12] pointed out that LASSO does not have the properties of Oracle, but SCAD has
them. Compared with ridge regression, SCAD method reduces the prediction variance of
the model. At the same time, compared with LASSO, SCAD method reduces the deviation
of parameter estimation, so it has received extensive attention. so we choose to use SCAD
penalty here.

3.2. A Feasible Algorithm

This is a nonconcave optimization problem that maximizes the penalty likelihood
function Q(θ). In the study of classical linear regression models, some kinds of algorithms
have been developed to find and compute the local solutions of nonconcave penalized
function, such as local quadratic approximation (LQA) algorithm (Fan, 2001 [12]), local
linear approximation (LLA) algorithm and coordinate descent algorithm. Unfortunately,
owing to the spatial correlation of the model, we find that the algorithm mentioned above
unable to be straight forward calculate the minimum value of the nonconcave penalized
likelihood function Q(θ). Therefore, we propose a new iterative algorithm:

Step 1. Initialize θ(0) =
(

σ(0), ρ(0), β(0)
)

.

Step 2. Update σ(m+1) = arg min
σ∈(0,∞)

{
l1(σ) = − ln Ln

(
σ, ρ(m), β(m)

)}
.

Step 3. Update ρ(m+1) = arg min
ρ∈(−1,1)

{
l2(ρ) = −Q

(
σ(m+1), ρ, β(m)

)}
.

Step 4. Update β(m+1) = arg min
β∈Rk

{
l3(β) = −Q

(
σ(m+1), ρ(m+1), β

)}
.

Step 5. Iterate Step 2 to Step 4 until convergence and denote the final estimator of(
σ2, ρ, β

)
as
(

σ̂2, ρ̂, β̂
)

, then θ̂ =
(

σ̂2, ρ̂, β̂
T
)T

.
In Steps 2 and 3, since they are both one-dimensional nonlinear optimization problems,

they can be solved by the Brent method (Press et al. known). Therefore, the model (1) can
be written as the following linear model:

Y∗n = Xnβ + En,

where Y∗n = Yn − ρWnYn. Thence, we can apply the LQA algorithm in the classic linear
regression model to accomplish this step. We also need to determine the tuning parameters
a and λ in the SCAD function. Here, we accept the suggestion of Fan and Li (2001) and set
a = 3.7.

3.3. The Selection of Tuning Parameter

Based on the above, we chose to use SCAD penalty. The penalty function is defined as:

pλ(|β|) =


λ
∣∣β j
∣∣, 0 ≤

∣∣β j
∣∣ < λ,

−
(∣∣β j

∣∣2 − 2aλ
∣∣β j
∣∣+ λ2

)
/(2a− 2), λ ≤

∣∣β j
∣∣ < aλ,

(a + 1)λ2/2,
∣∣β j
∣∣ ≥ aλ,

(11)

where λ ≥ 0 and a > 2 are tune parameters. In the article of Fan and Li (2001), it is
suggested that a should be 3.7, and λ determines the shrinkage strength of parameter
estimation. In this paper, λ is determined by Bayesian information criterion (BIC) .

The selection of tuning parameter λ is an important application of degrees of free-
dom. We will use Bayesian information criterion (BIC) (Schwarz (1978)) as the criteria
for model selection in this paper: For determining the value of λ, we use the Bayesian
information criterion

BIC(λ) = −2 ln Ln(θ̂) + α(λ) log n

where α(λ) = ∑k+2
j=1 I

(
θ̂j 6= 0

)
. Then a choice of λ is λ̂ = arg min

λ
{BIC(λ)}.
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4. Simulation Studies

In former sections, we put forward an advanced spatial logistic regression model, and
here use R code to fulfil Monte Carlo simulations to assess and test the performance of
variable selection of this model. The data for the simulated experiments are originated from
Formula (1), in which the covariates are identified as following a (q + 3)-dim normal distri-
bution with zero mean and a covariance matrix σij. Its concrete expression is σij = 0.5|i−j|.
We make up our mind to set the sample size n ∈ {60, 90, 120} and the number of inessential
covariates q ∈ {5, 10, 35, 85} in the subsequent simulation studies. Consequently, X can be
thought of as an n× (q + 3) matrix.

In regard to SAR model, the network autocorrelation coefficient ρ arises from the
uniform distribution ranging from (ρ1 − 1) to (ρ1 + 1). The feasible value of ρ1 can be 0.2,
0.5 and 0.8, representing the spatial coefficient of different intensities. To compare model
performance, we also think over setting ρ = 0, that suggests no spatial dependence in this
model, thence model (2.1) will be a classic linear model.

Additionally, let the spatial weight matrix is W = IR ⊗ Bm. In which, Bm is (1/(m−
1))
(
1m · 1T

m − Im
)
, and “⊗” expresses Kronecker product. 1m is an m-dim column vector

of ones. In this formula, we premeditate m = 3 and several not the same values of R, for
instance R ∈ {10, 20, 30, 40}.

The regression coefficients are set to β =
(
3, 2, 1.6, 0q

)T , where (β1, β2, β3) is generated
from a 3-dimensional normal distribution with mean vector (3, 2, 1.6) and covariance
matrix 0.001I3, 0q is a zero vector of q dimension. The response variable y∗ is given by the
following formula:

y∗ = (In − ρW)−1(Xβ + εn) (12)

Then we turn the response variable into category variable by the following formula:

Yi =

{
1, for y∗i > 0
0, for y∗i ≤ 0

(13)

Thus, the response variable Y of the binary classification is obtained. In order to verify
the robustness of the model, we consider two error distributions: εn ∼ N(0, σ2 In) , which
is denoted as ε0, and Mixed Gaussian distribution: εn ∼ 0.5N(−1, 2.52 In) + 0.5N(1, 0.52 In),
denoted as ε1. σ2 is generated by the Uniform distribution on the interval [σ1− 0.1, σ1 + 0.1],
where σ1 ∈ {1, 2}. In the second case, E(ε) = 0, Mode(ε) = 1.

4.1. Simulation Indicators

For each case, we repeat 100 times. In order to evaluate the variable selection ability of
the model, we define three indicators:

• Correct: the average number of coefficients, of the true zeros correctly set to zero;
• Incorrect: the average number of coefficients, of the true nonzeros incorrectly set

to zero;
• ME: the mean error between the true and estimator, which is defined by;

1
100

100

∑
i=1

∥∥θi − θ̂i
∥∥ (14)

• MAD: the median absolute deviations of parameter estimation;
• MEAN: the means of parameter estimation;
• SD: the standard deviations of parameter estimation.
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4.2. Simulation Results

For each case, the following reference is based on 100 simulations. To facilitate com-
parison of model results, the variable selection results by our algorithm in the SAR model
are written as SLR. Meanwhile, LLA represents the variable selection results presented
by the LLA algorithm, where simulated samples are arised from the classical regression
model. Furthermore, to contrast the effects of different penalty functions, LASSO penalty
pλ(δ) = λ|δ| is introduced for variable selection. In Tables 1 and 2, it is clear that as the
number of samples n increases, the accuracy of variable selection in both models gradually
improves. When the sample size n is 120, the performance of the SLR model reaches the
ideal state. In this case, the model has a higher “Correct” and a lower “Incorrect” and ME,
which are consistent with our speculations. When the spatial effect is weak or moderate
(such as ρ1 = 0.2 and 0.5) or does not exist (ρ = 0), the ME of the SLR model is significantly
lower than that of the LLA model, and the number of variables which are correctly selected
is evidently higher than that of the LLA. These show that under low to medium intensity
spatial effects, the SLR model has high accuracy, and the influence of spatial effects on the
model is weakened. When we set error is ε1, these two models exhibit good robustness.
When the spatial effect is strong (ρ1 = 0.8), the estimations are more inexact, suggesting
that neglecting spatial effect will seriously bias the estimate.

Table 1. Simulation results of variable selection via SCAD penalty function (q = 5).

Method n = 60, q = 5 n = 90, q = 5 n = 120, q = 5
SLR LLA SLR LLA SLR LLA

ρ = 0.0 Correct 4.7500 3.0600 4.7500 2.8700 4.8000 3.0900
ε0 Incorrect 0.0300 0.0300 0.0900 0.0300 0.0300 0.0000

ME 0.5443 39.710 0.5667 27.523 0.4189 7.7846

ρ = 0.0 Correct 4.7700 2.6600 4.8300 2.7800 4.8400 3.6100
ε1 Incorrect 0.0300 0.0300 0.0500 0.0200 0.0000 0.0000

ME 0.5267 26.015 0.5089 16.697 0.4398 5.2516

ρ1 = 0.2 Correct 4.7700 2.5400 4.7400 3.0500 4.8300 3.5100
ε0 Incorrect 0.0200 0.0200 0.0500 0.0200 0.0100 0.0000

ME 0.6629 26.553 0.5714 13.238 0.5226 4.7464

ρ1 = 0.2 Correct 4.7300 2.6800 4.7500 3.2400 4.8500 3.7800
ε1 Incorrect 0.0500 0.0300 0.0700 0.0000 0.0200 0.0000

ME 0.6204 20.937 0.5862 5.3993 0.5180 2.5285

ρ1 = 0.5 Correct 4.4700 2.6500 4.7500 3.3900 4.7600 4.1400
ε0 Incorrect 0.0300 0.0300 0.0200 0.0300 0.0100 0.0000

ME 1.4812 10.299 1.1671 1.8735 1.2150 1.2959

ρ1 = 0.5 Correct 4.5400 2.8800 4.7700 3.6800 4.7400 4.3900
ε1 Incorrect 0.0700 0.0300 0.0400 0.0300 0.0100 0.0100

ME 1.3525 6.7171 1.1989 1.6030 1.2130 1.2991

ρ1 = 0.8 Correct 2.0400 3.4000 3.6900 4.2100 3.9000 4.7600
ε0 Incorrect 0.0400 0.3200 0.0100 0.2700 0.0100 0.2300

ME 6.4407 2.2473 5.6574 2.1468 5.7883 2.1607

ρ1 = 0.8 Correct 3.2800 3.4200 3.3600 4.3500 3.8000 4.7100
ε1 Incorrect 0.0300 0.3300 0.0100 0.3600 0.0200 0.2600

ME 6.4877 2.2987 5.9324 2.2557 5.7459 2.1878

Moreover, by comparing the ME between the two penalty functions, we find that
the SCAD penalty is better than the LASSO penalty by the SLR algorithm, although they
get closer as the sample size increases. From the perspective of Correct and Incorrect,
although LASSO has a lower error rate, the accuracy rate of SCAD is always at a high
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level, and its estimation error is significantly lower. In Table 1, the number of coefficients
with zero values chosen correctly is close to the true value, and as the number of samples
increases, the average number of coefficients with zero values incorrectly chosen is close to
zero. All simulation results are consistent with theoretical analysis. However, under the
same conditions, the number of correctly chosen zero coefficients for models with LASSO
penalties is less than half of the true value. Under the same number of observations, the
average number of correct selecting zero-value coefficients by LASSO penalty is remarkably
lower than by SCAD penalty, which may imply that SCAD penalty tends to give smaller
models than LASSO penalty. These results are in accordance with the studies obtained by
Fan and Li (2001) [12].

Table 2. Simulation results of variable selection via LASSO penalty function (q = 5).

Method n = 60, q = 5 n = 90, q = 5 n = 120, q = 5
SLR LLA SLR LLA SLR LLA

ρ = 0.0 Correct 2.2800 0.8000 2.4000 1.0700 2.5800 1.4000
ε0 Incorrect 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ME 0.9315 20.399 0.6583 13.610 0.4613 7.1323

ρ = 0.0 Correct 2.2700 0.7800 2.0900 1.1600 2.1600 1.8800
ε1 Incorrect 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ME 1.0551 15.274 0.6850 7.6718 0.6105 3.4521

ρ1 = 0.2 Correct 2.3000 0.8000 2.5200 1.1900 2.5000 1.7200
ε0 Incorrect 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ME 0.9735 16.272 0.6776 8.5473 0.4623 4.6528

ρ1 = 0.2 Correct 2.3400 0.8700 2.2600 1.6100 2.1500 1.9100
ε1 Incorrect 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ME 1.0599 13.332 0.6879 4.5913 0.5618 2.4616

ρ1 = 0.5 Correct 2.5200 1.0800 2.6300 1.7300 2.5600 2.2600
ε0 Incorrect 0.0100 0.0100 0.0000 0.0000 0.0000 0.0000

ME 1.0038 5.6760 0.7466 1.8178 0.7139 1.2749

ρ1 = 0.5 Correct 2.3500 1.2000 2.5100 1.8100 2.4800 2.3700
ε1 Incorrect 0.0000 0.0100 0.0000 0.0000 0.0000 0.0100

ME 1.1404 5.1790 0.7768 1.5665 0.7014 1.2904

ρ1 = 0.8 Correct 2.2700 1.4700 2.2600 2.2000 2.3100 2.8300
ε0 Incorrect 0.1800 0.0900 0.0900 0.0600 0.0300 0.0200

ME 2.4780 2.2362 2.4000 2.1520 2.4363 2.1664

ρ1 = 0.8 Correct 2.2400 1.5900 2.3200 2.3900 2.4000 2.9700
ε1 Incorrect 0.1900 0.0500 0.0900 0.0600 0.0400 0.0500

ME 2.4328 2.2905 2.2099 2.2588 2.3256 2.1934

In terms of the Correct and Incorrect, Tables 1 and 2 present the results with fixed
q = 5. In this case, the sample dimension is low. To explore the performance of the
models in high-dimensional situations, we set q = 10 and q = 35. In Tables 3 and 4, in
high-dimensional cases, we found that SLR model is significantly better than LLA model.
As a result of the inferior performance of the LLA model, we only present the SLR model
in Table 5 in order to save space. On the whole, the variable selection effect of the model is
reduced, and the number of correctly selected zero coefficients is slightly different from the
true value. However, it is not difficult to see that as the sample size increases, the maximum
likelihood function of the penalty with SCAD and LASSO penalties effectively reduces the
complicacy of the model, and the performance of the SCAD penalty is better than that of
the LASSO penalty.
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To measure the robustness of the model, we not only set up two error distributions,
but also calculated the median absolute deviations of different parameters. MAD is a robust
statistic that is more resilient than standard deviations for the treatment of outliers in a
dataset. It is a good measure of model robustness.Based on the above conclusions, we
have compared the performance of the SLR model under two different penalty functions in
Tables 6 and 7. We use means, standard deviations, median absolute deviations to measure
the effect of the models. In the simulation study, we find that the means and variances of
the errors for the different study combinations do not differ significantly and are not shown
in the tables.

According to Tables 6 and 7, we observe that the estimate of nonzero parameter
(β1, β2, β3) gradually tends to true value as the sample size n increases, indicating that our
model has higher accuracy. In Table 6, we are surprised to find that the model performed
better when we set ε1. It is reflected in lower MAD values, lower variances and parameter
estimates that are closer to the true value. In contrast to Table 6, the estimates of the nonzero
coefficients are generally lower than the true values in the models with the LASSO penalty,
indicating that the penalty is less effective in shrinkage degree than the SCAD penalty. By
analyzing the estimation results of nonzero parameters, it is found that as the spatial effect
increases, the estimation of the standard deviation becomes less precise.

Table 3. Simulation results of variable selection via SCAD penalty function (q = 35).

Method n = 60, q = 35 n = 90, q = 35 n = 120, q = 35
SLR LLA SLR LLA SLR LLA

ρ = 0.0 Correct 29.3500 22.0400 32.1000 28.6700 32.8500 32.0000
ε0 Incorrect 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ME 0.9802 1.3659 0.6939 0.9054 0.6388 0.7051

ρ = 0.0 Correct 27.2200 18.2900 28.1300 24.9300 30.3100 29.1100
ε1 Incorrect 0.0300 0.0000 0.0000 0.0000 0.0000 0.0000

ME 1.1501 1.7382 0.9268 1.1563 0.7181 0.8876

ρ1 = 0.2 Correct 28.0500 19.7400 30.7000 26.3700 31.6500 30.1600
ε0 Incorrect 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ME 1.3621 1.6003 0.8765 1.0687 0.7747 0.8413

ρ1 = 0.2 Correct 27.5200 17.0400 28.2200 23.0000 30.4600 27.3400
ε1 Incorrect 0.0000 0.0000 0.0000 0.0000 0.0200 0.0000

ME 1.5050 1.9408 1.0588 1.2988 0.9202 1.0093

ρ1 = 0.5 Correct 22.9000 10.7400 27.0000 15.2200 33.8000 18.4600
ε0 Incorrect 0.0000 0.0100 0.0000 0.0000 0.0100 0.0000

ME 3.2759 3.4503 2.8857 2.3748 1.8003 1.9243

ρ1 = 0.5 Correct 21.1000 9.9700 27.1500 14.1000 30.1700 17.3200
ε1 Incorrect 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ME 3.2655 3.7152 2.3088 2.5436 2.0182 2.0512

ρ1 = 0.8 Correct 12.8300 3.3600 15.6700 4.9000 22.5000 6.2600
ε0 Incorrect 0.1600 0.0100 0.0000 0.0100 0.0100 0.0000

ME 11.8324 12.7776 11.1446 9.2003 7.3722 7.8126

ρ1 = 0.8 Correct 12.6500 3.1700 17.4500 4.8400 21.1100 6.2300
ε1 Incorrect 0.0500 0.0300 0.0100 0.0200 0.1100 0.0000

ME 11.5900 13.1540 9.4916 9.4230 7.0805 7.9880
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Table 4. Simulation results of variable selection via LASSO penalty function (q = 35).

Method n = 60, q = 35 n = 90, q = 35 n = 120, q = 35
SLR LLA SLR LLA SLR LLA

ρ=0.0 Correct 26.5900 21.2400 30.2800 16.7200 31.4000 14.4300
ε0 Incorrect 0.1100 0.0000 0.0700 0.0000 0.0100 0.0000

ME 3.4254 6.4100 3.4241 10.1052 3.4143 13.2199

ρ = 0.0 Correct 26.2600 19.7400 30.1700 14.3700 31.2600 11.3600
ε1 Incorrect 0.1400 0.0000 0.0500 0.0000 0.0600 0.0000

ME 3.4459 6.5985 3.4320 11.5742 3.4218 16.0966

ρ1 = 0.2 Correct 26.1800 20.4600 30.1800 15.0000 31.4000 12.0700
ε0 Incorrect 0.0800 0.0000 0.1200 0.0000 0.0300 0.0000

ME 3.4386 6.5198 3.4394 10.8455 3.4181 14.9343

ρ1 = 0.2 Correct 25.8600 19.2600 29.9200 13.0900 31.6100 9.9100
ε1 Incorrect 0.1200 0.0100 0.0800 0.0000 0.0200 0.0000

ME 3.4500 6.6266 3.4472 11.8648 3.4280 17.3861

ρ1 = 0.5 Correct 25.1900 16.1500 29.3600 9.6100 31.0000 5.7400
ε0 Incorrect 0.2700 0.0500 0.1700 0.0000 0.0700 0.0000

ME 3.5079 8.2365 3.4832 17.2251 3.4817 24.5215

ρ1 = 0.5 Correct 25.3100 15.4600 29.1600 8.8100 30.5300 5.4500
ε1 Incorrect 0.2200 0.0800 0.1600 0.0200 0.0800 0.0000

ME 3.5032 8.3032 3.4932 18.5977 3.4925 24.0086

ρ1 = 0.8 Correct 24.8300 11.5900 28.6400 4.2000 30.3300 7.5600
ε0 Incorrect 0.5400 0.2300 0.3800 0.0200 0.3000 0.0100

ME 3.6149 12.5654 3.5891 27.8645 3.5918 12.1578

ρ1 = 0.8 Correct 24.8000 11.7400 28.5800 3.2500 30.2600 7.9300
ε1 Incorrect 0.5100 0.2400 0.4300 0.0200 0.2800 0.0200

ME 3.6146 13.1417 3.6000 28.7948 3.5946 11.8813

Table 5. Simulation results of variable selection when the number of components of β is 10.

Method n = 60, q = 10 n = 90, q = 10 n = 120, q = 10
SCAD LASSO SCAD LASSO SCAD LASSO

ρ = 0.0 Correct 7.6600 5.1800 7.6000 5.3900 7.4900 5.2300
ε0 Incorrect 0.0100 0.0000 0.0300 0.0000 0.0200 0.0000

ME 0.5453 0.8422 0.5249 0.5510 0.4791 0.4343

ρ = 0.0 Correct 7.1200 4.5200 7.4100 4.7400 7.4800 4.6100
ε1 Incorrect 0.0500 0.0000 0.0500 0.0000 0.0500 0.0000

ME 0.6408 1.0402 0.5247 0.7471 0.5418 0.5791

ρ1 = 0.2 Correct 7.3100 5.1000 7.3700 5.2400 7.4800 5.2300
ε0 Incorrect 0.0300 0.0000 0.0600 0.0000 0.0100 0.0000

ME 0.5960 0.8643 0.5856 0.5680 0.5250 0.4817

ρ1 = 0.2 Correct 6.9100 4.1600 7.1900 4.6200 7.4500 4.6500
ε1 Incorrect 0.1000 0.0000 0.0700 0.0000 0.0400 0.0000

ME 0.8297 1.0863 0.5988 0.7330 0.5598 0.5998

ρ1 = 0.5 Correct 6.7600 4.4800 7.0800 4.9400 7.0000 5.1300
ε0 Incorrect 0.0300 0.0100 0.0000 0.0000 0.0100 0.0000

ME 1.3827 1.0727 1.1509 0.8280 1.2536 0.8056
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Table 5. Cont.

Method n = 60, q = 10 n = 90, q = 10 n = 120, q = 10
SCAD LASSO SCAD LASSO SCAD LASSO

ρ1 = 0.5 Correct 6.5000 4.7100 7.0400 4.7000 7.2100 4.6100
ε1 Incorrect 0.0500 0.0100 0.0100 0.0000 0.0200 0.0000

ME 1.5347 1.1668 1.1242 0.8354 1.2782 0.8670

ρ1 = 0.8 Correct 5.1700 3.3200 5.3400 4.0700 5.3400 4.0700
ε0 Incorrect 0.0000 0.1300 0.0000 0.0500 0.0400 0.0300

ME 6.9527 3.2176 6.0424 2.9194 5.7429 2.9715

ρ1 = 0.8 Correct 4.8400 3.4100 5.2900 3.9900 5.4200 3.8900
ε1 Incorrect 0.0400 0.1700 0.0100 0.0500 0.0100 0.0300

ME 7.0023 3.3527 6.0356 2.8764 5.9172 3.1053

Table 6. Standard deviations and means of estimators of the nonzero regression coefficients.

Method n = 60, q = 5 n = 90, q = 5 n = 120, q = 5
MAD MEAN SD MAD MEAN SD MAD MEAN SD

SCAD β1 0.2455 3.1868 0.3518 0.2636 3.2012 0.3604 0.2059 3.1560 0.2301
ρ1 = 0.0 β2 0.2596 2.1391 0.3367 0.1700 2.1222 0.3150 0.2003 2.1257 0.2507

ε0 β3 0.2545 1.6710 0.4275 0.3215 1.5604 0.5628 0.1856 1.6082 0.3618
σ 0.0697 0.0739 0.0771

SCAD β1 0.3278 3.1061 0.3140 0.2193 3.1143 0.2818 0.2097 3.1453 0.3095
ρ1 = 0.0 β2 0.2980 2.0998 0.3197 0.2506 2.1097 0.3547 0.2600 2.1116 0.2416

ε1 β3 0.3092 1.6416 0.3999 0.2528 1.5930 0.4137 0.2382 1.6805 0.2548
σ1 0.0697 0.0739 0.0771
σ2 0.0602 0.0605 0.0848

SCAD β1 0.3405 3.3175 0.4782 0.2345 3.2538 0.2998 0.2424 3.2824 0.4111
ρ1 = 0.2 β2 0.3215 2.2035 0.3670 0.2928 2.1281 0.3042 0.1988 2.2157 0.3676

ε0 β3 0.2729 1.7262 0.4074 0.2850 1.6297 0.4549 0.2329 1.7127 0.3269
σ 0.0697 0.0739 0.0771

SCAD β1 0.3066 3.1977 0.3551 0.3634 3.2155 0.3451 0.2703 3.2236 0.3035
ρ1 = 0.2 β2 0.3218 2.1285 0.3340 0.2726 2.1541 0.3093 0.2447 2.1187 0.2909

ε1 β3 0.2900 1.6381 0.4931 0.2387 1.5575 0.4864 0.2433 1.6999 0.3470
σ1 0.0697 0.0739 0.0771
σ2 0.0602 0.0605 0.0848

SCAD β1 0.5887 3.8562 0.9985 0.4864 3.7980 0.5011 0.4398 3.7895 0.5038
ρ1 = 0.5 β2 0.5312 2.5957 0.6553 0.4291 2.4581 0.4526 0.4217 2.5749 0.4995

ε0 β3 0.4764 2.0705 0.7608 0.4020 1.9487 0.4694 0.3718 1.9845 0.4893
σ 0.0697 0.0739 0.0771

SCAD β1 0.6080 3.7618 0.6917 0.5305 3.7769 0.5967 0.4413 3.8122 0.4579
ρ1 = 0.5 β2 0.4864 2.5355 0.5607 0.4128 2.3989 0.5558 0.4526 2.5171 0.4376

ε1 β3 0.4859 1.8453 0.6894 0.4985 1.8754 0.5335 0.3339 2.0543 0.4598
σ1 0.0697 0.0697 0.0771
σ2 0.0602 0.0602 0.0848

SCAD β1 2.0179 7.0442 2.3790 1.5072 7.0772 2.3910 1.7351 7.1679 2.1987
ρ1 = 0.8 β2 1.9750 4.9501 2.2412 1.3111 4.2876 1.5123 1.1471 4.6002 1.8087

ε0 β3 1.6558 3.7185 2.2376 1.1559 3.6419 1.5232 1.1865 3.8710 1.5290
σ 0.0697 0.0739 0.0771
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Table 6. Cont.

Method n = 60, q = 5 n = 90, q = 5 n = 120, q = 5
MAD MEAN SD MAD MEAN SD MAD MEAN SD

SCAD β1 2.1170 7.2101 2.5888 1.9399 7.1463 2.4596 1.8336 7.1832 2.1051
ρ1 = 0.8 β2 1.8740 4.9594 2.1258 1.4001 4.5172 1.6663 1.2885 4.6123 1.7462

ε1 β3 1.7771 3.6942 2.0929 1.3543 3.6027 1.5921 1.2216 3.7060 1.4169
σ1 0.0697 0.0697 0.0771
σ2 0.0602 0.0602 0.0848

Table 7. Standard deviations and means of estimators of the nonzero regression coefficients.

Method n = 60, q = 5 n = 90, q = 5 n = 120, q = 5
MAD MEAN SD MAD MEAN SD MAD MEAN SD

LASSO β1 0.4058 2.4638 0.3234 0.3058 2.8603 0.3533 0.2666 2.9453 0.2548
ρ1 = 0.0 β2 0.4386 1.6110 0.3471 0.2665 1.7970 0.2771 0.1943 1.9427 0.2309

ε0 β3 0.3268 1.2491 0.3228 0.2853 1.3814 0.3217 0.2121 1.5010 0.2249
σ 0.0697 0.0739 0.0771

LASSO β1 0.3199 2.4047 0.3250 0.3159 2.7176 0.2929 0.3114 2.7647 0.3266
ρ1 = 0.0 β2 0.3726 1.5360 0.3728 0.3192 1.7868 0.2897 0.2994 1.8135 0.2906

ε1 β3 0.3604 1.1914 0.3440 0.2847 1.3243 0.3018 0.2531 1.4356 0.2365
σ1 0.0697 0.0739 0.0771
σ2 0.0602 0.0605 0.0848

LASSO β1 0.3247 2.4977 0.3587 0.3301 2.8398 0.2992 0.2347 3.0282 0.2689
ρ1 = 0.2 β2 0.3406 1.5942 0.3675 0.3332 1.7930 0.3526 0.2108 1.9934 0.2039

ε0 β3 0.2805 1.2211 0.3387 0.3017 1.3784 0.3036 0.2691 1.5115 0.2332
σ 0.0697 0.0739 0.0771

LASSO β1 0.3436 2.4367 0.3680 0.3421 2.7136 0.3099 0.3185 2.8873 0.3071
ρ1 = 0.2 β2 0.3795 1.5498 0.3694 0.3200 1.7739 0.2954 0.2543 1.8448 0.2794

ε1 β3 0.3847 1.1731 0.3862 0.2699 1.3189 0.2642 0.2747 1.4865 0.2548
σ1 0.0697 0.0739 0.0771
σ2 0.0602 0.0605 0.0848

LASSO β1 0.4018 2.7972 0.5157 0.3895 3.1733 0.3737 0.3060 3.3872 0.3614
ρ1 = 0.5 β2 0.5035 1.7161 0.4279 0.4342 1.9538 0.4156 0.2779 2.1410 0.3373

ε0 β3 0.5346 1.2690 0.4965 0.3798 1.4383 0.3857 0.2761 1.6648 0.2872
σ 0.0697 0.0739 0.0771

LASSO β1 0.4514 2.6579 0.5536 0.4769 3.0253 0.4331 0.3343 3.2222 0.3860
ρ1 = 0.5 β2 0.4932 1.6128 0.5226 0.3960 1.8848 0.3754 0.3472 2.0364 0.3742

ε1 β3 0.4378 1.1378 0.4317 0.3315 1.3910 0.3836 0.3460 1.6178 0.3657
σ1 0.0697 0.0739 0.0771
σ2 0.0602 0.0605 0.0848

LASSO β1 1.1758 3.2846 1.3361 1.1406 4.3800 1.8818 0.7971 4.6060 1.8911
ρ1 = 0.8 β2 1.0994 1.9483 1.3684 1.0162 2.1504 1.1529 0.8062 2.4770 1.2061

ε0 β3 1.0369 1.2004 1.3797 1.0446 1.3117 0.9479 0.7605 1.7002 0.8070
σ 0.0697 0.0739 0.0771

LASSO β1 0.9996 3.4737 1.5004 1.0690 4.2106 1.4199 1.1367 4.5226 1.7562
ρ1 = 0.8 β2 1.1422 1.7939 1.4225 1.1369 2.0650 1.0878 0.8946 2.3502 1.0537

ε1 β3 0.9546 0.9301 1.0104 0.9934 1.2820 0.9865 0.6433 1.8759 0.9692
σ1 0.0697 0.0739 0.0771
σ2 0.0602 0.0605 0.0848
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5. Data Example

In this section, we provide a real-world example to demonstrate the performance of the
variable selection procedure proposed in this paper for spatial logistic regression models.

5.1. The Sample Data

The dataset is a collection of different types of land area data (recorded every five
years) from 1954 to 2012 for the 48 states of the United States, using the Spatial Logistic
regression models to analyse land utilization data. The dependent variables are binary
(“1” indicates that the land utilization rate is low, that is, most of the land has not been
effectively developed; “0” indicates that the land utilization rate is high, that is, most of the
land has been developed and utilized). The independent variables have eight attributes,
including: Cropland used for crops, Cropland used for pasture, Cropland idled, Grassland
pasture and range, Forest-use land grazed, Land in rural transportation facilities, Land in
urban areas and Other idle land (showed in Table 8).

The spatial weight matrix is generally set by many basic principles, including Rook
and Queen Contiguity, binary distance bands, inverse distance, k-nearest neighbors and
kernel weights (Yrigoyen 2013 [20]). We choose to generate the spatial weight matrix by
defining the common boundary (Queen criterion), which is the contiguity-based spatial
weights matrix. For sensitivity and robustness analysis, we decided to use a different spatial
weight matrix (distance-based spatial weight matrix) to estimate our model (showed in
Appendix A). More ordinarily, the method to establish a space matrix is as follows: if they
share common boundaries, the weight is 1, otherwise the weight is zero. Furthermore,
spatial weight matrices are usually row-normalised in practice.

Table 8. Summary of variables.

Variable Name Description

CLand_C Cropland used for crops
CLand_P Cropland used for pasture
CLand_I Cropland idled
Grass_P Grassland pasture and range
Land_G Forest-use land grazed
Land_T Land in rural transportation facilities
Land_U Land in urban areas
Land_I Other idle land

5.2. Model Selection and Estimation

Tables 9 and 10 presents the results of the maximum likelihood estimate via the SCAD
and LASSO penalties under the fitting of a Spatial Logistic regression model. For the Spatial
Logistic regression model, the penalized maximum likelihood with the SCAD penalty
shows Forest-use land grazed, Cropland used for crop and Land in rural transportation
facilitie are unimportant.These three variables have a small effect on land utilisation rate
(the absolute value of the coefficient is less than 0.0001) and can be ignored.In Table 9, it
is significant to note that Cropland idled, Grassland pasture and range, Other idle land,
these three variables are significant, with Cropland idled and Other idle land being the
most significant. The results of this experiment are in line with our prediction.

Comparing the effects of these two penalty functions in practice, the SCAD penalty
has a more significant shrinkage degree on the model. This is mainly due to the fact that
the model with the SCAD penalty is able to select most of the important variables and
discard the less important ones as much as possible. However, the LASSO penalty does not
perform well in this respect. We can visually see in Table 10 that there are many coefficients
with small estimates, but the limitation of the shrinkage degree of LASSO penalty causes
them not to be estimated as 0 (Here, we consider coefficient estimates less than 0.0001 to be
judged as 0).
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Table 9. Parameter estimates using penalty estimates via SCAD under a spatial logistic model.

Year CLand_C CLand_P CLand_I Grass_P Land_G Land_T Land_U Land_I

1954 – – 0.9820 0.4230 – – – 0.6020
1959 – 1.7000 – −1.7400 – – 0.3050 1.2700
1964 – 1.2800 – −0.6150 – – – 0.8920
1969 – 1.5500 0.7150 −1.4900 – −0.3850 – 1.0600
1974 0.8540 1.5200 1.3900 −2.2600 – −0.5960 −0.6510 1.5200
1978 0.6630 – 1.9000 −1.7200 −0.2490 −0.2870 0.6140 1.2600
1982 0.3020 1.4500 1.1200 −1.1200 – – −0.9840 1.1400
1987 – 1.1500 0.6640 – – – −1.1100 1.2500
1992 0.9810 – 0.1740 2.8200 – −0.9490 −2.4100 1.8000
1997 0.5680 – 0.2620 2.7500 – −0.8770 −1.9300 1.8700
2002 2.4200 – 1.6100 −1.2100 – −1.0000 – 2.3900
2007 1.3000 0.8520 1.7600 −1.2000 – – −0.3830 2.4700
2012 – – 2.5800 −0.4680 – −0.7990 – 1.0200

Table 10. Parameter estimates using penalty estimates via LASSO under a spatial logistic model.

Year CLand_C CLand_P CLand_I Grass_P Land_G Land_T Land_U Land_I

1954 – – 0.7070 0.6400 −0.4510 – 0.2930 0.1510
1959 0.0607 – 0.8950 0.0101 −0.3660 0.1550 0.0085 0.4150
1964 −0.0019 0.0007 1.3279 −0.2782 −0.0156 – −0.0010 0.3816
1969 0.0010 0.1430 0.3649 0.0333 0.0797 0.0035 – 0.8547
1974 −0.2485 – 0.6534 0.2852 −0.0021 −0.0021 −0.0047 0.7925
1978 – 0.0797 0.2419 – – – 0.2834 1.3200
1982 −0.1152 −0.0899 0.2129 0.0859 −0.0549 0.0592 −0.1792 1.9704
1987 – 0.0403 – 1.0158 0.0306 0.0148 0.0374 1.4981
1992 – 0.3098 0.5501 – 0.0806 0.4132 −0.1816 0.8606
1997 −0.0018 0.1444 1.0449 – −0.0427 −0.1067 – 0.6831
2002 – −0.0816 1.2938 −0.0104 – 0.0248 0.0180 0.6495
2007 0.2985 −0.0101 −0.0109 0.4834 0.0063 0.3495 0.0231 0.6077
2012 0.0132 0.0014 0.5038 0.0145 0.0420 0.0051 – 1.0461

From the empirical results, we are able to find that the model is less stable in terms
of parameter estimation. For example, in Table 9, the parameter of the variable Cropland
used for pasture is obtained as 0.423 through the land utilization data of 1954. However,
when we use the land utilization data of 1992, the parameter estimate for this variable is
2.82. The reason for this analysis may be that the sample size in the dataset is too small and
that there are some anomalies or errors in the data.

6. Conclusions

In this paper, a spatial autoregressive model is used as the basis and a logistic regres-
sion model is combined with it to generate a spatial logistic model. Because of the potential
endogeneity issue of the SAR model, we choose to apply the penalized maximum likeli-
hood method to select significant covariates and simultaneously estimate the unknown
parameters. Owing to the complexness of the penalized likelihood function, we have put
forward a sort of more appropriate iterative algorithm to optimise the objective function.
Both simulated experiments and the real case illustrate that our method performs well in
limited samples. Additionally, we have contrasted not the same procedures of variable
selection between SCAD and LASSO penalty. Comparison with LASSO, we find that SCAD
is more valid and outstanding in nearly all instances in which our algorithm is used. It is
unclear whether the submited method has similar results for other more nimble spatial
models, incorporating parametric, nonparametric and semiparametric spatial regression
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models. What is more, it is possible to consider whether constraints could be introduced
into this model. Nonetheless, prime framework and substantial foundation have been
established and we will proceed to work on these subjects henceforth.
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Appendix A

In the Data Example, we use the Queen criterion to generate the spatial weight matrix.
For the sake of sensitivity analysis and to avoid possible biases in the model results due
to the choice of a single spatial weight matrix, we decided to estimate our model with a
different spatial weight matrix, the minimum distance matrix (a distance-based spatial
weight matrix). The results of the model are shown in Tables A1 and A2. It is obvious that
the model can still select significant variables and verify the robustness of the model.

Table A1. Parameter estimates using penalty estimates via SCAD under a spatial logistic model.

Year CLand_C CLand_P CLand_I Grass_P Land_G Land_T Land_U Land_I

1954 0.0041 – 1.1816 −1.6001 – 0.1438 – 1.5291
1959 – – 1.6730 −2.2342 – – – 1.6182
1964 – – 1.4018 −1.7498 – – −0.7698 1.4987
1969 – – 1.4567 −2.0923 – – 0.0028 0.8858
1974 −0.1548 – 1.4706 −1.9466 −0.0278 – – 1.4508
1978 −0.0434 – 1.3910 −1.4376 – – – 0.8428
1982 0.0248 −0.0056 0.7797 −0.0050 −0.0055 −0.0761 −0.0314 0.0037
1987 −0.0119 −0.0013 1.9232 −1.8952 0.0100 −0.0021 −0.7012 0.8860
1992 – – 1.5005 −1.6278 – – −0.8751 1.3734
1997 – – 1.0053 −1.7434 – – – 1.0357
2002 – – 0.8515 −0.8234 – – −0.6124 1.4318
2007 – – 1.6466 −1.3704 – – −1.2806 1.0864
2012 – 0.0010 0.8936 −0.8096 0.0047 – −0.0026 0.8552
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Table A2. Parameter estimates using penalty estimates via LASSO under a spatial logistic model.

Year CLand_C CLand_P CLand_I Grass_P Land_G Land_T Land_U Land_I

1954 −0.2383 – 0.5704 −0.9573 – – −0.0104 1.4060
1959 −0.3976 – 1.0474 −0.6412 −0.0475 – – 0.8030
1964 – 0.0086 0.5267 −0.0309 −0.0976 – −1.2473 0.9454
1969 – −0.6377 1.2268 −0.7067 0.0019 – – 0.9814
1974 −0.1366 −0.0079 0.3802 −0.0814 – – −0.7113 0.9834
1978 −0.0578 −0.1920 0.4416 −0.0011 −0.1774 −0.0066 −0.9952 1.1208
1982 −0.3635 −0.2077 0.6977 – – 0.0027 −0.7201 0.9518
1987 −0.1601 −1.0231 0.5397 – – – – 0.6990
1992 −0.0132 −0.5343 0.2966 −0.0582 −0.0428 – −0.1322 1.5956
1997 −0.2571 −0.3083 0.5104 – −0.0752 – −0.6651 1.0377
2002 −0.0231 −0.8781 0.2262 – – −0.3388 −0.1083 1.0491
2007 −0.1737 – 0.4287 −0.6469 −0.4591 – – 1.2079
2012 0.2314 – 0.4552 −0.3429 – – −0.0710 0.7424
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